Methodologies for Improving Antioxidant Properties and Absorption: 1st Edition
- (i)
- The transformation of natural antioxidants into more stable and/or soluble derivatives;
- (ii)
- The use of different types of delivery systems that can facilitate absorption and protect the molecule until it reaches its target cell or organ.
Conflicts of Interest
List of Contributions
- Kim, K.; Jeon, J.; Kim, Y.; Lim, K.-M. The Antioxidant and Skin-Brightening Effects of a Novel Caffeic Acid Derivative, Caffeic Acid-3,4-Dihydroxyphenylpropanolester. Antioxidants 2025, 14, 806. https://doi.org/10.3390/antiox14070806.
- Ionin, V.A.; Malyar, Y.N.; Borovkova, V.S.; Zimonin, D.V.; Kazachenko, A.S. TEMPO-Oxidized Spruce Galactoglucomannan—Biopolymer with Enhanced Antioxidant Activity and Selective Heavy-Metal Sorption. Antioxidants 2025, 14, 569. https://doi.org/10.3390/antiox14050569
- Poblete, J.; Fernández-Martínez, J.; Aranda, M.; Quispe-Fuentes, I. Green Recovery and Identification of Antioxidant and Enzyme Inhibitor Molecules from Pisco Grape Pomace by Targeted Effects Analysis Using Thin-Layer Chromatography, Bioassay, and Mass Spectrometry. Antioxidants 2024, 13, 1418. https://doi.org/10.3390/antiox13111418
- Qamar, H.; He, R.; Li, Y.; Song, M.; Deng, D.; Cui, Y.; Yu, M.; Ma, X. Metabolome and Metagenome Integration Unveiled Synthesis Pathways of Novel Antioxidant Peptides in Fermented Lignocellulosic Biomass of Palm Kernel Meal. Antioxidants 2024, 13, 1253. https://doi.org/10.3390/antiox13101253.
- Chen, L.; Wang, L.; Ma, L.; Wang, C.; Qin, X.; Wang, M.; Zhang, X.; Yang, R.; Fang, B.; An, J. Synergistic Antioxidant Effects of Cysteine Derivative and Sm-Cluster for Food Applications. Antioxidants 2024, 13, 910. https://doi.org/10.3390/antiox13080910.
- Merlino, M.; Condurso, C.; Cincotta, F.; Nalbone, L.; Ziino, G.; Verzera, A. Essential Oil Emulsion from Caper (Capparis spinosa L.) Leaves: Exploration of Its Antibacterial and Antioxidant Properties for Possible Application as a Natural Food Preservative. Antioxidants 2024, 13, 718. https://doi.org/10.3390/antiox13060718
- Mic, M.; Pîrňau, A.; Floare, C.G.; Palage, M.D.; Oniga, O.; Marc, G. Inclusion of a Catechol-Derived Hydrazinyl-Thiazole (CHT) in Cyclodextrin Nanocavity and Its Effect on Antioxidant Activity: A Calorimetric, Spectroscopic and Molecular Docking Approach. Antioxidants 2023, 12, 1367. https://doi.org/10.3390/antiox12071367
- Ricci, A.; Stefanuto, L.; Gasperi, T.; Bruni, F.; Tofani, D. Lipid Nanovesicles for Antioxidant Delivery in Skin: Liposomes, Ufasomes, Ethosomes, and Niosomes. Antioxidants 2024, 13, 1516. https://doi.org/10.3390/antiox13121516.
References
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxidative Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bi, X.; Hu, L.; Wu, Y.; Hu, W.; Wang, H.; Zheng, X.; Wu, H.; Mu, D.; Wen, L.; et al. Enhancing Antioxidant Activity of Rice Protein Hydrolysates through Glycosylation Modification. Front. Nutr. 2025, 12, 1616272. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-N.; Zou, X.-G.; He, Y.; Chen, F.; Deng, Z.-Y. Esterification of Quercetin Increases Its Transport Across Human Caco-2 Cells. J. Food Sci. 2016, 81, H1825–H1832. [Google Scholar] [CrossRef] [PubMed]
- Karimova, E.R.; Baltina, L.A.; Spirikhin, L.V.; Sapozhnikova, T.A.; Gabdrakhmanova, S.F.; Makara, N.S. Methylation of Quercetin by Diazomethane and Hypoglycemic Activity of Its Tetra-O-Methyl Ether. Chem. Nat. Compd. 2020, 56, 837–841. [Google Scholar] [CrossRef]
- Plastina, P. Chapter 45—Hydroxytyrosol and Hydroxytyrosyl Fatty Esters: Occurrence and Anti-Inflammatory Properties. In Olives and Olive Oil in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 547–555. [Google Scholar] [CrossRef]
- Kuzminska, J.; Szyk, P.; Mlynarczyk, D.T.; Bakun, P.; Muszalska-Kolos, I.; Dettlaff, K.; Sobczak, A.; Goslinski, T.; Jelinska, A. Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment. Molecules 2024, 29, 5321. [Google Scholar] [CrossRef] [PubMed]
- Thongsom, S.; Racha, S.; Petsri, K.; Ei, Z.Z.; Visuttijai, K.; Moriue, S.; Yokoya, M.; Chanvorachote, P. Structural Modification of Resveratrol Analogue Exhibits Anticancer Activity against Lung Cancer Stem Cells via Suppression of Akt Signaling Pathway. BMC Complement. Med. Ther. 2023, 23, 183. [Google Scholar] [CrossRef] [PubMed]
- Maqsoudlou, A.; Assadpour, E.; Mohebodini, H.; Jafari, S.M. The Influence of Nanodelivery Systems on the Antioxidant Activity of Natural Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2022, 62, 3208–3231. [Google Scholar] [CrossRef] [PubMed]
- Molteni, C.; La Motta, C.; Valoppi, F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants 2022, 11, 1931. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yan, H.; Pang, S.; Ya, M.; Qiu, F.; Qin, P.; Zeng, C.; Lu, Y. Liposomes as Multifunctional Nano-Carriers for Medicinal Natural Products. Front. Chem. 2022, 10, 963004. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Andoyo, R.; Indiarto, R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants 2023, 12, 633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Peng, B.; Chen, Z.; Yu, J.; Deng, G.; Bao, Y.; Ma, C.; Du, F.; Sheu, W.C.; Kimberly, W.T.; et al. Brain-Targeting, Acid-Responsive Antioxidant Nanoparticles for Stroke Treatment and Drug Delivery. Bioact. Mater. 2022, 16, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.; Andrabi, S.S.; Mansoor, S.; Kuang, Y.; Kwon, B.K.; Labhasetwar, V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants 2022, 11, 408. [Google Scholar] [CrossRef] [PubMed]
- Sezgin-Bayindir, Z.; Losada-Barreiro, S.; Fernández-Bravo, S.; Bravo-Díaz, C. Innovative Delivery and Release Systems for Antioxidants and Other Active Substances in the Treatment of Cancer. Pharmaceuticals 2023, 16, 1038. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef] [PubMed]
- García-González, A.G.; Rivas-García, P.; Escamilla-Alvarado, C.; Ramírez-Cabrera, M.A.; Paniagua-Vega, D.; Galván-Arzola, U.; Cano-Gómez, J.J.; Escárcega-González, C.E. Fruit and Vegetable Waste as a Raw Material for Obtaining Functional Antioxidants and Their Applications: A Review of a Sustainable Strategy. Biofuels Bioprod. Biorefin. 2025, 19, 231–249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofani, D. Methodologies for Improving Antioxidant Properties and Absorption: 1st Edition. Antioxidants 2025, 14, 1290. https://doi.org/10.3390/antiox14111290
Tofani D. Methodologies for Improving Antioxidant Properties and Absorption: 1st Edition. Antioxidants. 2025; 14(11):1290. https://doi.org/10.3390/antiox14111290
Chicago/Turabian StyleTofani, Daniela. 2025. "Methodologies for Improving Antioxidant Properties and Absorption: 1st Edition" Antioxidants 14, no. 11: 1290. https://doi.org/10.3390/antiox14111290
APA StyleTofani, D. (2025). Methodologies for Improving Antioxidant Properties and Absorption: 1st Edition. Antioxidants, 14(11), 1290. https://doi.org/10.3390/antiox14111290

