Effect of Guava Seeds on the Biochemical Parameters and Composition of HDL Subclasses in Ovariectomized Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Ovariectomy
2.3. Guava Seeds
2.4. Seed Delipidation
2.5. Blood Pressure
2.6. Lipid Profile
2.7. HDL Size and Lipid Concentration of HDL Subclasses
2.8. Determination of Apolipoproteins
2.9. Paraoxonase-1 Activity
2.10. Data Analysis
3. Results
3.1. Biochemical Parameters
3.2. Size and Lipid Composition of HDL Subclasses
3.3. Apolipoproteins
3.4. PON1 Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HDL | High-density lipoprotein |
PON1 | Paraoxonase-1 |
LDL | Low-density lipoprotein |
SHAM | SHAM-operated rats |
OVX | Ovariectomized rats |
DGS | Defatted guava seeds |
GS | Guava seeds |
HDL-c | HDL cholesterol |
HDL-Tg | HDL triglycerides |
HDL-PPL | HDL phospholipids |
Apo | Apolipoprotein |
SD | Standard deviation |
CVD | Cardiovascular diseases |
RCT | Reverse cholesterol transport |
LCAT | Lecithin–cholesterol–acyltransferase |
E2 | Estradiol |
LPL | Lipoprotein lipase |
References
- Anagnostis, P.; Stevenson, J.C.; Crook, D.; Johnston, D.G.; Godsland, I.F. Effects of gender, age and menopausal status on serum apolipoprotein concentrations. Clin. Endocrinol. 2016, 85, 733–740. [Google Scholar] [CrossRef]
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef]
- Gold, E.B. The timing of the age at which natural menopause occurs. Obstet. Gynecol. Clin. 2011, 38, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Salpeter, S.R.; Walsh, J.M.E.; Ormiston, T.M.; Greyber, E.; Buckley, N.S.; Salpeter, E.E. Meta-analysis: Effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes. Metab. 2006, 8, 538–554. [Google Scholar] [CrossRef] [PubMed]
- Kostara, C.E.; Bairaktari, E.T.; Tsimihodimos, V. Effect of clinical and laboratory parameters on HDL particle composition. Int. J. Mol. Sci. 2023, 24, 1995. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Luna, D.; Carreón-Torres, E.; Bautista-Pérez, R.; Betanzos-Cabrera, G.; Dorantes-Morales, A.; Luna-Luna, M.; Vargas-Barrón, J.; Mejía, A.M.; Fragoso, J.M.; Carvajal-Aguilera, K.; et al. Microencapsulated pomegranate reverts high-density lipoprotein (HDL)-induced endothelial dysfunction and reduces postprandial triglyceridemia in women with acute coronary syndrome. Nutrients 2019, 11, 1710. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Chen, X.; Nasr, A.; Billheimer, J.; Brooks, M.M.; McConnell, D.; Orchard, T.J.; Crawford, S.L.; Matthews, K.A.; Rader, D.J. HDL (high-density lipoprotein) subclasses, lipid content, and function trajectories across the menopause transition: SWAN-HDL study. Arter. Thromb. Vasc. Biol. 2021, 41, 951–961. [Google Scholar] [CrossRef]
- Lehti, S.; Korhonen, T.M.; Soliymani, R.; Ruhanen, H.; Lähteenmäki, E.I.; Palviainen, M.; Siljander, P.; Lalowski, M.; Käkelä, R.; Lehti, M.; et al. The lipidome and proteome of high-density lipoprotein are altered in menopause. J. Appl. Physiol. 2025, 139, 308–324. [Google Scholar] [CrossRef]
- Hall, D.C. Nutritional influences on estrogen metabolism. Appl. Nutr. Sci. Rep. 2001, 1, 1–8. [Google Scholar]
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Crit. Rev. Food Sci. Nut. 2021, 61, 1651–1669. [Google Scholar] [CrossRef]
- Secretaría de Agricultura y Desarrollo Rural (SADER). Garantiza Agricultura Producción y Abasto de Guayaba para esta Temporada Decembrina. 2022. Available online: https://www.gob.mx/agricultura/prensa/garantiza-agricultura-produccion-y-abasto-de-guayaba-para-esta-temporada-decembrina#:~:text=En%202021%2C%20Michoac%C3%A1n%20registr%C3%B3%2010,y%2029%20mil%20982%20toneladas (accessed on 30 June 2025).
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- da Silva Lima, R.; Ferreira, S.R.S.; Vitali, L.; Block, J.M. May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res. Int. 2019, 115, 451–459. [Google Scholar] [CrossRef]
- Uchôa-thomaz, A.M.A.; Sousa, E.C.; Carioca, J.O.B.; Morais, S.M.D.; Lima, A.D.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.). Food Sci. Technol. 2014, 34, 485–492. [Google Scholar] [CrossRef]
- Shabbir, H.; Kausar, T.; Noreen, S.; Rehman, H.U.; Hussain, A.; Huang, Q.; Gani, A.; Su, S.; Nawaz, A. In vivo screening and antidiabetic potential of polyphenol extracts from guava pulp, seeds and leaves. Animals 2020, 10, 1714. [Google Scholar] [CrossRef]
- Prommaban, A.; Utama-Ang, N.; Chaikitwattana, A.; Uthaipibull, C.; Porter, J.B.; Srichairatanakool, S. Phytosterol, lipid and phenolic composition, and biological activities of guava seed oil. Molecules 2020, 25, 2474. [Google Scholar] [CrossRef]
- Huang, H.Y.; Chang, C.K.; Tso, T.K.; Huang, J.J.; Chang, W.W.; Tsai, Y.C. Antioxidant activities of various fruits and vegetables produced in Taiwan. Int. J. Food Sci. Nutr. 2004, 55, 423–429. [Google Scholar] [CrossRef]
- Pelegrini, P.B.; Murad, A.M.; Silva, L.P.; Dos Santos, R.C.; Costa, F.T.; Tagliari, P.D.; Bloch, C., Jr.; Noronha, E.F.; Miller, R.N.G.; Franco, O.L. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides 2008, 29, 1271–1279. [Google Scholar] [CrossRef]
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. NORMA Oficial Mexicana NOM-062-ZOO-1999, Especificaciones Técnicas para la Producción, Cuidado y uso de los Animales de Laboratorio. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 30 June 2025).
- Brower, G.L.; Gardner, J.D.; Janicki, J.S. Gender mediated cardiac protection from adverse ventricular remodeling is abolished by ovariectomy. Mol. Cell Biochem. 2003, 251, 89–95. [Google Scholar] [CrossRef]
- Wronsky, T.J. The ovariectomized rat as an animal model for postmenopausal bone loss. Cell Mater. 1992, 1, S69–S74. [Google Scholar]
- Williams, P.T.; Krauss, R.M.; Nichols, A.V.; Vranizan, K.M.; Wood, P.D. Identifying the predominant peak diameter of high-density and low-density lipoproteins by electrophoresis. J. Lipid Res. 1990, 31, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Carreón-Torres, E.; Juárez-Meavepeña, M.; Cardoso-Saldaña, G.; Gómez, C.H.; Franco, M.; Fievet, C.; Luc, G.; Juárez-Oropeza, M.A.; Pérez-Méndez, O. Pioglitazone increases the fractional catabolic and production rates of high-density lipoproteins apo AI in the New Zealand White Rabbit. Atherosclerosis 2005, 181, 233–240. [Google Scholar] [CrossRef]
- Warnick, G.R.; McNamara, J.R.; Boggess, C.N.; Clendenen, F.; Williams, P.T.; Landolt, C.C. Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin. Lab. Med. 2006, 26, 803–846. [Google Scholar] [CrossRef] [PubMed]
- Huesca-Gómez, C.; Carreón-Torres, E.; Nepomuceno-Mejía, T.; Sánchez-Solorio, M.; Galicia-Hidalgo, M.; Mejía, A.M.; Montaño, L.; Franco, M.; Posadas-Romero, C.; Pérez-Méndez, O. Contribution of cholesteryl ester transfer protein and lecithin: Cholesterol acyltransferase to HDL size distribution. Endocr. Res. 2004, 30, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Meavepeña, M.; Carreón-Torres, E.; López-Osorio, C.; García-Sánchez, C.; Gamboa, R.; Torres-Tamayo, M.; Fragoso, J.M.; Rodríguez-Pérez, J.M.; Vargas-Alarcón, G.; Pérez-Méndez, O. The Srb1+ 1050T allele is associated with metabolic syndrome in children but not with cholesteryl ester plasma concentrations of high-density lipoprotein subclasses. Metab. Syndr. Relat. Disord. 2012, 10, 110–116. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Torres-Tamayo, M.; Juárez-Meavepeña, M.; López-Osorio, C.; Toledo-Ibelles, P.; Monter-Garrido, M.; Cruz-Robles, D.; Carreón-Torres, E.; Vargas-Alarcón, G.; Pérez-Méndez, O. Lipid plasma concentrations of HDL subclasses determined by enzymatic staining on polyacrylamide electrophoresis gels in children with metabolic syndrome. Clin. Chim. Acta 2011, 412, 292–298. [Google Scholar] [CrossRef]
- Toledo-Ibelles, P.; García-Sánchez, C.; Ávila-Vazzini, N.; Carreón-Torres, E.; Posadas-Romero, C.; Vargas-Alarcón, G.; Pérez-Méndez, O. Enzymatic assessment of cholesterol on electrophoresis gels for estimating HDL size distribution and plasma concentrations of HDL subclasses. J. Lipid Res. 2010, 51, 1610–1617. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Gan, K.N.; Smolen, A.; Eckerson, H.W.; La Du, B.N. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab. Dispos. 1991, 19, 100–106. [Google Scholar] [CrossRef]
- Litwak, S.A.; Wilson, J.L.; Chen, W.; Garcia-Rudaz, C.; Khaksari, M.; Cowley, M.A.; Enriori, P.J. Estradiol prevents fat accumulation and overcomes leptin resistance in female high-fat diet mice. Endocrinology 2014, 155, 4447–4460. [Google Scholar] [CrossRef]
- Barakat, S.M.; El-Malah, M.M.; EL-Masry, H.G.; Haggag, M.H. The Effect of ChiaSeeds (Salvia hispanica L.) on Osteoporosis of Ovariectomized Rats. Egypt. J. Nutr. 2022, 3, 129–168. [Google Scholar] [CrossRef]
- Oh, J.; Hong, S.; Ko, S.H.; Kim, H.S. Evaluation of Antioxidant Effects of Pumpkin (Cucurbita pepo L.) Seed Extract on Aging-and Menopause-Related Diseases Using Saos-2 Cells and Ovariectomized Rats. Antioxidants 2024, 13, 241. [Google Scholar] [CrossRef]
- Fontanari, G.G.; Souza, G.R.; Batistuti, J.P.; Neves, V.A.; Pastre, I.A.; Fertonani, F.L. DSC studies on protein isolate of guava seeds Psidium guajava. J. Therm. Anal. Calorim. 2008, 93, 397–402. [Google Scholar] [CrossRef]
- El Anany, A.M. Nutritional composition, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds (Psidium Myrtaceae) as affected by roasting processes. J. Food Sci. Technol. 2015, 52, 2175–2183. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Griffith, J.A.; Chasan-Taber, L.; Olendzki, B.C.; Jackson, E.; Stanek, E.J., III; Li, W.; Pagoto, S.L.; Hafner, A.R.; Ockene, I.S.; et al. Association between dietary fiber and serum C-reactive protein. Am. J. Clin. Nutr. 2006, 83, 760–766. [Google Scholar] [CrossRef]
- Krishnamurthy, V.M.R.; Wei, G.; Baird, B.C.; Murtaugh, M.; Chonchol, M.B.; Raphael, K.L.; Greene, T.; Beddhu, S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012, 81, 300–306. [Google Scholar] [CrossRef]
- Brock, D.W.; Davis, C.K.; Irving, B.A.; Rodriguez, J.; Barrett, E.J.; Weltman, A.; Taylor, A.G.; Gaesser, G.A. A high-carbohydrate, high-fiber meal improves endothelial function in adults with the metabolic syndrome. Diabetes Care 2006, 29, 2313–2315. [Google Scholar] [CrossRef]
- Dhital, S.; Gidley, M.J.; Warren, F.J. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications. Carbohydr. Polym. 2015, 123, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Quesada, O.; Claggett, B.; Rodriguez, F.; Cai, J.; Moncrieft, A.E.; Garcia, K.; Rivera, M.D.R.; Hanna, D.B.; Daviglus, M.L.; Talavera, G.A.; et al. Associations of insulin resistance with systolic and diastolic blood pressure: A study from the HCHS/SOL. Hypertension 2021, 78, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Nicanor, A.B.; Moreno, A.O.; Ayala, A.M.; Ortíz, G.D. Guava seed protein isolate: Functional and nutritional characterization. J. Food Biochem. 2001, 25, 77–90. [Google Scholar] [CrossRef]
- Abdeldaiem, M.H.; Hoda, G.M.; Nasr, E.H. Antioxidant activity of extract from gamma irradiated guava (Psidium guajava L.) seeds. FSQM 2014, 26, 13–25. [Google Scholar]
- Macho-González, A.; Garcimartín, A.; Naes, F.; López-Oliva, M.E.; Amores-Arrojo, A.; González-Muñoz, M.J.; Bastida, S.; Benedi, J.; Sanchez-Muniz, F.J. Effects of fiber purified extract of carob fruit on fat digestion and postprandial lipemia in healthy rats. J. Agric. Food Chem. 2018, 66, 6734–6741. [Google Scholar] [CrossRef]
- Wu, W.C.; Inui, A.; Chen, C.Y. Weight loss induced by whole grain-rich diet is through a gut microbiota-independent mechanism. World J. Diabetes 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Quehenberger, O.; Dennis, E.A. The human plasma lipidome. N. Engl. J. Med. 2011, 365, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016, 5, e189. [Google Scholar] [CrossRef] [PubMed]
- Kajani, S.; Curley, S.; McGillicuddy, F.C. Unravelling HDL—looking beyond the cholesterol surface to the quality within. Int. J. Mol. Sci. 2018, 19, 1971. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Nasr, A.; Billheimer, J.; Brooks, M.M.; McConnell, D.; Crawford, S.; Orchard, T.J.; Rader, D.J.; A Matthews, K. Associations of endogenous hormones with HDL novel metrics across the menopause transition: The SWAN HDL study. J. Clin. Endocrinol. Metab. 2022, 107, e303–e314. [Google Scholar] [CrossRef]
- Camont, L.; Chapman, M.J.; Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med. 2011, 17, 594–603. [Google Scholar] [CrossRef]
- Martin, S.S.; Khokhar, A.A.; May, H.T.; Kulkarni, K.R.; Blaha, M.J.; Joshi, P.H.; Toth, P.P.; Muhlestein, J.B.; Anderson, J.L.; Knight, S.; et al. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: The Lipoprotein Investigators Collaborative. Eur. Heart J. 2015, 36, 22–30. [Google Scholar] [CrossRef]
- Kiskis, J.; Fink, H.; Nyberg, L.; Thyr, J.; Li, J.Y.; Enejder, A. Plaque-associated lipids in Alzheimer’s disease brain tissue visualized by nonlinear microscopy. Sci. Rep. 2015, 5, 13489. [Google Scholar] [CrossRef]
- Liang, S.; Steffen, L.M.; Steffen, B.T.; Guan, W.; Weir, N.L.; Rich, S.S.; Manichaikul, A.; Vargas, J.D.; Tsai, M.Y. APOE genotype modifies the association between plasma omega-3 fatty acids and plasma lipids in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2013, 228, 181–187. [Google Scholar] [CrossRef]
- Kypreos, K.E.; Zannis, V.I. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT. Biochem. J. 2007, 403, 359–367. [Google Scholar] [CrossRef]
- Morton, A.M.; Koch, M.; Mendivil, C.O.; Furtado, J.D.; Tjønneland, A.; Overvad, K.; Wang, L.; Jensen, M.K.; Sacks, F.M. Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk. JCI Insight 2018, 3, e98045. [Google Scholar] [CrossRef]
- Jensen, M.K.; Aroner, S.A.; Mukamal, K.J.; Furtado, J.D.; Post, W.S.; Tsai, M.Y.; Tjønneland, A.; Polak, J.F.; Rimm, E.B.; Overvad, K.; et al. High-density lipoprotein subspecies defined by presence of apolipoprotein C-III and incident coronary heart disease in four cohorts. Circulation 2018, 137, 1364–1373. [Google Scholar] [CrossRef]
- Asset, G.; Staels, B.; Wolff, R.L.; Baugé, E.; Madj, Z.; Fruchart, J.C.; Dallongeville, J. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids 1999, 34, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Scott, J.E. Estradiol enhances cell-associated paraoxonase 1 (PON1) activity in vitro without altering PON1 expression. Biochem. Biophys. Res. Commun. 2010, 397, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Parra, S.; Alonso-Villaverde, C.; Coll, B.; Ferré, N.; Marsillach, J.; Aragonès, G.; Mackness, M.; Mackness, B.; Masana, L.; Joven, J.; et al. Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis 2007, 194, 175–181. [Google Scholar] [CrossRef]
- Calabresi, L.; Villa, B.; Canavesi, M.; Sirtori, C.R.; James, R.W.; Bernini, F.; Franceschini, G. An ω-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia. Metabolism 2004, 53, 153–158. [Google Scholar] [CrossRef]
- Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet 2007, 369, 1090–1098. [Google Scholar] [CrossRef]
- Thiyagarajan, A.; Rathnasamy, V.K.; Veerasamy, B.; Sangeetha, V.S.; Vellaichamy, J.; Subbian, M. Guava (Psidium guajava L.) Seed: A Review on Nutritional Profile, Bioactive Compounds, Functional Food Properties, Health Benefits and Industrial Applications. Fresenius Environ. Bull. 2024, 33, 703–710. [Google Scholar]
- Ikeda, I. Factors affecting intestinal absorption of cholesterol and plant sterols and stanols. J. Oleo Sci. 2015, 64, 9–18. [Google Scholar] [CrossRef]
- Mohamed, D.; Mohammed, S.; Hamed, I. Chia seeds oil enriched with phytosterols and mucilage as a cardioprotective dietary supplement towards inflammation, oxidative stress, and dyslipidemia. J. Herbmed Pharmacol. 2021, 11, 83–90. [Google Scholar] [CrossRef]
- Hwang, E.Y.; Yu, M.H.; Jung, Y.S.; Lee, S.P.; Shon, J.H.; Lee, S.O. Defatted safflower seed extract inhibits adipogenesis in 3T3-L1 preadipocytes and improves lipid profiles in C57BL/6J ob/ob mice fed a high-fat diet. Nutr. Res. 2016, 36, 995–1003. [Google Scholar] [CrossRef]
- Koza, J.; Jurgoński, A. Partially defatted rather than native poppy seeds beneficially alter lipid metabolism in rats fed a high-fat diet. Sci. Rep. 2023, 13, 14171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Y.; Shao, H.; Bi, Q.; Chen, J.; Ye, Z. Grape seed procyanidin B2 inhibits adipogenesis of 3T3-L1 cells by targeting peroxisome proliferator-activated receptor γ with miR-483-5p involved mechanism. Biomed. Pharmacother. 2017, 86, 292–296. [Google Scholar] [PubMed]
Parameter | SHAM | OVX | OVX + GS | OVX + DGS |
---|---|---|---|---|
Glucose (mg/dL) | 165.77 ± 33.54 | 201.59 ± 35.04 a,b,c | 124.50 ± 23.90 | 86.66 ± 11.71 * |
Body weight gain (g) | 28.00 ± 9.57 | 63.00 ± 25.16 a,c | 32.83 ± 3.82 | 57.20 ± 23.73 |
Systolic blood pressure (mmHg) | 145.20 ± 10.60 | 166.94 ± 9.35 b | 149.38 ± 10.80 | 138.89 ± 17.78 |
Media blood pressure (mmHg) | 121.30 ± 6.50 | 144.31 ± 10.35 a,b | 122.70 ± 12.01 | 102.42 ± 21.22 |
Cholesterol (mg/dL) | 37.01 ± 8.42 | 40.88 ± 5.59 | 32.42 ± 6.18 | 33.77 ± 2.84 |
Triglycerides (mg/dL) | 49.42 ± 14.62 | 55.63 ± 10.04 b,c | 37.83 ± 6.95 | 28.72 ± 5.25 |
Phospholipids (mg/dL) | 115.46 ± 15.67 | 134.29 ± 19.88 b,c | 99.81 ± 8.06 | 80.37 ± 12.88 |
Non-HDL-c (mg/dL) | 9.15 ± 6.90 | 7.56 ± 3.92 b | 4.86 ± 4.09 | 15.64 ± 1.17 * |
HDL Lipid Profile | SHAM | OVX | OVX + GS | OVX + DGS |
---|---|---|---|---|
HDL-c (mg/dL) | 27.86 ± 4.59 | 33.32 ± 2.42 | 27.55 ± 6.90 | 18.13 ± 2.31 a,* |
HDL-Tg (mg/dL) | 11.65 ± 3.18 | 10.42 ± 1.88 | 7.32 ± 2.57 | 8.48 ± 1.35 |
HDL-PPL (mg/dL) | 58.80 ± 13.86 | 64.71 ± 4.38 | 61.66 ± 12.68 | 52.06 ± 5.31 |
HDL-c/HDL-PPL ratio | 0.44 ± 0.08 | 0.52 ± 0.05 | 0.52 ± 0.06 | 0.35 ± 0.04 a |
HDL-Tg/HDL-PPL ratio | 0.18 ± 0.09 | 0.16 ± 0.04 | 0.14 ± 0.04 | 0.17 ± 0.03 |
HDL Subclasses | SHAM | OVX | OVX + GS | OVX + DGS |
---|---|---|---|---|
Protein (%) | ||||
HDL 2b | 40.60 ± 3.32 | 46.56 ± 2.08 | 43.19 ± 5.06 | 48.12 ± 1.64 |
HDL 2a | 13.06 ± 2.46 | 12.03 ± 1.20 | 12.23 ± 2.28 | 13.26 ± 2.12 |
HDL 3a | 16.68 ± 2.00 | 14.39 ± 1.06 | 15.10 ± 2.11 | 14.84 ± 1.21 |
HDL 3b | 8.25 ± 0.92 | 8.23 ± 0.73 | 8.29 ± 1.14 | 7.48 ± 1.21 |
HDL 3c | 19.00 ± 3.10 | 18.51 ± 1.74 | 21.19 ± 3.75 | 16.31 ± 1.07 * |
Cholesterol (%) | ||||
HDL 2b | 40.53 ± 1.36 | 43.46 ± 2.33 | 39.74 ± 2.93 | 36.82 ± 1.60 |
HDL 2a | 12.09 ± 0.53 | 11.77 ± 0.44 | 11.79 ± 0.82 | 11.04 ± 1.38 |
HDL 3a | 17.05 ± 1.42 | 15.65 ± 2.10 | 17.19 ± 1.63 | 19.71 ± 4.05 |
HDL 3b | 9.24 ± 0.80 | 8.42 ± 1.19 | 9.77 ± 1.29 | 11.38 ± 1.91 a |
HDL 3c | 21.09 ± 3.20 | 20.69 ± 2.26 | 23.83 ± 2.52 | 27.18 ± 1.30 a |
Triglycerides (%) | ||||
HDL 2b | 34.90 ± 3.37 | 36.94 ± 2.34 | 36.50 ± 2.75 | 39.53 ± 3.08 |
HDL 2a | 11.13 ± 1.13 | 11.15 ± 0.65 | 10.58 ± 1.28 | 11.75 ± 0.53 |
HDL 3a | 17.63 ± 2.57 | 17.29 ± 1.58 | 17.05 ± 1.42 | 16.53 ± 0.44 |
HDL 3b | 9.49 ± 0.41 | 9.28 ± 0.95 | 9.63 ± 1.19 | 9.00 ± 0.54 |
HDL 3c | 26.84 ± 1.90 | 25.33 ± 2.93 | 26.25 ± 3.05 | 23.37 ± 2.62 |
Phospholipids (%) | ||||
HDL 2b | 41.34 ± 5.21 | 40.54 ± 3.64 | 41.42 ± 6.00 | 39.70 ± 0.94 |
HDL 2a | 10.87 ± 0.76 | 10.39 ± 0.78 | 10.01 ± 0.88 | 11.97 ± 1.06 * |
HDL 3a | 16.57 ± 2.18 | 15.64 ± 1.03 | 15.47 ± 1.34 | 17.21 ± 0.39 |
HDL 3b | 8.99 ± 1.01 | 9.27 ± 0.80 | 9.00 ± 0.78 | 8.92 ± 0.74 |
HDL 3c | 22.24 ± 2.29 | 24.79 ± 1.64 | 24.11 ± 3.49 | 22.20 ± 0.93 |
Apolipoproteins | SHAM | OVX | OVX + GS | OVX + DGS |
---|---|---|---|---|
Apo AIV | 19.79 ± 1.53 | 18.22 ± 3.64 | 21.01 ± 3.12 | 22.76 ± 3.13 |
Apo E | 19.92 ± 3.26 | 18.95 ± 1.85 | 21.68 ± 3.33 | 13.70 ± 3.38 a,* |
Apo AI | 44.17 ± 3.20 | 45.60 ± 5.38 | 39.93 ± 8.10 | 41.79 ± 7.65 |
Apo AII | 8.71 ± 1.12 | 8.99 ± 1.58 | 9.18 ± 1.30 | 8.34 ± 3.28 |
Apo C | 5.89 ± 0.90 | 6.75 ± 0.88 | 8.20 ± 0.93 | 13.41 ± 5.03 a,* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Melo, L.M.; Carreón-Torres, E.; Castañeda-Ovando, A.; Fernández-Martínez, E.; Pérez-Méndez, Ó.; Estrada-Luna, D. Effect of Guava Seeds on the Biochemical Parameters and Composition of HDL Subclasses in Ovariectomized Rats. Antioxidants 2025, 14, 1240. https://doi.org/10.3390/antiox14101240
Ramírez-Melo LM, Carreón-Torres E, Castañeda-Ovando A, Fernández-Martínez E, Pérez-Méndez Ó, Estrada-Luna D. Effect of Guava Seeds on the Biochemical Parameters and Composition of HDL Subclasses in Ovariectomized Rats. Antioxidants. 2025; 14(10):1240. https://doi.org/10.3390/antiox14101240
Chicago/Turabian StyleRamírez-Melo, Lisette Monsibaez, Elizabeth Carreón-Torres, Araceli Castañeda-Ovando, Eduardo Fernández-Martínez, Óscar Pérez-Méndez, and Diego Estrada-Luna. 2025. "Effect of Guava Seeds on the Biochemical Parameters and Composition of HDL Subclasses in Ovariectomized Rats" Antioxidants 14, no. 10: 1240. https://doi.org/10.3390/antiox14101240
APA StyleRamírez-Melo, L. M., Carreón-Torres, E., Castañeda-Ovando, A., Fernández-Martínez, E., Pérez-Méndez, Ó., & Estrada-Luna, D. (2025). Effect of Guava Seeds on the Biochemical Parameters and Composition of HDL Subclasses in Ovariectomized Rats. Antioxidants, 14(10), 1240. https://doi.org/10.3390/antiox14101240