Differences in Chemical Profiles, Phenolic Content, and Antioxidant Activity of Prunella vulgaris L. at Different Ripeness Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Extraction
2.4. Water-Soluble Extract Determination
2.5. Chemical Analysis by LC-MS/MS
2.6. Detection of Six Phenolic Acids
2.7. Antioxidant Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Content of Total Water-Soluble Extracts
3.2. LC-MS/MS Analysis
3.2.1. Identification of Components by LC-MS/MS
3.2.2. Comparison Compounds Between Green and Red-Brown Fruit-Spikes
3.2.3. Influence of Extraction Solvents
3.3. Content of Six Phenolic Acids
3.4. Antioxidant Activity of Green/Red-Brown Fruit-Spikes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt |
| CHP | Chinese Pharmacopoeia |
| EC50 | Half-Maximal Effective Concentration |
| DPPH | 1-diphenyl-2-picrylhydrazine |
| HPLC | High-Performance Liquid Chromatography |
| PV | Prunella vulgaris L. |
| TIC | Total-Ion Chromatogram |
| UPLC | Ultra-High-Performance Liquid Chromatography |
| ESI-Q-TOF-MS | Electrospray Ionization–Quadrupole Time-of-Flight Mass Spectrometry |
References
- Pan, J.; Wang, H.; Chen, Y. Prunella vulgaris L.—A Review of Its Ethnopharmacology, Phytochemistry, Quality Control and Pharmacological Effects. Front. Pharmacol. 2022, 13, 903171. [Google Scholar] [CrossRef]
- Bai, Y.; Xia, B.; Xie, W.; Zhou, Y.; Xie, J.; Li, H.; Liao, D.; Lin, L.; Li, C. Phytochemistry and Pharmacological Activities of the Genus Prunella. Food Chem. 2016, 204, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Shennongbencaojin; People’s Publishing House: Beijing, China, 1963; ISBN 14048.2717. [Google Scholar]
- Zholdasbayev, M.E.; Atazhanova, G.A.; Musozoda, S.; Poleszak, E. Prunella vulgaris L.: An Updated Overview of Botany, Chemical Composition, Extraction Methods, and Biological Activities. Pharmaceuticals 2023, 16, 1106. [Google Scholar] [CrossRef]
- Mir, R.H.; Bhat, M.F.; Sawhney, G.; Kumar, P.; Andrabi, N.I.; Shaikh, M.; Mohi-Ud-Din, R.; Masoodi, M.H. Prunella vulgaris L: Critical Pharmacological, Expository Traditional Uses and Extensive Phytochemistry: A Review. Curr. Drug. Discov. Technol. 2022, 19, 9–21. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.-G.; Hwang, S.; Yun, S.-H.; Uprety, L.P.; Oh, K.-I.; Singh, S.; Yoo, J.; Jeong, H.; Yong, Y.; et al. Anti-Osteoarthritic Effects of Prunella vulgaris and Gentiana lutea In Vitro and In Vivo. Antioxidants 2022, 12, 47. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia 2019, 10th ed.; Deutscher Apotheker: Stuttgart, Germany, 2019. [Google Scholar]
- Wagang, Quanshan County: A Bountiful Harvest of Ten Thousand Mu of Prunella vulgaris. Available online: https://www.sohu.com/a/www.sohu.com/a/901449639_121117466 (accessed on 12 October 2025).
- Wang, S.-J.; Wang, X.-H.; Dai, Y.-Y.; Ma, M.-H.; Rahman, K.; Nian, H.; Zhang, H. Prunella vulgaris: A Comprehensive Review of Chemical Constituents, Pharmacological Effects and Clinical Applications. Curr. Pharm. Des. 2019, 25, 359–369. [Google Scholar] [CrossRef]
- Lu, Y.-A.; Liu, S.-J.; Lin, L.-M.; Hou, S.-Y.; Ge, Y.-Y.; Xie, J.-C.; Yan, J.; Xia, B.-H. Analysis of differential metabolites of spikes of Prunella vulgaris at different stages based on UPLC-MS/MS. Zhongguo Zhong Yao Za Zhi 2024, 49, 2734–2744. [Google Scholar] [CrossRef]
- Zheng, H.; Zhao, H.; Zhang, X.; Liang, Z.; He, Q. Systematic Identification and Validation of Suitable Reference Genes for the Normalization of Gene Expression in Prunella vulgaris under Different Organs and Spike Development Stages. Genes 2022, 13, 1947. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, Q.; Xia, B.; Li, Y.; Qin, X.; Luo, H.; Lin, Y.; Xie, J.; Wu, P.; Lin, L.; et al. Integrative Transcriptomic, Proteomic and Metabolomic Analysis Reveals the Dynamic Regulation of Secondary Metabolism upon Development of Prunella vulgaris L. Fitoterapia 2022, 163, 105334. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, Q.; Zhu, Z.; Zhang, L. Changes in Bioactive Components Related to the Harvest Time from the Spicas of Prunella vulgaris. Pharm. Biol. 2012, 50, 1118–1122. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.; Guo, Q.; Liu, L.; Li, C.; Cao, L.; Qin, Q.; Zhao, M.; Wang, W. Effects of UV-B Radiation on the Content of Bioactive Components and the Antioxidant Activity of Prunella vulgaris L. Spica during Development. Molecules 2018, 23, 989. [Google Scholar] [CrossRef]
- Wu, S.-R.; Feng, W.-H.; Chen, K.-M.; Guan, L.-J.; Chen, L.-M.; Wang, Z.-M.; Gao, H.-M.; Song, Z.-H. Chemical composition and antioxidant activity of different parts of Prunella vulgaris by UPLC-Q-TOF-MS/MS and UPLC. Zhongguo Zhong Yao Za Zhi 2023, 48, 4569–4588. [Google Scholar] [CrossRef]
- Feng, W.-H.; Li, C.; Xin, W.-M.; Lin, L.-M.; Xia, B.-H.; Rong, L.-X.; Yang, L.-X.; Yi, H.; Zhang, Y.-X.; Chen, L.-M.; et al. Exploration on feasibility of introducing bioassay method into quality evaluation of Chinese herbal medicines by studying on the correlation between antioxidant activity of Prunella vulgaris and its total phenolic acids content for example. Zhongguo Zhong Yao Za Zhi 2016, 41, 2660–2668. [Google Scholar] [CrossRef]
- Miao, W.G.; Tang, C.; Ye, Y.; Quinn, R.J.; Feng, Y. Traditional Chinese Medicine Extraction Method by Ethanol Delivers Drug-like Molecules. Chin. J. Nat. Med. 2019, 17, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. The 2020 Edition of Pharmacopoeia of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2020; Volume 1. [Google Scholar]
- Marvi, P.K.; Ahmed, S.R.; Das, P.; Ghosh, R.; Srinivasan, S.; Rajabzadeh, A.R. Prunella vulgaris-Phytosynthesized Platinum Nanoparticles: Insights into Nanozymatic Activity for H2O2 and Glutamate Detection and Antioxidant Capacity. Talanta 2024, 274, 125998. [Google Scholar] [CrossRef] [PubMed]
- Benramdane, E.; Mustafa, A.; Chougui, N.; Makhloufi, N.; Tamendjari, A.; Mussagy, C.U. Identification, Quantification, and Antioxidant Evaluation of Phenolic Compounds from Colored Opuntia ficus-indica (L.) Roots Using UHPLC-DAD-ESI-MS/MS. Antioxidants 2025, 14, 1023. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Y.; Sun, S.; Xin, Q.; Liu, S.; Mu, X.; Yuan, X.; Chen, K.; Wang, H.; Varga, K.; et al. Catalytically Potent and Selective Clusterzymes for Modulation of Neuroinflammation through Single-Atom Substitutions. Nat. Commun. 2021, 12, 114. [Google Scholar] [CrossRef]
- Xu, T.; Li, X.; Sun, G.; Wei, W.; Huo, J.; Wang, W. Identifying Chemical Markers in Wine-processed Salvia miltiorrhiza Using Ultrahigh-performance Liquid Chromatography-quadrupole-time-of-flight-tandem Mass Spectrometry. Biomed. Chromatogr. 2024, 38, e5842. [Google Scholar] [CrossRef]
- Liang, W.; Chen, W.; Wu, L.; Li, S.; Qi, Q.; Cui, Y.; Liang, L.; Ye, T.; Zhang, L. Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics. Molecules 2017, 22, 478. [Google Scholar] [CrossRef]
- Wang, S.; Su, Y.; Li, J.; Lu, Y.; Mei, X.; Wang, J. Integration of LC/MS-Based Molecular Networking and Molecular Docking Allows in-Depth Annotation and Prediction of the Metabolome: A Study of Salvia miltiorrhiza Bunge. Ind. Crop. Prod. 2022, 186, 115298. [Google Scholar] [CrossRef]
- Ouyang, H.; Li, J.; Wu, B.; Zhang, X.; Li, Y.; Yang, S.; He, M.; Feng, Y. A Robust Platform Based on Ultra-High Performance Liquid Chromatography Quadrupole Time of Flight Tandem Mass Spectrometry with a Two-Step Data Mining Strategy in the Investigation, Classification, and Identification of Chlorogenic Acids in Ainsliaea fragrans Champ. J. Chromatogr. A 2017, 1502, 38–50. [Google Scholar] [CrossRef]
- Jiang, T.; Li, X.; Wang, H.; Pi, M.; Hu, J.; Zhu, Z.; Zeng, J.; Li, B.; Xu, Z. Identification and Quantification of Flavonoids in Edible Dock Based on UPLC-qTOF MS/MS and Molecular Networking. J. Food Compos. Anal. 2024, 133, 106399. [Google Scholar] [CrossRef]
- Cao, L.; Li, Y.; Li, S.; Ren, Q. Analysis of the Phytochemical Components of Prunella vulgaris Using High-performance Liquid Chromatography Quadrupole Time-of-flight Mass Spectrometry Combined with Molecular Networking and Assessment of Their Antioxidant and Anti-α-glucosidase Activities. Biomed. Chromatogr. 2024, 38, e5771. [Google Scholar] [CrossRef]
- Jin, H.; Tang, G.; Li, J.; Ma, L.; Li, Y.; Chang, Y. Simultaneous Determination of Phenolic Acids, Anthraquinones, Flavonoids, and Triterpenes of Cynomorii herba in Different Harvest Times by LC-MS/MS. J. Anal. Methods Chem. 2020, 2020, 8861765. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Ou, Z.; Cheng, Y.; Tong, Y.; Iqbal, J.; Wang, J.; Liu, D. Comparison of the Effects and Mechanisms of Alismatis Rhizoma with and without Salt Processing in Ameliorating Edema Due to Kidney Yin Deficiency Based on UPLC-Q-TOF-MS and Transcriptomics. Sci. Tradit. Chin. Med. 2024, 2, 169–179. [Google Scholar] [CrossRef]
- Moreno-González, R.; Juan, M.E.; Planas, J.M. Profiling of Pentacyclic Triterpenes and Polyphenols by LC-MS in Arbequina and Empeltre Table Olives. LWT-Food Sci. 2020, 126, 109310. [Google Scholar] [CrossRef]
- Özbek, O.; Saglam, B.; Usta, N.C.; Budak, Y. GC–MS Analysis and Anti–Microbial Activity of Prunella vulgaris L. Extracts. J. Indian Chem. Soc. 2022, 99, 100460. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, Q.; Lin, Y.; Xia, B.; Li, Y.; Xie, J.; Wu, P.; Liao, D.; Lin, L. The Dynamics of Bioactive Ingredients with Anti-Inflammatory and Anti-Breast Cancer Activity During Prunellae Spica Development. Nat. Prod. Commun. 2024, 19, 1934578X231224988. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Guo, Q.; Zhang, L.; Zhang, X. Variation in Concentrations of Major Bioactive Compounds in Prunella vulgaris L. Related to Plant Parts and Phenological Stages. Biol. Res. 2012, 45, 171–175. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, B.; Li, Y.; Lin, Y.; Xie, J.; Wu, P.; Lin, L.; Liao, D. Comparative Proteomic Analysis of Prunella vulgaris L. Spica Ripening. J. Proteom. 2021, 232, 104028. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Therapeutic Potential and Mechanisms of Rosmarinic Acid and the Extracts of Lamiaceae Plants for the Treatment of Fibrosis of Various Organs. Antioxidants 2024, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Lee, J.-Y.; Park, K.-T.; An, B.-J.; Lee, S.-H.; Cho, Y.-J. The Biological Activity from Prunella vulgaris Extracts. Korean J. Food Preserv. 2013, 20, 234–241. [Google Scholar] [CrossRef]
- Amoah, S.; Sandjo, L.; Kratz, J.; Biavatti, M. Rosmarinic Acid—Pharmaceutical and Clinical Aspects. Planta Medica 2016, 82, 388–406. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Ni, W. Rosmarinic Acid Improves Cyclophosphamide-Induced Immunosuppression in Mice by Immunomodulatory and Antioxidant Effects. Food Biosci. 2023, 56, 103152. [Google Scholar] [CrossRef]
- Zhou, X.; Chan, S.W.; Tseng, H.L.; Deng, Y.; Hoi, P.M.; Choi, P.S.; Or, P.M.Y.; Yang, J.; Lam, F.F.Y.; Lee, S.M.Y.; et al. Danshensu Is the Major Marker for the Antioxidant and Vasorelaxation Effects of Danshen (Salvia miltiorrhiza) Water-Extracts Produced by Different Heat Water-Extractions. Phytomedicine 2012, 19, 1263–1269. [Google Scholar] [CrossRef]






| No. | RT (min) | Formula | Ion Mode | Calculated Mass (m/z) | Measured Mass (m/z) | ppm | MS/MS (m/z) | Identification | G-W | G-E | R-W | R-E |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.80 | C7H12O6 | [M-H]− | 191.0556 | 191.0559 | 1.57 | 191, 101 | Quinic acid | ++ | ++ | + | + |
| 2 | 0.89 | C4H6O5 | [M-H]− | 133.0137 | 133.0134 | −2.26 | 133, 115 | Malic acid | + | + | + | + |
| 3 | 1.15 | C9H10O5 | [M-H]− | 197.0450 | 197.0452 | 1.01 | 197, 179, 151, 135, 123 | Danshensu | ++ | ++ | ++ | ++ |
| 4 | 1.21 | C8H8O4 | [M-H]− | 167.0344 | 167.0351 | 4.19 | 167, 123 | Vanillic acid | + | + | + | + |
| 5 | 1.40 | C7H6O4 | [M-H]− | 153.0188 | 153.0202 | 9.15 | 153, 109 | Protocatechuic acid | + | + | + | + |
| 6 | 1.48 | C9H10O4 | [M-H]− | 181.0501 | 181.0508 | 3.87 | 163 | Dihydrocaffeic acid | + | + | + | + |
| 7 | 1.56 | C16H18O9 | [M-H]− | 353.0873 | 353.0876 | 0.85 | 191, 179, 135, 161 | Chlorogenic acid | ++ | ++ | + | + |
| 8 | 1.58 | C13H24O9 | [M-H]− | 323.1342 | 323.1346 | 1.24 | 323, 179, 135 | Unknown | + | + | + | + |
| 9 | 1.71 | C10H8O5 | [M-H]− | 207.0293 | 207.0299 | 2.90 | 207, 163, 135, 119 | 4-hydroxy-4-(3-hydroxy-phenyl)-2-oxo-but-3-enoic acid isomer | + | + | + | + |
| 10 | 1.83 | C7H12O5 | [M-H]− | 175.0606 | 175.0603 | −1.71 | 175, 137, 113 | Shikimic acid | + | + | + | + |
| 11 | 1.91 | C7H6O3 | [M-H]− | 137.0239 | 137.0250 | 8.03 | 137, 109 | Protocatechualdehyde | + | + | + | + |
| 12 | 2.19 | C9H8O4 | [M-H]− | 179.0344 | 179.0347 | 1.68 | 179, 135 | Caffeic acid | ++ | ++ | ++ | ++ |
| 13 | 2.26 | C18H18O9 | [M-H]− | 377.0873 | 377.0869 | −1.06 | 377, 359, 331, 197, 124 | (2R)-3-(3,4-dihydroxyphenyl)-2-[(2R)-3-(3,4-dihydroxyphenyl)-2-hydroxypropanoyl]oxypropanoic acid | ++ | ++ | + | + |
| 14 | 2.44 | C18H18O9 | [M-H]− | 377.0873 | 377.0869 | −1.06 | 377, 359, 331, 197, 124 | (2R)-3-(3,4-dihydroxyphenyl)-2-[(2R)-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoyl]oxypropanoic acid isomer | ++ | + | + | − |
| 15 | 2.59 | C14H24O10 | [M-H]− | 351.1291 | 351.1298 | 1.99 | 351, 295, 197, 179, 161 | Unknown | + | + | + | + |
| 16 | 3.02 | C16H20O10 | [M-H]− | 371.0978 | 371.0978 | 0.00 | 371, 300, 121 | Dihydro Isoferulic Acid 3-O-β-D-Glucuronide | ++ | ++ | ++ | ++ |
| 17 | 3.14 | C20H34O10 | [M-H]− | 433.2074 | 433.2072 | 1.99 | 433, 359, 343, 287, 271, 163, 101, 119 | Unknown | + | + | + | + |
| 18 | 3.41 | C9H8O3 | [M-H]− | 163.0395 | 163.0400 | 3.07 | 163,101,119 | p-Coumaric acid | + | + | + | + |
| 19 | 3.64 | C27H30O16 | [M-H]− | 609.1456 | 609.1452 | −0.66 | 609, 300 | Quercetin 3-O-neohesperidoside | ++ | ++ | ++ | ++ |
| 20 | 3.81 | C27H30O16 | [M-H]− | 609.1456 | 609.1452 | −0.66 | 609, 300 | Rutin | ++ | ++ | ++ | ++ |
| 21 | 4.07 | C21H20O12 | [M-H]− | 463.0877 | 463.0875 | −0.66 | 463, 300, 271, 255, 243, 178, 151 | Hyperoside | ++ | ++ | ++ | ++ |
| 22 | 4.29 | C21H20O12 | [M-H]− | 463.0877 | 463.0875 | −0.43 | 463, 300, 271, 255, 243, 151 | Isoquercitrin | ++ | ++ | ++ | ++ |
| 23 | 5.03 | C24H26O13 | [M-H]− | 521.1295 | 521.1288 | −1.34 | 521, 359, 179, 161, 135 | Salviaflaside | ++ | ++ | ++ | ++ |
| 24 | 5.19 | C27H30O15 | [M-H]− | 593.1506 | 593.1511 | 0.84 | 284, 285 | Quercetin 3,7-di-O-rhamnoside | + | + | + | + |
| 25 | 5.41 | C26H24O12 | [M-H]− | 527.1190 | 527.1190 | 0.00 | 285, 241, 197, 179, 161 | Unknown | ++ | + | ++ | + |
| 26 | 5.65 | C36H30O16 | [M-H]− | 717.1456 | 717.1443 | −1.81 | 717, 519, 339, 321 | Isosalvianolic acid E | + | + | + | + |
| 27 | 5.71 | C21H20O11 | [M-H]− | 447.0927 | 447.0936 | 2.01 | 285, 284, 255, 227 | KaeMpferol 3-O-D-glucopyranoside | + | + | + | + |
| 28 | 5.86 | C36H30O16 | [M-H]− | 717.1456 | 717.1443 | −1.81 | 229 | Salvianolic acid B isomer | + | + | + | + |
| 29 | 6.08 | C36H32O16 | [M-H]− | 719.1612 | 719.1595 | −2.36 | 719, 673, 539, 197, 179 | Rashomonic Acid C/D | ++ | ++ | ++ | ++ |
| 30 | 6.52 | C9H16O4 | [M-H]− | 187.0973 | 187.0972 | −0.53 | 187, 171, 141 | Unknown | + | ++ | + | ++ |
| 31 | 7.09 | C18H16O8 | [M-H]− | 359.0767 | 359.0772 | 1.39 | 719, 359, 179, 161, 135 | Rosmarinic acid | ++ | ++ | ++ | ++ |
| 32 | 7.60 | C26H22O10 | [M-H]− | 493.1135 | 493.1137 | 0.41 | 493, 313, 295, 203, 109 | Salvianolic acid A | + | + | + | + |
| 33 | 7.74 | C26H24O11 | [M-H]− | 511.1240 | 511.1237 | −0.59 | 511, 359, 311, 299, 179 | Unknown | ++ | + | ++ | + |
| 34 | 8.10 | C36H30O17 | [M-H]− | 733.1405 | 733.1387 | −2.46 | 733, 553, 509, 373, 329, 179 | 3-Benzofurancarboxylic acid, 4-[(1Z)-3-[(1R)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-2-hydroxy-3-oxo-1-propen-1-yl]-2-(3,4-dihydroxyphenyl)-2,3-dihydro-7-hydroxy-, 3-[(1R)-1-carboxy-2-(3,4-dihydroxyphenyl)ethyl] ester, (2S,3S) isomer | ++ | ++ | + | + |
| 35 | 8.30 | C36H30O17 | [M-H]− | 733.1405 | 733.1387 | −2.46 | 733, 553, 535, 509, 373, 329, 269, 179 | Unknown | + | + | ++ | ++ |
| 36 | 8.40 | C16H26O7 | [M-H]− | 329.1600 | 329.1600 | 0.00 | 329, 242, 224, 197, 161 | Unknown | + | + | + | + |
| 37 | 8.45 | C37H60O13 | [M-H]− | 711.3956 | 711.3940 | −2.25 | 711, 503, 485 | Olean-12-en-28-oic acid, 23-(glycero-manno-heptonoyloxy)-2,3,19-trihydroxy-, (2α,3β,4β,19α)-isomer | + | + | ++ | ++ |
| 38 | 8.58 | C18H16O7 | [M-H]− | 343.0818 | 343.0814 | −1.17 | 343, 197, 181, 161, 145 | Eupatorin isomer | ++ | ++ | + | + |
| 39 | 8.68 | C27H22O12 | [M-H]− | 537.1033 | 537.1034 | 0.19 | 537, 493, 295 | Salvianolic acid H | + | ++ | + | + |
| 40 | 8.99 | C36H28O16 | [M-H]− | 715.1299 | 715.1283 | −2.24 | 715, 357, 339, 311, 197, 179, 161 | 3-[(1R)-1-Carboxy-2-(3,4-dihydroxyphenyl)ethyl] 5-[(1E)-3-[(1R)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxo-1-propen-1-yl]-2-(3,4-dihydroxyphenyl)-7-hydroxy-3-benzofurancarboxylate | ++ | ++ | ++ | ++ |
| 41 | 9.13 | C36H30O16 | [M-H]− | 717.1456 | 717.1435 | −2.93 | 717, 519, 339, 311 | Salvianolic acid B | ++ | ++ | + | ++ |
| 42 | 9.21 | C36H28O16 | [M-H]− | 715.1299 | 715.1283 | −2.24 | 715, 553, 329, 267, 197, 179, 161, 135 | Dedihydro-salvianolic acid B isomer | ++ | ++ | ++ | ++ |
| 43 | 9.22 | C36H30O16 | [M-H]− | 717.1456 | 717.1435 | −2.93 | 717, 339, 311 | Iso salvianolic acid B | ++ | ++ | ++ | ++ |
| 44 | 9.26 | C42H68O15 | [M+HCOO]− | 857.4535 | 857.4515 | −2.33 | 857, 811, 503 | Tetrahydroxy-ursolic acid-GlcA-Xyl | + | + | + | + |
| 45 | 9.49 | C20H20O11 | [M-H]− | 435.0927 | 435.0925 | −0.46 | 435, 161 | 5-O-β-D-(6′-salicylyl)-glucopyranoside | + | + | + | + |
| 46 | 9.78 | C36H28O16 | [M-H]− | 715.1299 | 715.1283 | −2.24 | 715, 535, 491, 311, 293, 179 | Dedihydro-salvianolic acid B isomer | ++ | ++ | ++ | ++ |
| 47 | 9.99 | C36H30O16 | [M-H]− | 717.1456 | 717.1443 | −1.81 | 717, 519, 357, 339, 311, 197, 180 | Salvianolic acid E/L | + | + | + | + |
| 48 | 10.07 | C17H14O6 | [M-H]− | 313.0712 | 313.0710 | −0.64 | 313, 269, 243, 161 | Unknown | − | + | − | + |
| 49 | 10.17 | C62H98O31 | [M-H]− | 1337.6014 | 1337.5930 | −6.28 | 1205, 795, 487 | Trihydroxy-ursolic acid-Ara-Ara-Ara-Rha-Xyl-GlcA | ++ | ++ | ++ | ++ |
| 50 | 10.37 | C15H10O6 | [M-H]− | 285.0399 | 285.0392 | −2.46 | 285, 267, 257, 241, 135 | Luteolin | + | + | + | + |
| 51 | 10.39 | C57H90O27 | [M-H]− | 1205.5591 | 1205.5527 | −5.31 | 1205, 1073, 941, 663, 487 | Trihydroxy-ursolic acid/oleanic acid-Ara-Ara-Ara-Rha-GlcA | ++ | ++ | ++ | ++ |
| 52 | 10.55 | C57H90O26 | [M-H]− | 1189.5642 | 1189.5573 | −5.80 | 1189, 1057, 779, 487 | Trihydroxy-ursolic acid/oleanic acid-Ara-Rha-Ara-Rha-Rha | ++ | ++ | ++ | ++ |
| 53 | 10.56 | C52H82O23 | [M-H]− | 1073.5169 | 1073.5101 | −6.33 | 1073.941, 795, 663, 487 | Trihydroxy-ursolic acid/oleanic acid-Ara-Rha-Ara-GlcA | ++ | ++ | ++ | ++ |
| 54 | 10.70 | C60H92O30 | [M-H]− | 1291.5595 | 1291.5524 | −5.50 | 1291, 1247, 1115, 927, 795, 663, 487 | Unkown | ++ | ++ | ++ | ++ |
| 55 | 10.77 | C57H88O27 | [M-H]− | 1203.5435 | 1203.5449 | 1.16 | 1087, 941, 795, 663, 487 | Trihydroxy-ursolic acid/oleanic acid-Rha-Rha-Ara-GlcA | + | + | + | + |
| 56 | 11.04 | C58H92O26 | [M-H]− | 1203.5799 | 1203.5707 | −7.64 | 1203, 1071, 647, 471 | Dihydroxy-ursolic acid/oleanic acid-Ara-Ara-Rha-Rha-GlcA | ++ | ++ | ++ | ++ |
| 57 | 11.17 | C53H84O23 | [M-H]− | 1087.5325 | 1087.5249 | −6.99 | 1087, 795, 663, 487 | Trihydroxy-ursolic acid/oleanic acid-Rha-Rha-Ara-GlcA | + | ++ | ++ | ++ |
| 58 | 11.25 | C61H94O30 | [M-H]− | 1305.5752 | 1305.5658 | −7.20 | 1305, 1261, 1129, 983, 809, 663, 487 | Olean-12-ene-23,28-dioic acid, 3-(β-D-glucopyranuronosyloxy)-2-hydroxy-, 28-(O-D-apio-β-D-furanosyl-(1→3)-O-[O-β-D-glucopyranosyl-(1→3)-6-deoxy-α-L-mannopyranosyl-(1→2)]-4-O-acetyl-6-deoxy-βD-galactopyranosyl) ester, (2β,3β,4α)- | + | ++ | ++ | ++ |
| 59 | 11.58 | C35H28O14 | [M-H]− | 671.1401 | 671.1381 | −2.98 | 671, 487, 329, | Unknown | + | + | + | + |
| 60 | 11.65 | C53H84O22 | [M-H]− | 1071.5376 | 1071.5284 | −8.59 | 1071, 939, 647, 487 | Trihydroxy-ursolic acid/oleanic acid-Ara-Rha-Rha-Ara | + | + | + | + |
| 61 | 12.00 | C61H94O29 | [M-H]− | 1289.5803 | 1289.5695 | −8.59 | 1289, 1245, 1129, 939, 647 | Dihydroxy-ursolic acid/oleanic acid-Ara-Glc-Rha-Rha-GlcA | + | + | + | + |
| 62 | 12.02 | C57H90O26 | [M-H]− | 1189.5642 | 1189.5546 | −8.07 | 1189, 1057, 779, 471 | Dihydroxy-ursolic acid/oleanic acid-Ara-Ara-Rha-Rha-Glc | ++ | ++ | ++ | ++ |
| 63 | 12.33 | C57H90O26 | [M-H]− | 1189.5642 | 1189.5546 | −8.07 | 1189, 1057, 925, 779, 617, 471 | Dihydroxy-ursolic acid/oleanic acid-Ara-Ara-Rha-Rha-Glc | ++ | ++ | ++ | ++ |
| 64 | 12.71 | C41H64O15 | [M-H]− | 795.4167 | 795.4131 | −4.53 | 795, 487 | Trihydroxy-ursolic acid/oleanic acid-Ara-GlcA | ++ | ++ | ++ | ++ |
| 65 | 12.73 | C52H82O22 | [M-H]− | 1057.5219 | 1057.5149 | −6.62 | 1057, 925, 647, 471 | Dihydroxy-ursolic acid/oleanic acid-Ara-Ara-Rha-GlcA | ++ | ++ | ++ | ++ |
| 66 | 12.93 | C53H84O22 | [M-H]− | 1071.5376 | 1071.5298 | −7.28 | 1071, 647, 471 | Dihydroxy-ursolic acid/oleanic acid-Ara-Rha-Rha-GlcA | + | + | + | + |
| 67 | 13.26 | C60H92O29 | [M-H]− | 1275.5705 | 1275.5569 | −10.66 | 1275, 1231, 1099, 793, 647, 471 | Unknown | + | + | + | + |
| 68 | 13.69 | C44H34O18 | [M-H]− | 849.1667 | 849.1633 | −4.00 | 359 | Unknown | + | + | + | + |
| 69 | 13.77 | C36H56O11 | [M-H]− | 663.3744 | 663.3726 | −2.71 | 663, 487 | Trihydroxy-ursolic acid/oleanic acid-GlcA | + | + | + | + |
| 70 | 14.04 | C18H28O4 | [M-H]− | 307.1909 | 307.1902 | −2.28 | 307,266,179,161 | Unknown | + | + | + | + |
| 71 | 14.07 | C54H84O23 | [M-H]− | 1099.5325 | 1099.5338 | 1.20 | 1099, 487 | Olean-12-en-28-oic acid, 3-(β-D-glucopyranosyloxy)-2,23-dihydroxy-16-oxo-, O-β-D-xylopyranosyl-(1→4)-O-6-deoxy-α-L-mannopyranosyl-(1→2)-6-deoxy-β-D-galactopyranosyl ester, (2β,3β,4α)-(9CI) | + | + | + | + |
| 72 | 14.11 | C44H34O18 | [M-H]− | 849.1667 | 849.1633 | −4.00 | 849, 593, 359 | Unknown | + | ++ | + | + |
| 73 | 14.10 | C30H48O6 | [M-H]− | 503.3373 | 503.3360 | −2.58 | 549 ([M+HCOO]−), 503, 485 | Tetrahydroxyurs-12-en-28-oic acid | + | + | + | + |
| 74 | 14.22 | C51H82O21 | [M+HCOO]− | 1075.5325 | 1073.5222 | −9.58 | 1029, 941, 779, 647, 633, 487 | Unknown | + | + | + | + |
| 75 | 14.22 | C51H80O21 | [M+HCOO]− | 1073.5169 | 1073.5074 | −8.85 | 1027, 943, 633, 487 | Unknown | + | + | + | + |
| 76 | 14.32 | C34H26O12 | [M-H]− | 625.1346 | 625.1342 | −0.64 | 625, 501, 471, 366, 135 | Unknown | + | + | + | + |
| 77 | 14.34 | C18H26O4 | [M-H]− | 305.1753 | 305.1750 | −0.98 | 305, 290, 274, 161 | Unknown | + | + | + | + |
| 78 | 14.50 | C30H46O5 | [M-H]− | 485.3267 | 485.3264 | −0.62 | 485, 458 | 2α,3α,24-trihydroxylolean-11,13 (18)-dien-28-oic acid isomer | + | + | ++ | ++ |
| 79 | 14.54 | C18H30O4 | [M-H]− | 309.2066 | 309.2073 | 2.30 | 309, 266, 216 | Unknown | ++ | + | ++ | + |
| 80 | 14.65 | C30H48O5 | [M-H]− | 487.3423 | 487.3422 | −0.21 | 487, 469 | Trihydroxy-oleanolic acid isomer | + | ++ | + | ++ |
| 81 | 14.72 | C30H48O5 | [M-H]− | 487.3423 | 487.3422 | −0.21 | 487 | Trihydroxy-oleanolic acid | + | ++ | + | ++ |
| 82 | 14.82 | C40H62O13 | [M-H]− | 749.4112 | 749.4100 | −1.60 | 749, 633, 487 | Unknown | + | + | ++ | ++ |
| 83 | 15.13 | C34H42O9 | [M-H]− | 593.2751 | 593.2725 | −4.38 | 593, 487, 378, 304, 290, 216 | Unknown | + | ++ | + | ++ |
| 84 | 15.27 | C30H48O5 | [M-H]− | 487.3423 | 487.3422 | −0.21 | 487 | Trihydroxy-ursolic acid | + | ++ | + | ++ |
| 85 | 15.33 | C30H48O5 | [M-H]− | 487.3423 | 487.3422 | −0.21 | 487 | Trihydroxy-ursolic acid isomer | + | ++ | + | ++ |
| 86 | 15.43 | C18H30O3 | [M-H]− | 293.2117 | 293.2110 | −2.39 | 293, 277, 275, 225, 183, 130 | Unknown | + | ++ | ++ | ++ |
| 87 | 15.46 | C30H42O11 | [M-H]− | 577.2649 | 577.2678 | 5.02 | 577, 277, 225 | Unknown | + | ++ | + | ++ |
| 88 | 15.46 | C35H54O9 | [M-H]− | 617.3690 | 617.3683 | −1.13 | 617, 441, 223 | Prunelloside A | + | ++ | ++ | ++ |
| 89 | 15.65 | C30H46O4 | [M-H]− | 469.3318 | 469.3311 | −1.49 | 469, 424 | 2α,3α-dihydroxylurs-12,20 (30)-dien-28-oic acid | + | ++ | + | ++ |
| 90 | 15.79 | C34H44O9 | [M-H]− | 595.2907 | 595.2888 | −3.19 | 595, 580, 564, 476 | Unknown | + | ++ | ++ | ++ |
| 91 | 15.86 | C28H48O11 | [M-H]− | 559.3118 | 559.3117 | −0.18 | 559, 471, 277 | Unknown | + | ++ | + | ++ |
| 92 | 15.90 | C30H48O4 | [M-H]− | 471.3474 | 471.3473 | −0.21 | 471 | Dihydroxy-oleanolic acid isomer | + | ++ | + | ++ |
| 93 | 16.00 | C30H48O4 | [M-H]− | 471.3474 | 471.3473 | −0.21 | 517 ([M+HCOO]−), 471 | Dihydroxy-oleanolic acid isomer | + | + | + | + |
| 94 | 16.13 | C18H32O4 | [M-H]− | 295.2273 | 295.2266 | −2.37 | 295, 277, 221, 152 | α-Hydroxylinoleic acid | + | ++ | + | ++ |
| 95 | 16.23 | C30H48O4 | [M-H]− | 471.3474 | 471.3473 | −0.21 | 517 ([M+HCOO]−), 471 | Dihydroxy-oleanolic acid | + | ++ | + | ++ |
| 96 | 16.29 | C18H30O3 | [M-H]− | 293.2117 | 293.2110 | −2.39 | 293, 277, 225, 180 | Unknown | + | + | + | ++ |
| 97 | 16.40 | C30H48O4 | [M-H]− | 471.3474 | 471.3473 | −0.21 | 517 ([M+HCOO]−), 471 | Dihydroxy-ursolic acid isomer | + | ++ | + | ++ |
| 98 | 16.59 | C18H30O3 | [M-H]− | 293.2117 | 293.2108 | −3.07 | 293, 279, 255, 152 | Unknown | + | ++ | + | ++ |
| 99 | 17.07 | C28H44O11 | [M-H]− | 555.2805 | 555.2834 | 5.22 | 555, 514, 483, 327, 281 | Unknown | + | ++ | + | ++ |
| 100 | 17.30 | C30H48O4 | [M-H]− | 471.3474 | 471.3473 | −0.21 | 517 ([M+HCOO]−), 471 | Dihydroxy-ursolic acid | + | ++ | + | ++ |
| 101 | 17.74 | C39H54O6 | [M-H]− | 617.3842 | 617.3823 | −3.08 | 617, 581, 145 | Unknown | + | + | + | ++ |
| 102 | 18.50 | C30H48O3 | [M-H]− | 455.3525 | 455.3515 | −2.20 | 455 | Betulinic acid | + | + | ++ | ++ |
| 103 | 18.80 | C18H30O2 | [M-H]− | 277.2168 | 277.2166 | −0.72 | 277, 116 | Linolenic acid | ++ | ++ | ++ | ++ |
| 104 | 18.83 | C30H48O3 | [M-H]− | 455.3525 | 455.3515 | −2.20 | 455 | Oleanolic acid | ++ | ++ | ++ | ++ |
| 105 | 19.00 | C30H48O3 | [M-H]− | 455.3525 | 455.3515 | −2.20 | 455 | Ursolic acid | ++ | ++ | + | ++ |
| 106 | 19.96 | C18H32O2 | [M-H]− | 279.2324 | 279.2322 | −0.72 | 279, 152, 116 | Linoleic acid | + | ++ | ++ | ++ |
| Sample | Danshensu | Protocatechuic Acid | Protocatechualdehyde | Caffeic Acid | Salviaflaside | Rosmarinic Acid | Total |
|---|---|---|---|---|---|---|---|
| G-W | 3.1 ± 0.0645 a | 0.0466 ± 0.00274 a | 0.074 ± 0.00204 a | 0.65 ± 0.0149 a | 0.232 ± 0.00867 a | 17.3 ± 0.387 a | 21.4 ± 0.442 a |
| G-E | 1.59 ± 0.0589 b | 0.02061 ± 0.0003 b | 0.0455 ± 0.00138 b | 0.417 ± 0.0119 b | 0.281 ± 0.00502 b | 21.6 ± 0.168 b | 24.0 ± 0.228 b |
| R-W | 1.68 ± 0.0037 b | 0.0729 ± 0.00128 c | 0.076 ± 0.00213 a | 0.478 ± 0.0093 c | 0.665 ± 0.0247 c | 3.68 ± 0.113 c | 6.65 ± 0.148 c |
| R-E | 0.86 ± 0.0127 c | 0.0362 ± 0.000726 a | 0.0462 ± 0.00188 b | 0.302 ± 0.0106 d | 0.888 ± 0.0229 d | 4.8 ± 0.108 d | 6.93 ± 0.148 d |
| Compounds | DPPH | ABTS |
|---|---|---|
| G-W | 0.341 ± 0.0221 a | 2.84 ± 0.191 a |
| G-E | 0.605 ± 0.0464 b | 2.60 ± 0.181 a |
| R-W | 0.659 ± 0.0366 b | 8.99 ± 0.856 b |
| R-E | 0.887 ± 0.0527 c | 7.62 ± 0.273 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Ma, Y.; Liu, Y.; Xie, T.; Chen, L.; Lou, W.; Wang, Z.; Gao, H. Differences in Chemical Profiles, Phenolic Content, and Antioxidant Activity of Prunella vulgaris L. at Different Ripeness Stages. Antioxidants 2025, 14, 1270. https://doi.org/10.3390/antiox14111270
Liu F, Ma Y, Liu Y, Xie T, Chen L, Lou W, Wang Z, Gao H. Differences in Chemical Profiles, Phenolic Content, and Antioxidant Activity of Prunella vulgaris L. at Different Ripeness Stages. Antioxidants. 2025; 14(11):1270. https://doi.org/10.3390/antiox14111270
Chicago/Turabian StyleLiu, Fengqi, Yue Ma, Yufei Liu, Tianze Xie, Liangmian Chen, Wenjiao Lou, Zhimin Wang, and Huimin Gao. 2025. "Differences in Chemical Profiles, Phenolic Content, and Antioxidant Activity of Prunella vulgaris L. at Different Ripeness Stages" Antioxidants 14, no. 11: 1270. https://doi.org/10.3390/antiox14111270
APA StyleLiu, F., Ma, Y., Liu, Y., Xie, T., Chen, L., Lou, W., Wang, Z., & Gao, H. (2025). Differences in Chemical Profiles, Phenolic Content, and Antioxidant Activity of Prunella vulgaris L. at Different Ripeness Stages. Antioxidants, 14(11), 1270. https://doi.org/10.3390/antiox14111270

