Effectiveness of Curcumin on Oxidative Stress in Goat Semen: Explorations Regarding Semen Quality, Sperm Apoptosis, Ultrastructure, and Markers of Oxidative Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Collection and Dilution of Seminal Fluid
2.3. Preparation of Diluent and Experimental Design
2.4. Detection of Antioxidant Properties
2.5. Properties Mitochondrial Function Assays
2.6. Metabolite Extraction and Analysis
2.7. Lipid Extraction and LC-MS Analysis
2.8. Sperm Ultrastructure
2.9. Evaluation of Apoptosis
2.10. Quantitative Real-Time PCR
2.11. Statistical Analyses
3. Results
3.1. The Specific Effects of Curcumin on the Antioxidant and Metabolic Capacity of Sperm Under Oxidative Stress
3.2. Multivariate Statistical Analysis and Clustering Analysis of the Metabolome
3.3. Identification of Distinct Metabolites
3.4. Analysis of Differential Correlations Among Metabolites
3.5. The Significance of Distinct Metabolites Within Metabolic Pathways
3.6. Multivariate Analysis of Lipid Profiles
3.7. Screening of Differential Lipid Molecules
3.8. Correlation Between Different Lipids
3.9. Effect of Curcumin on Sperm Ultrastructure Under Oxidative Stress
3.10. Curcumin Alleviates Sperm Apoptosis Under Oxidative Stress
4. Discussion
4.1. Effects of Curcumin on Sperm Metabolism of Hainan Black Sheep Under Oxidative Stress
4.2. Effects of Curcumin on Sperm Lipids of Hainan Black Sheep Under Oxidative Stress
4.3. Effect of Curcumin on Oxidative Stress-Induced Sperm Apoptosis of Hainan Black Goat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
PUFA | Polyunsaturated fatty acids |
Cur | Curcumin |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
CAT | Catalase |
T-AOC | Total antioxidant capacity |
ATP | Adenosine triphosphate |
MMP | Mitochondrial membrane potential. |
FC | Fold change |
LC-MS | Liquid Chromatograph Mass Spectrometer |
PCA | Principal component analysis |
OPLS-DA | Orthogonal partial least squares-discriminant analysis |
VIP | Variable importance projection |
DAMs | Differential accumulation metabolites |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
TG | Triglycerides |
DG | Diglycerides |
PE | Phosphatidylethanolamine |
AcCa | Acylcarnitine |
TUNEL | Terminal deoxynucleotidyl transferase-mediated nick end labeling |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
CerP | Phosphate ceramide |
chE | Cholesterol lipid |
CL | Cardiolipin |
Co | Coenzyme |
DG | Glycerodiamide |
FA | Fatty acid |
GD | Ganglioside |
GM3 | Ganglioside |
Hex1Cer | Hexanceramide |
SPH | Sphingomyelin |
LPC | Lysophosphatidyl choline |
LPS | Lytic ophosphatidylserine |
LMG | Monoacylglycerol |
OAHFA | O-acyl -1-hydroxy fatty acid |
PA | Phosphatidic acid |
PC | Phosphatidylcholine: |
PG | Phosphatidylglycerol |
PhSM | Phytosphingosine |
PIP | Phosphatidyllinositol-4-phosphoric acid |
PS | Phosphatidylserine: |
SiE | Sitotenyl ester |
PI | Phosphatidylinositol |
SM | Sphingomyelin phospholipid |
ST | Sterol lipid |
StE | Stigmatyl ester |
SH | Sphingosine |
SPHP | Sphingosine phosphate |
References
- Aitken, R.J.; Smith, T.B.; Jobling, M.S.; Baker, M.A.; De Iuliis, G.N. Oxidative stress and male reproductive health. Asian J. Androl. 2014, 16, 31–38. [Google Scholar] [CrossRef]
- Sanocka, D.; Kurpisz, M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. RB&E 2004, 2, 12. [Google Scholar] [CrossRef]
- Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxidative Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Darbandi, M.; Darbandi, S.; Agarwal, A.; Sengupta, P.; Durairajanayagam, D.; Henkel, R.; Sadeghi, M.R. Reactive oxygen species and male reproductive hormones. Reprod. Biol. Endocrinol. RB&E 2018, 16, 87. [Google Scholar] [CrossRef]
- Marín, R.; Abad, C.; Rojas, D.; Chiarello, D.I.; Alejandro, T.G. Biomarkers of oxidative stress and reproductive complications. Adv. Clin. Chem. 2023, 113, 157–233. [Google Scholar] [CrossRef]
- Bansal, A.K.; Bilaspuri, G.S. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2010, 2010, 686137. [Google Scholar] [CrossRef]
- Sharma, P.; Kaushal, N.; Saleth, L.R.; Ghavami, S.; Dhingra, S.; Kaur, P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim. Et Biophys. Acta Mol. Basis Dis. 2023, 1869, 166742. [Google Scholar] [CrossRef] [PubMed]
- Barroso, G.; Morshedi, M.; Oehninger, S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum. Reprod. 2000, 15, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Blanc-Layrac, G.; Bringuier, A.F.; Guillot, R.; Feldmann, G. Morphological and biochemical analysis of cell death in human ejaculated spermatozoa. Cell. Mol. Biol. 2000, 46, 187–197. [Google Scholar]
- Oehninger, S.; Morshedi, M.; Weng, S.L.; Taylor, S.; Duran, H.; Beebe, S. Presence and significance of somatic cell apoptosis markers in human ejaculated spermatozoa. Reprod. Biomed. Online 2003, 7, 469–476. [Google Scholar] [CrossRef]
- Sakkas, D.; Moffatt, O.; Manicardi, G.C.; Mariethoz, E.; Tarozzi, N.; Bizzaro, D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol. Reprod. 2002, 66, 1061–1067. [Google Scholar] [CrossRef]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of Curcumin in Disease Prevention and Treatment. Adv. Biomed. Res. 2018, 7, 38. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, M.J.; Kim, H.; Choi, S.K.; Kim, J.E.; Moon, H.I.; Park, W.H. Curcumin inhibits TNFα-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J. Enzym. Inhib. Med. Chem. 2010, 25, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res. PTR 2018, 32, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Soleimanzadeh, A.; Saberivand, A. Effect of curcumin on rat sperm morphology after the freeze-thawing process. Vet. Res. Forum Int. Q. J. 2013, 4, 185–189. [Google Scholar]
- Zhou, Q.; Wu, X.; Liu, Y.; Wang, X.; Ling, X.; Ge, H.; Zhang, J. Curcumin improves asthenozoospermia by inhibiting reactive oxygen species reproduction through nuclear factor erythroid 2-related factor 2 activation. Andrologia 2020, 52, e13491. [Google Scholar] [CrossRef] [PubMed]
- An, Z.X.; Shi, L.G.; Hou, G.Y.; Zhou, H.L.; Xun, W.J. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Anim. Int. J. Anim. Biosci. 2024, 18, 101147. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Finelli, R.; Agarwal, A.; Henkel, R. Proteomics and metabolomics—Current and future perspectives in clinical andrology. Andrologia 2021, 53, e13711. [Google Scholar] [CrossRef]
- Aiello, D.; Casadonte, F.; Terracciano, R.; Damiano, R.; Savino, R.; Sindona, G.; Napoli, A. Targeted proteomic approach in prostatic tissue: A panel of potential biomarkers for cancer detection. Oncoscience 2016, 3, 220–241. [Google Scholar] [CrossRef]
- Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320. [Google Scholar] [CrossRef]
- Blaurock, J.; Baumann, S.; Grunewald, S.; Schiller, J.; Engel, K.M. Metabolomics of Human Semen: A Review of Different Analytical Methods to Unravel Biomarkers for Male Fertility Disorders. Int. J. Mol. Sci. 2022, 23, 9031. [Google Scholar] [CrossRef]
- Monks, T.J.; Hanzlik, R.P.; Cohen, G.M.; Ross, D.; Graham, D.G. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 1992, 112, 2–16. [Google Scholar] [CrossRef]
- Zaccaria, M.; Ludovici, M.; Sanzani, S.M.; Ippolito, A.; Cigliano, R.A.; Sanseverino, W.; Scarpari, M.; Scala, V.; Fanelli, C.; Reverberi, M. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle. Toxins 2015, 7, 4315–4329. [Google Scholar] [CrossRef]
- Urner, F.; Sakkas, D. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol. Reprod. Dev. 2005, 70, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-R.; Zheng, X.-F.; Ji, S.-Z.; Lv Y-h Zheng, D.-Y.; Xia, Z.-F.; Zhang, W.-D. Metabolomic analysis of thermally injured and/or septic rats. Burns 2010, 36, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Miki, K. Energy metabolism and sperm function. Soc. Reprod. Fertil. Suppl. 2007, 65, 309–325. [Google Scholar]
- Miraglia, E.; Lussiana, C.; Viarisio, D.; Racca, C.; Cipriani, A.; Gazzano, E.; Bosia, A.; Revelli, A.; Ghigo, D. The pentose phosphate pathway plays an essential role in supporting human sperm capacitation. Fertil. Steril. 2010, 93, 2437–2440. [Google Scholar] [CrossRef] [PubMed]
- Urner, F.; Sakkas, D. Characterization of Glycolysis and Pentose Phosphate Pathway Activity during Sperm Entry into the Mouse Oocyte1. Biol. Reprod. 1999, 60, 973–978. [Google Scholar] [CrossRef]
- Abdelli, A.; Raboisson, D.; Besbaci, M.; Belabdi, I.; Kalem, A.; Kaidi, R.; Johannisson, A.; Morrell, J.M.; Iguer-Ouada, M. Influence of the coincubation of post-thawed bull semen with elevated β-hydroxybutyrate concentrations on sperm characteristics. Reprod. Domest. Anim. = Zuchthygiene 2023, 58, 1732–1744. [Google Scholar] [CrossRef]
- Majrashi, M.; Altukri, M.; Ramesh, S.; Govindarajulu, M.; Schwartz, J.; Almaghrabi, M.; Smith, F.; Thomas, T.; Suppiramaniam, V.; Moore, T.; et al. β-hydroxybutyric acid attenuates oxidative stress and improves markers of mitochondrial function in the HT-22 hippocampal cell line. J. Integr. Neurosci. 2021, 20, 321–329. [Google Scholar] [CrossRef]
- Hosseini, E.; Amirjannati, N.; Henkel, R.; Bazrafkan, M.; Moghadasfar, H.; Gilany, K. Targeted Amino Acids Profiling of Human Seminal Plasma from Teratozoospermia Patients Using LC-MS/MS. Reprod. Sci. 2023, 30, 3285–3295. [Google Scholar] [CrossRef]
- Glander, H.-J.; Schiller, J.; Süß, R.; Paasch, U.; Grunewald, S.; Arnhold, J. Deterioration of spermatozoal plasma membrane is associated with an increase of sperm lyso-phosphatidylcholines. Andrologia 2002, 34, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.-l.; Mai, J.-w.; Liu, Q.; Dou, J.; Wen, Q.-Z.; Chen, X.; Xiao, H.-w.; Jashenko, R.; Ji, R. Effect of physiological factors on the flight ability of Calliptamus italicus L. Physiol. Entomol. 2019, 44, 230–235. [Google Scholar] [CrossRef]
- Cruz-Casallas, P.E.; Medina-Robles, V.M.; Velasco-Santamaría, Y.M. Seasonal Variation of Sperm Quality and the Relationship between Spermatocrit and Sperm Concentration in Yamú Brycon amazonicus. N. Am. J. Aquac. 2007, 69, 159–165. [Google Scholar] [CrossRef]
- Belhan, S.; Yıldırım, S.; Huyut, Z.; Özdek, U.; Oto, G.; Algül, S. Effects of curcumin on sperm quality, lipid profile, antioxidant activity and histopathological changes in streptozotocin-induced diabetes in rats. Andrologia 2020, 52, e13584. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, J.; Lan, Z.; Deepak, R.; Liu, C.; Ma, Z.; Cheng, L.; Zhao, X.; Meng, X.; Wang, W.; et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 2021, 35, 109025. [Google Scholar] [CrossRef]
- Dubois, L.; Ronquist, K.K.; Ek, B.; Ronquist, G.; Larsson, A. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes. Mol. Cell. Proteom. MCP 2015, 14, 3015–3022. [Google Scholar] [CrossRef] [PubMed]
- Peñalva, D.A.; Antollini, S.S.; Ambroggio, E.E.; Aveldaño, M.I.; Fanani, M.L. Membrane Restructuring Events during the Enzymatic Generation of Ceramides with Very Long-Chain Polyunsaturated Fatty Acids. Langmuir ACS J. Surf. Colloids 2018, 34, 4398–4407. [Google Scholar] [CrossRef]
- Cabrera, T.; Ramires-Neto, C.; Belaz, K.R.A.; Freitas-Dell’aqua, C.P.; Zampieri, D.; Tata, A.; Eberlin, M.N.; Alvarenga, M.A.; Souza, F.F. Influence of spermatozoal lipidomic profile on the cryoresistance of frozen spermatozoa from stallions. Theriogenology 2018, 108, 161–166. [Google Scholar] [CrossRef]
- Kumaresan, A.; Kadirvel, G.; Bujarbaruah, K.M.; Bardoloi, R.K.; Das, A.; Kumar, S.; Naskar, S. Preservation of boar semen at 18 °C induces lipid peroxidation and apoptosis like changes in spermatozoa. Anim. Reprod. Sci. 2009, 110, 162–171. [Google Scholar] [CrossRef]
- Talarczyk-Desole, J.; Kotwicka, M.; Jendraszak, M.; Pawelczyk, L.; Murawski, M.; Jędrzejczak, P. Sperm midpiece apoptotic markers: Impact on fertilizing potential in in vitro fertilization and intracytoplasmic sperm injection. Hum. Cell 2016, 29, 67–75. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yu, D.-H.; Kim, Y.-J. Apoptosis-like change, ROS, and DNA status in cryopreserved canine sperm recovered by glass wool filtration and Percoll gradient centrifugation techniques. Anim. Reprod. Sci. 2010, 119, 106–114. [Google Scholar] [CrossRef]
- Khan, D.R.; Ahmad, N.; Anzar, M.; Channa, A.A. Apoptosis in fresh and cryopreserved buffalo sperm. Theriogenology 2009, 71, 872–876. [Google Scholar] [CrossRef]
- Chaveiro, A.; Santos, P.; Da Silva, F. Assessment of Sperm Apoptosis in Cryopreserved Bull Semen After Swim-up Treatment: A Flow Cytometric Study. Reprod. Domest. Anim. 2007, 42, 17–21. [Google Scholar] [CrossRef]
- Grunewald, S.; Fitzl, G.; Springsguth, C. Induction of ultra-morphological features of apoptosis in mature and immature sperm. Asian J. Androl. 2017, 19, 533–537. [Google Scholar] [CrossRef]
- Paasch, U.; Grunewald, S.; Dathe, S.; Glander, H.-J. Mitochondria of Human Spermatozoa Are Preferentially Susceptible to Apoptosis. Ann. N. Y. Acad. Sci. 2004, 1030, 403–409. [Google Scholar] [CrossRef]
- Barroso, G.; Taylor, S.; Morshedi, M.; Manzur, F.; Gaviño, F.; Oehninger, S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: A comparison of two different sperm subpopulations. Fertil. Steril. 2006, 85, 149–154. [Google Scholar] [CrossRef]
- Guthrie, H.D.; Welch, G.R.; Long, J.A. Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology 2008, 70, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Guo, H.; Gong, Y.; Zhao, R. Lipopolysaccharide-induced mitochondrial dysfunction in boar sperm is mediated by activation of oxidative phosphorylation. Theriogenology 2017, 87, 1–8. [Google Scholar] [CrossRef]
- Zhang, W.D.; Zhang, Z.; Jia, L.T.; Zhang, L.L.; Fu, T.; Li, Y.S.; Wang, P.; Sun, L.; Shi, Y.; Zhang, H.Z. Oxygen free radicals and mitochondrial signaling in oligospermia and asthenospermia. Mol. Med. Rep. 2014, 10, 1875–1880. [Google Scholar] [CrossRef]
- He, X.; Song, W.; Liu, C.; Chen, S.; Hua, J. Rapamycin inhibits acrolein-induced apoptosis by alleviating ROS-driven mitochondrial dysfunction in male germ cells. Cell Prolif. 2014, 47, 161–171. [Google Scholar] [CrossRef]
- Caprari, P.; Scuteri, A.; Salvati, A.; Bauco, C.; Cantafora, A.; Masella, R.; Modesti, D.; Tarzia, A.; Marigliano, V. Aging and red blood cell membrane: A study of centenarians. Exp. Gerontol. 1999, 34, 47–57. [Google Scholar] [CrossRef]
- Amaral, A.; Lourenço, B.; Marques, M.; Ramalho-Santos, J. Mitochondria functionality and sperm quality. Reproduction 2013, 146, R163–R174. [Google Scholar] [CrossRef]
Gene Name | Primer Sequences (5′to3′) | Accession Number |
---|---|---|
β-actin | F: GCGGCATTCACGAAACTACC | NM_001314342.1 |
S: ACTCCTGCTTGCTGATCCAC | ||
BAX | F: CGAGTGTCTGAAGCGCATTG | XM_013971446.2 |
S: GGGCCTTGAGCACCAGTTTG | ||
BCL-2 | F: AGGCTCACAGCACACTCTTC | XM_018039337.1 |
S: GGCCTGTGGGCTTCACTTAT | ||
FAS | F: GCACACAATATGGACCCCCA | NM_001285629.1 |
S: CATGCTGTAGCCTACGAGGG | ||
CASPASE-3 | F: CAGACCTGGACTGTGGTATTGAG | NM_001286089.1 |
S: AGCAGAATCGGTGGAAAAGGAGC |
Lipid Ion | Lipid Group | Ion Formula | FC | p-Value | VIP |
---|---|---|---|---|---|
PE(18:1_22:6)-H | PE(40:7)-H | C45 H75 O8 N1 P1 | 0.280 | 0.032 | 1.043 |
Cer(d46:5)+HCOO | Cer(d46:5)+HCOO | C47 H84 O5 N1 | 9.238 | 0.032 | 3.214 |
Cer(m38:0+O)+HCOO | Cer(m38:0+O)+HCOO | C39 H78 O5 N1 | 0.152 | 0.039 | 1.052 |
CerP(d49:3)-H | CerP(d49:3)-H | C49 H93 O6 N1 P1 | 0.205 | 0.022 | 1.744 |
Hex1Cer(d16:1_20:0)-H | Hex1Cer(d36:1)-H | C42 H80 O8 N1 | 0.412 | 0.045 | 1.131 |
Hex2Cer(d30:1)+HCOO | Hex2Cer(d30:1)+HCOO | C43 H80 O15 N1 | 0.403 | 0.048 | 1.572 |
Hex2Cer(d35:5)-H | Hex2Cer(d35:5)-H | C47 H80 O13 N1 | 0.149 | 0.039 | 1.269 |
Hex2Cer(d16:0_20:4)+HCOO | Hex2Cer(d36:4)+HCOO | C49 H86 O15 N1 | 0.473 | 0.049 | 1.235 |
LPC(16:0e)+HCOO | LPC(16:0e)+HCOO | C25 H53 O8 N1 P1 | 4.006 | 0.021 | 1.759 |
LPC(16:1e)+HCOO | LPC(16:1e)+HCOO | C25 H51 O8 N1 P1 | 4.483 | 0.020 | 3.325 |
LPC(22:6)+HCOO | LPC(22:6)+HCOO | C31 H51 O9 N1 P1 | 0.464 | 0.023 | 1.580 |
LPE(16:1e)-H | LPE(16:1e)-H | C21 H43 O6 N1 P1 | 6.580 | 0.010 | 2.629 |
OAHFA(57:10)-H | OAHFA(57:10)-H | C57 H91 O4 | 0.360 | 0.040 | 1.166 |
AcCa(16:0)+H | AcCa(16:0)+H | C23 H46 O4 N1 | 0.539 | 0.033 | 13.144 |
LPC(18:3e)+H | LPC(18:3e)+H | C26 H51 O6 N1 P1 | 6.107 | 0.020 | 2.372 |
PC(40:10)+H | PC(40:10)+H | C48 H77 O8 N1 P1 | 0.345 | 0.049 | 2.214 |
TG(4:0_10:4_12:3)+NH4 | TG(26:7)+NH4 | C29 H44 O6 N1 | 5.391 | 0.020 | 4.430 |
AcCa(14:0)+H | AcCa(14:0)+H | C21 H42 O4 N1 | 0.394 | 0.010 | 11.315 |
PE(18:1_22:6)-H | PE(40:7)-H | C45 H75 O8 N1 P1 | 0.280 | 0.032 | 1.043 |
Lipid Ion | Lipid Group | Ion Formula | FC | p-Value | VIP |
---|---|---|---|---|---|
FA(22:6)-H | FA(22:6)-H | O2 H31 C22 | 0.320 | 0.050 | 1.532 |
LPC(16:0e)+HCOO | LPC(16:0e)+HCOO | C25 H53 O8 N1 P1 | 0.345 | 0.041 | 3.022 |
LPC(16:1e)+HCOO | LPC(16:1e)+HCOO | C25 H51 O8 N1 P1 | 0.353 | 0.034 | 5.384 |
LPE(16:0e)-H | LPE(16:0e)-H | C21 H45 O6 N1 P1 | 0.334 | 0.029 | 1.215 |
LPC(18:3e)+H | LPC(18:3e)+H | C26 H51 O6 N1 P1 | 0.225 | 0.032 | 5.940 |
LPE(18:1e)+H | LPE(18:1e)+H | C23 H49 O6 N1 P1 | 0.402 | 0.038 | 1.101 |
SM(d14:0_24:4)+H | SM(d38:4)+H | C43 H82 O6 N2 P1 | 0.496 | 0.015 | 4.116 |
TG(4:0_10:4_12:3)+NH4 | TG(26:7)+NH4 | C29 H44 O6 N1 | 0.280 | 0.030 | 9.385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Z.; Xun, W.; Zhou, H.; Hou, G.; Shi, L. Effectiveness of Curcumin on Oxidative Stress in Goat Semen: Explorations Regarding Semen Quality, Sperm Apoptosis, Ultrastructure, and Markers of Oxidative Stress. Antioxidants 2025, 14, 1242. https://doi.org/10.3390/antiox14101242
An Z, Xun W, Zhou H, Hou G, Shi L. Effectiveness of Curcumin on Oxidative Stress in Goat Semen: Explorations Regarding Semen Quality, Sperm Apoptosis, Ultrastructure, and Markers of Oxidative Stress. Antioxidants. 2025; 14(10):1242. https://doi.org/10.3390/antiox14101242
Chicago/Turabian StyleAn, Zhaoxiang, Wenjuan Xun, Hanlin Zhou, Guanyu Hou, and Liguang Shi. 2025. "Effectiveness of Curcumin on Oxidative Stress in Goat Semen: Explorations Regarding Semen Quality, Sperm Apoptosis, Ultrastructure, and Markers of Oxidative Stress" Antioxidants 14, no. 10: 1242. https://doi.org/10.3390/antiox14101242
APA StyleAn, Z., Xun, W., Zhou, H., Hou, G., & Shi, L. (2025). Effectiveness of Curcumin on Oxidative Stress in Goat Semen: Explorations Regarding Semen Quality, Sperm Apoptosis, Ultrastructure, and Markers of Oxidative Stress. Antioxidants, 14(10), 1242. https://doi.org/10.3390/antiox14101242