The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement and Experimental Design
2.2. Oxidized Fish Oil and Experimental Fish Management
2.3. Sample Collection
2.4. Muscle Texture Analysis
2.5. Histopathology of Muscle
2.6. Antioxidant Enzyme Activity and Evaluation of Protein Oxidation Levels
2.7. Quantitative Real-Time PCR
2.8. 16S rRNA Sequencing Analysis
2.9. Statistical Analysis
3. Results
3.1. Transcription Levels of miR-144, Nrf2, and Keap1 Genes
3.2. Effects of Oxidized Fish Oil and miR-144 Interference on Muscle Texture Characteristics of M. amblycephala
3.3. Muscle H&E Staining
3.4. Muscle Antioxidant Enzyme Activity and Protein Oxidation Level
3.5. Effects of Oxidized Fish Oil and miR-144 Interference on Inflammation-Related Genes in M. amblycephala Muscle
3.6. Growth and Differentiation of Muscle Cells and Protein Synthesis and Hydrolysis
3.7. Intestinal Microbiota Composition and Differences Analysis
3.8. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, M.L.; Chu, W.Y.; Wang, J.; Shao, C.; Hu, Y.J.; Che, C.B.; Zhang, J.Z.; Dai, J.H.; Hu, Y. Intervention of Taurine on Fatty Acid Profiles, Oxidative Injury and Autophagy Status in the Muscle of Rice Field Eel (Monopterus albus) Fed Oxidized Fish Oil. Aquaculture 2022, 551, 737904. [Google Scholar] [CrossRef]
- Jiang, S.Q.; Jiang, Z.Y.; Lin, Y.C.; Xi, P.B.; Ma, X.Y. Effects of Soy Isoflavone on Performance, Meat Quality and Antioxidative Property of Male Broilers Fed Oxidized Fish Oil. Asian-Aust. J. Anim. Sci. 2007, 20, 1252–1257. [Google Scholar] [CrossRef]
- Méndez, L.; Pazos, M.; Gallardo, J.M.; Torres, J.L.; Pérez-Jiménez, J.; Nogués, R.; Romeu, M.; Medina, I. Reduced Protein Oxidation in Wistar Rats Supplemented with Marine Ω3 PUFAs. Free Radic. Biol. Med. 2013, 55, 8–20. [Google Scholar] [CrossRef]
- Mozuraityte, R.; Kristinova, V.; Standal, I.B.; Carvajal, A.K.; Aursand, M. Oxidative Stability and Shelf Life of Fish Oil. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; AOCS Press: Champaign, IL, USA, 2016; pp. 209–231. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Wang, Z.Q.; Shi, Y.; Xia, L.Q.; Hu, Y.; Zhong, L. Protective Effects of Chlorogenic Acid on Growth, Intestinal Inflammation, Hepatic Antioxidant Capacity, Muscle Development and Skin Color in Channel Catfish Ictalurus punctatus Fed an Oxidized Fish Oil Diet. Fish Shellfish Immunol. 2023, 134, 108511. [Google Scholar] [CrossRef]
- Yan, X.B.; Li, Z.H.; Dong, X.H.; Tan, B.P.; Pan, S.M.; Li, T.; Long, S.S.; Huang, W.B.; Suo, X.X.; Yang, Y.Z. Degradation of Muscle Quality in Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatu) Due to Oxidative Damage Caused by Ingestion of Oxidized Fish Oil. Front. Nutr. 2022, 9, 840535. [Google Scholar] [CrossRef]
- Yu, H.H.; Ren, Y.Y.; Wei, H.C.; Xing, W.; Xu, G.L.; Li, T.L.; Xue, M.; Luo, L. Dietary Oxidized Fish Oil Negatively Affected the Feed Utilization, Health Status and Fillet Quality of Juvenile Amur sturgeon, A. schrenckii. Aquaculture 2022, 546, 737290. [Google Scholar] [CrossRef]
- Gan, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Li, S.H.; Tang, L.; Kuang, S.Y.; Feng, L.; Zhou, X.Q. Flesh Quality Loss in Response to Dietary Isoleucine Deficiency and Excess in Fish: A Link to Impaired Nrf2-Dependent Antioxidant Defense in Muscle. PLoS ONE 2014, 9, e115129. [Google Scholar] [CrossRef]
- Luo, J.B.; Feng, L.; Jiang, W.D.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Physical and Flavor Characteristics, Fatty Acid Profile, Antioxidant Status and Nrf2-Dependent Antioxidant Enzyme Gene Expression Changes in Young Grass Carp (Ctenopharyngodon idella) Fillets Fed Dietary Valine. PLoS ONE 2017, 12, e0169270. [Google Scholar] [CrossRef]
- Sobczak, M.; Panicz, R.; Eljasik, P.; Sadowski, J.; Tórz, A.; Żochowska-Kujawska, J.; Barbosa, V.; Dias, J.; Marques, A. Nutritional Value and Sensory Properties of Common Carp (Cyprinus carpio L.) Fillets Enriched with Sustainable and Natural Feed Ingredients. Food Chem. Toxicol. 2021, 152, 112197. [Google Scholar] [CrossRef]
- Yan, X.B.; Pan, S.M.; Li, Z.H.; Dong, X.H.; Tan, B.P.; Long, S.S.; Li, T.; Suo, X.X.; Yang, Y.Z. Amelioration of Flesh Quality in Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) Fed with Oxidized Fish Oil Diet by Supplying Lactobacillus pentosus. Front. Mar. Sci. 2022, 9, 926106. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, X.C.; Liu, X.; Zhou, Q.L.; Sun, C.X.; Song, C.Y.; Wang, A.M.; Liu, B. miR-144 Targets Nrf2 Affecting the Intestinal Oxidative Damage Induced by Oxidized Fish Oil in Megalobrama amblycephala with Emphasis on Autophagy and Apoptosis. Water Biol. Secur. 2024, 4, 100340. [Google Scholar] [CrossRef]
- Celi, P.; Gabai, G. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation. Front. Vet. Sci. 2015, 2, 48. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Levine, R.L. Free Radical-Mediated Oxidation of Free Amino Acids and Amino Acid Residues in Proteins. Amino Acids 2003, 25, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants 2021, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Hematyar, N.; Rustad, T.; Sampels, S.; Kastrup Dalsgaard, T. Relationship between Lipid and Protein Oxidation in Fish. Aquac. Res. 2019, 50, 1393–1403. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Jiang, W.D.; Liu, Y.; Jiang, J.; Wu, P.; Feng, L.; Zhou, X.Q. Copper Exposure Induces Toxicity to the Antioxidant System via the Destruction of Nrf2/ARE Signaling and Caspase-3-Regulated DNA Damage in Fish Muscle: Amelioration by Myo-Inositol. Aquat. Toxicol. 2015, 159, 245–255. [Google Scholar] [CrossRef]
- Qi, X.J.; Yin, M.Y.; Qiao, Z.H.; Li, Z.Z.; Yu, Z.; Chen, M.; Xiao, T.; Wang, X.C. Freezing and Frozen Storage of Aquatic Products: Mechanism and Regulation of Protein Oxidation. Food Sci. Technol. 2022, 42, e91822. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, G.D.; Wang, K.X.; Yang, J.W.; Shen, Y.T.; Yang, X.M.; Chen, X.; Yao, X.L.; Gu, X.S.; Qi, L.; et al. Oxidative Stress: Roles in Skeletal Muscle Atrophy. Biochem. Pharmacol. 2023, 214, 115664. [Google Scholar] [CrossRef]
- Milan, G.; Romanello, V.; Pescatore, F.; Armani, A.; Paik, J.H.; Frasson, L.; Seydel, A.; Zhao, J.; Abraham, R.; Goldberg, A.L.; et al. Regulation of Autophagy and the Ubiquitin-Proteasome System by the FoxO Transcriptional Network during Muscle Atrophy. Nat. Commun. 2015, 6, 6670. [Google Scholar] [CrossRef]
- Lei, X.J.; Zhang, D.G.; Tan, X.Y.; Zhao, T.; Song, Y.F.; Song, C.C.; Lv, W.H.; Luo, Z. Interactive Influences of Dietary Selenium and Oxidized Fish Oil on Growth, Nutritional Composition, Muscle Development, Antioxidant Responses and Selenoprotein Expression in the Muscle of Yellow Catfish Pelteobagrus fulvidraco. Aquaculture 2023, 576, 739865. [Google Scholar] [CrossRef]
- Luo, J.L.; Huang, Y.X.; Chen, Y.H.; Yuan, Y.H.; Li, G.J.; Cai, S.H.; Jian, J.C.; Yang, S.P. Heme Oxygenase-1 Is Involved in the Repair of Oxidative Damage Induced by Oxidized Fish Oil in Litopenaeus vannamei by Sulforaphane. Mar. Drugs 2023, 21, 548. [Google Scholar] [CrossRef]
- Liu, G.H.; Zhang, D.G.; Lei, X.J.; Tan, X.Y.; Song, C.C.; Zheng, H.; Luo, Z. Effects of Dietary Selenium and Oxidized Fish Oils on Intestinal Lipid Metabolism and Antioxidant Responses of Yellow Catfish Pelteobagrus fulvidraco. Antioxidants 2022, 11, 1904. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Che, C.B.; Cai, M.L.; Hu, Y. Taurine Improves Health of Juvenile Rice Field Eel (Monopterus albus) Fed with Oxidized Fish Oil: Involvement of Lipid Metabolism, Antioxidant Capacity, Inflammatory Response. Aquacult Rep. 2022, 27, 101388. [Google Scholar] [CrossRef]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet-Microbe-Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef]
- Rimoldi, S.; Di Rosa, A.R.; Armone, R.; Chiofalo, B.; Hasan, I.; Saroglia, M.; Kalemi, V.; Terova, G. The Replacement of Fish Meal with Poultry By-Product Meal and Insect Exuviae: Effects on Growth Performance, Gut Health and Microbiota of the European Seabass, Dicentrarchus labrax. Microorganisms 2024, 12, 744. [Google Scholar] [CrossRef]
- Huang, L.; Shui, X.M.; Wang, H.Y.; Qiu, H.Y.; Tao, C.Z.; Yin, H.; Wang, P. Effects of Bacillus halophilus on Growth, Intestinal Flora and Metabolism of Larimichthys crocea. Biochem. Biophys. Rep. 2023, 35, 101546. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wong, P.Y.; Wang, Q.; Wong, H.Y.; Huang, T.; Cui, C.; Zhang, N.; Cheung, W.H.; Wong, R.M.Y. Short-chain Fatty Acids Enhance Muscle Mass and Function through the Activation of mTOR Signalling Pathways in Sarcopenic Mice. J. Cachexia Sarcopenia Muscle 2024, 15, 2387–2401. [Google Scholar] [CrossRef] [PubMed]
- Chushak, Y.; Clewell, R.A. An Integrated Approach to Predict Activators of NRF2—The Transcription Factor for Oxidative Stress Response. Artif. Intell. Life Sci. 2024, 5, 100097. [Google Scholar] [CrossRef]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Ziros, P.G.; Habeos, I.G.; Chartoumpekis, D.V.; Ntalampyra, E.; Somm, E.; Yamamoto, M.; Kensler, T.W.; Santisteban, P.; Carrasco, N.; Ris-Stalpers, C.; et al. NFE2-Related Transcription Factor 2 Coordinates Antioxidant Defense with Thyroglobulin Production and Iodination in the Thyroid Gland. Thyroid 2018, 28, 780–798. [Google Scholar] [CrossRef] [PubMed]
- Ashrafizadeh, M.; Ahmadi, Z.; Samarghandian, S.; Mohammadinejad, R.; Yaribeygi, H.; Sathyapalan, T.; Sahebkar, A. MicroRNA-Mediated Regulation of Nrf2 Signaling Pathway: Implications in Disease Therapy and Protection against Oxidative Stress. Life Sci. 2020, 244, 117329. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Mao, L.; Wang, S.G.; Chen, F.L.; Ji, F.; Fei, H.D. MicroRNA-200a Activates Nrf2 Signaling to Protect Osteoblasts from Dexamethasone. Oncotarget 2017, 8, 104867–104876. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Bao, L.S.; Pan, Y.X.; Zhu, X.; Cheng, J.; Zhang, J.S.; Chu, W.Y. The Role of miR-216a-Mediated Nrf2 Pathway in Muscle Oxidative Stress of Siniperca chuatsi Induced by Cadmium. Ecotoxicol. Environ. Saf. 2024, 283, 116863. [Google Scholar] [CrossRef]
- Song, C.Y.; Liu, B.; Xu, P.; Ge, X.P.; Li, H.X.; Tang, Y.K.; Su, S.Y. miR-144 Is the Epigenetic Target for Emodin to Ameliorate Oxidative Stress Induced by Dietary Oxidized Fish Oil via Nrf2 Signaling in Wuchang Bream, Megalobrama amblycephala. Aquaculture 2021, 534, 736357. [Google Scholar] [CrossRef]
- Chu, S.F.; Zhang, Z.; Zhou, X.; He, W.B.; Chen, C.; Luo, P.; Liu, D.D.; Ai, Q.D.; Gong, H.F.; Wang, Z.Z.; et al. Ginsenoside Rg1 Protects against Ischemic/Reperfusion-Induced Neuronal Injury through miR-144/Nrf2/ARE Pathway. Acta Pharmacol. Sin. 2019, 40, 13–25. [Google Scholar] [CrossRef]
- Xu, Q.; Qin, X.; Zhang, Y.; Xu, K.; Li, Y.; Li, Y.; Qi, B.; Li, Y.; Yang, X.; Wang, X. Plant miRNA Bol-miR159 Regulates Gut Microbiota Composition in Mice: In Vivo Evidence of the Crosstalk between Plant miRNAs and Intestinal Microbes. J. Agric. Food Chem. 2023, 71, 16160–16173. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Q.; Yang, F.; Shen, L.; Guo, K.; Zhou, X. Chlorogenic Acid Ameliorates Intestinal Inflammation via miRNA-microbe Axis in Db/Db Mice. FASEB J. 2024, 38, e23665. [Google Scholar] [CrossRef]
- Ge, L.H.; Wang, N.X.X.; Li, X.; Huang, Y.L.; Li, K.J.; Zuo, Y. Phosphoproteomic Insight into the Changes in Structural Proteins of Muscle Architecture Associated with Texture Softening of Grass Carp (Ctenopharyngodon idella) Fillets during Chilling Storage. Food Chem. 2023, 422, 136262. [Google Scholar] [CrossRef]
- Miao, L.H.; Lin, Y.; Pan, W.J.; Huang, X.; Ge, X.P.; Liu, B.; Ren, M.C.; Zhou, Q.L.; Pan, L.K. MiR-34a Regulates the Glucose Metabolism of Blunt Snout Bream (Megalobrama amblycephala) Fed High-Carbohydrate Diets through the Mediation of the Sirt1/FoxO1 Axis. Aquaculture 2019, 500, 206–214. [Google Scholar] [CrossRef]
- Liang, H.L.; Mokrani, A.; Ji, K.; Ge, X.P.; Ren, M.C.; Pan, L.K.; Sun, A.J. Effects of Dietary Arginine on Intestinal Antioxidant Status and Immunity Involved in Nrf2 and NF-κB Signaling Pathway in Juvenile Blunt Snout Bream, Megalobrama amblycephala. Fish Shellfish Immun. 2018, 82, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Liang, H.L.; Ren, M.C.; Ge, X.P.; Mi, H.F.; Pan, L.K.; Yu, H. The Immunoreaction and Antioxidant Capacity of Juvenile Blunt Snout Bream (Megalobrama amblycephala) Involves the PI3K/Akt/Nrf2 and NF-κB Signal Pathways in Response to Dietary Methionine Levels. Fish Shellfish Immun. 2020, 105, 126–134. [Google Scholar] [CrossRef]
- Song, C.Y.; Liu, B.; Ge, X.P.; Li, H.X.; Liu, B.; Xu, P. miR-34a/Notch1b Mediated Autophagy and Apoptosis Contributes to Oxidative Stress Amelioration by Emodin in the Intestine of Teleost Megalobrama amblycephala. Aquaculture 2022, 547, 737441. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.L.; Ren, M.C.; Ji, K.; Yang, Q.; Ge, X.P.; Xi, B.W.; Pan, L.K. Effects of Dietary Fenugreek Seed Extracts on Growth Performance, Plasma Biochemical Parameters, Lipid Metabolism, Nrf2 Antioxidant Capacity and Immune Response of Juvenile Blunt Snout Bream (Megalobrama amblycephala). Fish Shellfish Immun. 2019, 94, 211–219. [Google Scholar] [CrossRef]
- Zhu, K.C.; Wang, H.L.; Wang, H.J.; Gul, Y.; Yang, M.; Zeng, C.; Wang, W.M. Characterization of Muscle Morphology and Satellite Cells, and Expression of Muscle-Related Genes in Skeletal Muscle of Juvenile and Adult Megalobrama amblycephala. Micron 2014, 64, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Liu, B.; Shan, F.; Liu, B.; Gu, Z.M.; Song, C.Y.; Sun, C.X.; Zhou, Q.L. Effects of Oxidized Fish Oil on Digestive Enzyme Activity and Antioxidant System in Macrobrachium rosenbergii Post-Larvae. Aquacult Rep. 2022, 23, 101062. [Google Scholar] [CrossRef]
- Chen, S.J.; Zhuang, Z.X.; Yin, P.; Chen, X.; Zhang, Y.M.; Tian, L.X.; Niu, J.; Liu, Y.J. Changes in Growth Performance, Haematological Parameters, Hepatopancreas Histopathology and Antioxidant Status of Pacific White Shrimp (Litopenaeus vannamei) Fed Oxidized Fish Oil: Regulation by Dietary Myo-Inositol. Fish Shellfish Immun. 2019, 88, 53–64. [Google Scholar] [CrossRef]
- Long, S.S.; Dong, X.H.; Yan, X.B.; Liu, H.; Tan, B.P.; Zhang, S.; Chi, S.Y.; Yang, Q.H.; Liu, H.Y.; Yang, Y.Z.; et al. The Effect of Oxidized Fish Oil on Antioxidant Ability, Histology and Transcriptome in Intestine of the Juvenile Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus). Aquacult Rep. 2022, 22, 100921. [Google Scholar] [CrossRef]
- Li, X.; Yin, Y.; Zhang, X.W.; Wang, M.; Wang, Y.F.; Zhao, Y.R. Effects of Ferulic Acid on Growth Performance, Slaughter Performance, Meat Quality, Muscle Texture Characteristics and Serum Biochemical Indices of White Feather Broilers. Chin. J. Anim. Nutr. 2024, 36, 921–934. [Google Scholar] [CrossRef]
- Periago, M.J.; Ayala, M.D.; López-Albors, O.; Abdel, I.; Martínez, C.; García-Alcázar, A.; Ros, G.; Gil, F. Muscle Cellularity and Flesh Quality of Wild and Farmed Sea Bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Xu, X.D.; Zheng, X.C.; Zhou, Q.L.; Sun, C.X.; Wang, A.M.; Zhu, A.M.; Zhang, Y.Y.; Liu, B. The Bile Acid Metabolism of Intestinal Microorganisms Mediates the Effect of Different Protein Sources on Muscle Protein Deposition in Procambarus clarkii. Microorganisms 2024, 13, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, S.K.C. Color and Texture of Surimi-like Gels Made of Protein Isolate Extracted from Catfish Byproducts Are Improved by Washing and Adding Soy Whey. J. Food Sci. 2022, 87, 3057–3070. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, F.; Zhang, W.; Parisi, G.; Du, Z.; Zhang, M. The Flesh Texture of Teleost Fish: Characteristics and Interventional Strategies. Rev. Aquac. 2024, 16, 508–535. [Google Scholar] [CrossRef]
- Salomão, R.A.S.; De Paula, T.G.; Zanella, B.T.T.; Carvalho, P.L.P.F.; Da Silva Duran, B.O.; Valente, J.S.; De Almeida Fantinatti, B.E.; Fernandes, A.A.; Barros, M.M.; Mareco, E.A.; et al. The Combination of Resveratrol and Exercise Enhances Muscle Growth Characteristics in Pacu (Piaractus mesopotamicus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 235, 46–55. [Google Scholar] [CrossRef]
- Li, X.Y.; He, W.L.; Wu, G.Y. Dietary Glycine Supplementation Enhances the Growth Performance of Hybrid Striped Bass (Morone saxatilis ♀ × Morone chrysops ♂) Fed Soybean Meal-Based Diets. J. Anim. Sci. 2023, 101, skad345. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhao, Y.; Zhou, X.Q.; Wu, X.Y.; Xu, S.X.; Feng, L.; Liu, Y.; Jiang, W.D.; Wu, P.; Zhao, J.; et al. Effects of Dietary Tryptophan on Muscle Growth, Protein Synthesis and Antioxidant Capacity in Hybrid Catfish Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂. Br. J. Nutr. 2022, 127, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.E.; Zhou, J.; Wang, B.H.; Wang, X.; Xiao, W.L.; Yang, M.Q.; Liu, Y.; Wang, Q.Q.; Xiang, Y.; Lan, X.Q. Integrated Amino Acids and Transcriptome Analysis Reveals Arginine Transporter SLC7A2 Is a Novel Regulator of Myogenic Differentiation. Int. J. Mol. Sci. 2023, 25, 95. [Google Scholar] [CrossRef]
- Rønning, S.B.; Carlson, C.R.; Aronsen, J.M.; Pisconti, A.; Høst, V.; Lunde, M.; Liland, K.H.; Sjaastad, I.; Kolset, S.O.; Christensen, G.; et al. Syndecan-4−/− Mice Have Smaller Muscle Fibers, Increased Akt/mTOR/S6K1 and Notch/HES-1 Pathways, and Alterations in Extracellular Matrix Components. Front. Cell Dev. Biol. 2020, 8, 730. [Google Scholar] [CrossRef]
- Nederveen, J.P.; Fortino, S.A.; Baker, J.M.; Snijders, T.; Joanisse, S.; McGlory, C.; McKay, B.R.; Kumbhare, D.; Parise, G. Consistent Expression Pattern of Myogenic Regulatory Factors in Whole Muscle and Isolated Human Muscle Satellite Cells after Eccentric Contractions in Humans. J. Appl. Physiol. 2019, 127, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Chemello, G.; Biasato, I.; Gai, F.; Capucchio, M.T.; Colombino, E.; Schiavone, A.; Gasco, L.; Pauciullo, A. Effects of Tenebrio molitor Larvae Meal Inclusion in Rainbow Trout Feed: Myogenesis-Related Gene Expression and Histomorphological Features. Ital. J. Anim. Sci. 2021, 20, 1211–1221. [Google Scholar] [CrossRef]
- Lin, Y.Q.; Zhang, M.; Wu, Y.N.; Li, R.W.; Zheng, Y.C. Temporal expression of MyHC gene during C2C12 myoblast differentiation. J. Southwest Minzu Univ. 2014, 40, 350–353. [Google Scholar]
- Zhu, L.N.; Ren, Y.; Chen, J.Q.; Wang, Y.Z. Effects of Myogenin on Muscle Fiber Types and Key Metabolic Enzymes in Gene Transfer Mice and C2C12 Myoblasts. Gene 2013, 532, 246–252. [Google Scholar] [CrossRef]
- Motohashi, N.; Alexander, M.S.; Shimizu-Motohashi, Y.; Myers, J.A.; Kawahara, G.; Kunkel, L.M. Regulation of IRS1/Akt Insulin Signaling by microRNA-128a during Myogenesis. J. Cell Sci. 2013, 126, 2678–2691. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.X.; Liu, Q.Y.; Tang, M.Y.; Qi, G.D.; Qiu, C.; Huang, Y.; Yu, W.R.; Wang, W.; Sun, H.L.; Ni, X.J.; et al. Chronic Kidney Disease-Induced Muscle Atrophy: Molecular Mechanisms and Promising Therapies. Biochem. Pharmacol. 2023, 208, 115407. [Google Scholar] [CrossRef] [PubMed]
- Battaglioni, S.; Benjamin, D.; Wälchli, M.; Maier, T.; Hall, M.N. mTOR Substrate Phosphorylation in Growth Control. Cell 2022, 185, 1814–1836. [Google Scholar] [CrossRef] [PubMed]
- Kocaturk, N.M.; Gozuacik, D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front. Cell Dev. Biol. 2018, 6, 128. [Google Scholar] [CrossRef]
- He, X.N.; Zhang, J.J.; Jiang, W.D.; Wu, P.; Liu, Y.; Ren, H.M.; Jin, X.W.; Shi, H.Q.; Zhou, X.Q.; Feng, L. New Insights of 4-Methylesculetin in Alleviating the Effect of Aflatoxin B1 on Flesh Quality of Grass Carp (Ctenopharyngodon idella). Aquaculture 2025, 594, 741442. [Google Scholar] [CrossRef]
- Pohl, C.; Dikic, I. Cellular Quality Control by the Ubiquitin-Proteasome System and Autophagy. Science 2019, 366, 818–822. [Google Scholar] [CrossRef]
- Sakai, H.; Asami, M.; Naito, H.; Kitora, S.; Suzuki, Y.; Miyauchi, Y.; Tachinooka, R.; Yoshida, S.; Kon, R.; Ikarashi, N.; et al. Exogenous Insulin-like Growth Factor 1 Attenuates Cisplatin-induced Muscle Atrophy in Mice. J. Cachexia Sarcopenia Muscle 2021, 12, 1570–1581. [Google Scholar] [CrossRef]
- Maragno, A.L.G.C.; Baqui, M.M.A.; Gomes, M.D. FBXO25, an F-Box Protein Homologue of Atrogin-1, Is Not Induced in Atrophying Muscle. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Tacchi, L.; Bickerdike, R.; Secombes, C.J.; Pooley, N.J.; Urquhart, K.L.; Collet, B.; Martin, S.A.M. Ubiquitin E3 Ligase Atrogin-1 (Fbox-32) in Atlantic Salmon (Salmo salar): Sequence Analysis, Genomic Structure and Modulation of Expression. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 157, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.G.; Li, E.C.; Qin, J.G.; Du, Z.Y.; Yu, N.; Kong, Y.Q.; Feng, D.X.; Chen, L.Q. Effect of Oxidized Fish Oil and α-Tocopherol on Growth, Antioxidation Status, Serum Immune Enzyme Activity and Resistance to Aeromonas hydrophila Challenge of Chinese Mitten Crab Eriocheir sinensis. Aquacult Nutr. 2015, 21, 414–424. [Google Scholar] [CrossRef]
- Shen, Y.T.; Zhu, C.B.; Ding, Z.L.; Gu, J.J.; Qiao, S.C.; Yang, Y.; Fei, H. Positive Effect of Dietary Emodin on Growth, Antioxidant Capacity, Inflammatory Response, Intestinal Microbiota and Resistance of Micropterus salmoides against MSRV Infection. Anim. Feed. Sci. Tech. 2024, 310, 115922. [Google Scholar] [CrossRef]
- Kumar, H.; Dhalaria, R.; Guleria, S.; Cimler, R.; Sharma, R.; Siddiqui, S.A.; Valko, M.; Nepovimova, E.; Dhanjal, D.S.; Singh, R.; et al. Anti-Oxidant Potential of Plants and Probiotic Spp. in Alleviating Oxidative Stress Induced by H2O2. Biomed. Pharmacother. 2023, 165, 115022. [Google Scholar] [CrossRef]
- Zheng, G.L.; Sun, S.Q.; Zhang, G.S.; Liang, X. miR-144 Affects the Immune Response and Activation of Inflammatory Responses in Cynoglossus semilaevis by Regulating the Expression of CsMAPK6. Fish Shellfish Immun. 2024, 149, 109578. [Google Scholar] [CrossRef]
- Villeneuve, N.F.; Lau, A.; Zhang, D.D. Regulation of the Nrf2-Keap1 Antioxidant Response by the Ubiquitin Proteasome System: An Insight into Cullin-Ring Ubiquitin Ligases. Antioxid. Redox Signal. 2010, 13, 1699–1712. [Google Scholar] [CrossRef]
- Seixas, A.L.R.; Ferreira-Cravo, M.; Kalb, A.C.; Romano, L.A.; Kaufmann, C.G.J.R.; Monserrat, J.M. Protein Oxidation in the Fish Danio rerio (Cyprinidae) Fed with Single- and Multi-Walled Carbon Nanotubes. Energ. Ecol. Environ. 2018, 3, 95–101. [Google Scholar] [CrossRef]
- Capeillère-Blandin, C.; Gausson, V.; Descamps-Latscha, B.; Witko-Sarsat, V. Biochemical and Spectrophotometric Significance of Advanced Oxidized Protein Products. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2004, 1689, 91–102. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Gausson, V.; Nguyen, A.-T.; Touam, M.; Drüeke, T.; Santangelo, F.; Descamps-Latscha, B. AOPP-Induced Activation of Human Neutrophil and Monocyte Oxidative Metabolism: A Potential Target for N-Acetylcysteine Treatment in Dialysis Patients. Kidney Int. 2003, 64, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhong, Z.M.; Qin, S.; Chen, G.X.; Wu, Q.; Zeng, J.H.; Ye, W.B.; Li, W.; Yuan, K.; Yao, L.; et al. Advanced Oxidation Protein Products Induce Inflammatory Response in Fibroblast-Like Synoviocytes through NADPH Oxidase -Dependent Activation of NF-κB. Cell Physiol. Biochem. 2013, 32, 972–985. [Google Scholar] [CrossRef]
- Padmini, E.; Vijaya Geetha, B.; Usha Rani, M. Pollution Induced Nitrative Stress and Heat Shock Protein 70 Overexpression in Fish Liver Mitochondria. Sci. Total Environ. 2009, 407, 1307–1317. [Google Scholar] [CrossRef]
- Thomas, P.A.; Peele, E.E.; Wheeler, C.R.; Yopak, K.; Rummer, J.L.; Mandelman, J.W.; Kinsey, S.T. Effects of projected end-of-century temperature on the muscle development of neonate epaulette sharks, Hemiscyllium ocellatum. Mar. Biol. 2023, 170, 71. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.W.; Zhu, J.Y.; Liu, L.L.; Liu, Y.C.; Zhu, H. Dietary Sanguinarine Affected Immune Response, Digestive Enzyme Activity and Intestinal Microbiota of Koi Carp (Cryprinus carpiod). Aquaculture 2019, 502, 72–79. [Google Scholar] [CrossRef]
- Yu, L.J.; Wen, H.; Jiang, M.; Wu, F.; Tian, J.; Lu, X.; Xiao, J.R.; Liu, W. Effects of Ferulic Acid on Intestinal Enzyme Activities, Morphology, Microbiome Composition of Genetically Improved Farmed Tilapia (Oreochromis niloticus) Fed Oxidized Fish Oil. Aquaculture 2020, 528, 735543. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.X.; Zhou, Q.L.; Zheng, X.C.; Jiang, S.F.; Wang, A.M.; Han, Y.Q.; Xu, G.C.; Liu, B. Ferulic Acid Relieves the Oxidative Stress Induced by Oxidized Fish Oil in Oriental River Prawn (Macrobrachium nipponense) with an Emphasis on Lipid Metabolism and Gut Microbiota. Antioxidants 2024, 13, 1463. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, L.; Limbu, S.M.; Yin, H.; Xie, Y.Q.; Yang, Z.H.; Shang, Z.M.; Kong, L.F.; Rong, H. A Comparison of Digestive Strategies for Fishes with Different Feeding Habits: Digestive Enzyme Activities, Intestinal Morphology, and Gut Microbiota. Ecol. Evol. 2023, 13, e10499. [Google Scholar] [CrossRef]
- Toda, K.; Yamauchi, Y.; Tanaka, A.; Kuhara, T.; Odamaki, T.; Yoshimoto, S.; Xiao, J. Heat-Killed Bifidobacterium Breve B-3 Enhances Muscle Functions: Possible Involvement of Increases in Muscle Mass and Mitochondrial Biogenesis. Nutrients 2020, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Storelli, G.; Defaye, A.; Erkosar, B.; Hols, P.; Royet, J.; Leulier, F. Lactobacillus plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals through TOR-Dependent Nutrient Sensing. Cell Metab. 2011, 14, 403–414. [Google Scholar] [CrossRef]
- Zhou, H.T.; Jiang, Y.; Xu, Y.J.; Cui, A.J.; Feng, Y.; Jin, Z.X.; Wang, B. Histological, Microecological and Transcriptomic Physiological Responses Underlying Hypoxia and Reoxygenation Adaptation in Yellowtail Kingfish (Seriola lalandi). Front. Mar. Sci. 2023, 10, 1121866. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, Z.G.; Lin, V.; May, A.; Shaw, D.H.; Wang, Z.; Che, B.; Tran, K.; Du, H.; Shaw, P.X. MicroRNA miR-24-3p Reduces Apoptosis and Regulates Keap1-Nrf2 Pathway in Mouse Cardiomyocytes Responding to Ischemia/Reperfusion Injury. Oxidative Med. Cell. Longev. 2018, 2018, 7042105. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.X.; Ma, D.Y.; Zhi, X.Y.; Wang, M.W.; Zhao, J.Y.; Qin, Y. MiR-125b Attenuates Retinal Pigment Epithelium Oxidative Damage via Targeting Nrf2/HIF-1α Signal Pathway. Exp. Cell Res. 2022, 410, 112955. [Google Scholar] [CrossRef]
- Li, Y.R.; Zhao, Y.L.; Cheng, M.K.; Qiao, Y.J.; Wang, Y.T.; Xiong, W.C.; Yue, W. Suppression of microRNA-144-3p Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury by Promoting Brg1/Nrf2/ARE Signaling. J. Biochem. Mol. Toxicol. 2018, 32, e22044. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Zhu, Y.; Liu, K.; Zhang, Q.; Hu, S.; Wang, M.; Zhang, Y. Genetic Loss of Nrf1 and Nrf2 Leads to Distinct Metabolism Reprogramming of HepG2 Cells by Opposing Regulation of the PI3K-AKT-mTOR Signalling Pathway. Bioorganic Chem. 2024, 145, 107212. [Google Scholar] [CrossRef] [PubMed]
Ingredient (%) | CON | OFO |
---|---|---|
Fish meal | 4 | 4 |
Cottonseed meal | 17 | 17 |
Soybean meal | 30 | 30 |
Rapeseed meal | 15 | 15 |
Rice bran | 2 | 2 |
Fish oil | 6 | 0 |
Oxidized fish oil | 0 | 6 |
α-starch | 16 | 16 |
Calcium biphosphate | 2 | 2 |
Vitamin premix 1 | 0.1 | 0.1 |
Mineral premixes 2 | 0.3 | 0.3 |
Carboxymethyl cellulose | 3.1 | 3.1 |
Zeolite powder | 4 | 4 |
Choline chloride | 0.5 | 0.5 |
Total | 100 | 100 |
Proximate analysis (%) | ||
Crude protein | 31.74 | 31.79 |
Crude lipid | 7.36 | 7.22 |
Gross energy (MJ/kg) | 12.44 | 12.55 |
Primer | Sequence (5′-3′) | Product Length (bp) | Sequence Source | GenBank Accession Number |
---|---|---|---|---|
miR-144-F | CGCGCGCGACAGTATAGATG | 61 | Database | MIMAT0001841 |
miR-144-R | AGTGCAGGGTCCGAGGTATT | MIMAT0001841 | ||
5S rRNA-F | CTATGCCCGATCTCGTCTGA | 62 | [42] | XR_007187745 |
5S rRNA -R | AGCTTACAGCACCTGGTATTCC | XR_007187745 | ||
Nrf2-F | GGGGAAGTCCTTGAACGGAG | 115 | [43] | XM_048192838 |
Nrf2-R | AACCAGCGGGAATATCTCGG | XM_048192838 | ||
Keap1-F | ACCAATGGGCTGAAGGAGTG | 196 | Database | XM_048200094 |
Keap1-R | GCACGAGGAAATCGCAACAG | XM_048200094 | ||
NF-κB-F | AGTCCGATCCATCCGCACTA | 85 | [44] | XM_048176853 |
NF-κB-R | ACTGGAGCCGGTCATTTCAG | XM_048176853 | ||
TNF-α-F | CGACGCTATACGGACCTTCG | 232 | Database | XM_048182361 |
TNF-α-R | AAGACAGGAGCCAAGGAGAAC | XM_048182361 | ||
HO-1-F | TGATGCCACTCAGTCCCAAG | 201 | Database | XM_048160979 |
HO-1-R | AGCACTTCTTTGGACCCCAC | XM_048160979 | ||
IL-6-F | ACGCATAGCCTACAGCGATT | 140 | Database | XM_048152057 |
IL-6-R | GAGCTCCAGGTCGCAATCTT | XM_048152057 | ||
NQO1-F | CACCACCAGTTGCGAGGAAT | 95 | Database | XM_048186312 |
NQO1-R | ATTCGGTCGGAGCAAAGGAC | XM_048186312 | ||
HSP70-F | CCCGACATGCCCTCCTTAAT | 219 | [44] | XM_048186826 |
HSP70-R | CACCACCCCATCTTTGGTCT | XM_048186826 | ||
Beclin-1-F | TCGACACATCCTTCAACGTC | 163 | [45] | XM_048187618 |
Beclin-1-R | ATGTATTTCCGAGCCACACC | XM_048187618 | ||
ATG8-F | CTCGGCTCTCAGGTGGATTC | 294 | Database | XM_048186054 |
ATG8-R | GCTGTGTGTGAGAGAAGCCT | XM_048186054 | ||
P62-F | CACTTGAGGTGCTGCTCTGA | 264 | Database | XM_048176526 |
P62-R | TTAACTTCGGACAGACGGGC | XM_048176526 | ||
AKT3-F | CGGCGAGTACAGTGTGATTG | 110 | Database | XM_048204587 |
AKT3-R | AGGAAGTAGCGAGGTCTCCAA | XM_048204587 | ||
TOR-F | TTTACACGAGCAAGTCTACGGA | 180 | [46] | XM_048210663 |
TOR-R | CTTCATCTTGGCTCAGCTCTCT | XM_048210663 | ||
S6K1-F | GGTGCATGTCACCTTATGGG | 171 | [46] | XM_048160409 |
S6K1-R | AGCTGGCAGCACTTCTAGTC | XM_048160409 | ||
Fbxo25-F | GGTGCATGTCACCTTATGGG | 100 | Database | XM_048178326 |
Fbxo25-R | AGCTGGCAGCACTTCTAGTC | XM_048178326 | ||
MuRF1-F | AGGCAGAAGAAGCAACCACT | 105 | Database | XM_048200485 |
MuRF1-R | GACCCGTTCGGATGTCCATT | XM_048200485 | ||
FoxO3a-F | TCAGGCTACTCAGGACGGAA | 132 | Database | XM_048190475 |
FoxO3a-R | CTGGCGTTGGAATTAGTGCG | XM_048190475 | ||
MyoG-F | TGGACAGCATTACAGGAACA | 116 | [47] | XM_048173437 |
MyoG-R | TGTTATGGTCGGTGAAAGG | XM_048173437 | ||
MyHC1-F | AACATGCAGACAGTGTGGCT | 131 | Database | XM_048175185 |
MyHC1-R | AAGCTGCTCCATGTTGGTGA | XM_048175185 | ||
β-actin-F | TCGTCCACCGCAAATGCTTCTA | 152 | Database | XM_048192430 |
β-actin-R | CCGTCACCTTCACCGTTCCAGT | XM_048192430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zheng, X.; Zhou, Q.; Song, C.; Tian, H.; Wang, A.; Li, X.; Liu, B.; Sun, C. The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation. Antioxidants 2025, 14, 1223. https://doi.org/10.3390/antiox14101223
Yang J, Zheng X, Zhou Q, Song C, Tian H, Wang A, Li X, Liu B, Sun C. The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation. Antioxidants. 2025; 14(10):1223. https://doi.org/10.3390/antiox14101223
Chicago/Turabian StyleYang, Jie, Xiaochuan Zheng, Qunlan Zhou, Changyou Song, Hongyan Tian, Aimin Wang, Xiangfei Li, Bo Liu, and Cunxin Sun. 2025. "The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation" Antioxidants 14, no. 10: 1223. https://doi.org/10.3390/antiox14101223
APA StyleYang, J., Zheng, X., Zhou, Q., Song, C., Tian, H., Wang, A., Li, X., Liu, B., & Sun, C. (2025). The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation. Antioxidants, 14(10), 1223. https://doi.org/10.3390/antiox14101223