Host-Derived Reactive Oxygen Species in the Gut Epithelium: Defence Mechanism and Target of Bacterial Subversion
Abstract
1. Introduction
2. Reactive Oxygen Species (ROS)
3. ROS in the Context of Host–Pathogen Interactions
3.1. The Emerging Role of ROS in Intestinal Epithelial Cell Defence Against Bacterial Invasion
- Host-driven ROS elevation in an antimicrobial context;
- Bacterial suppression of host-driven ROS production to evade host defence;
- Bacterial stimulation of host-driven ROS to facilitate host damage and enhance invasiveness.
3.2. Modulation of Intracellular ROS Concentrations
3.2.1. Bacterial Detection and Host ROS Response
3.2.2. Bacterial Downregulation of the Host Cell ROS Response
3.2.3. Bacterial Strategies for Stimulating Host ROS Generation
3.3. Downstream ROS Effects in the Context of Intracellular Bacterial Clearance
3.3.1. ROS as Key Modulators of Cellular Signalling Pathways
3.3.2. Direct Mechanisms of Bacterial Clearance Mediated by ROS
3.3.3. Bacterial Detoxification of ROS
4. Recent Progress and Conceptual Shifts
- How can we quantitatively assess bacterial and host cell functional change upon ROS interaction?
- How does the timing and concentration of ROS affect host–pathogen signalling dynamics?
- How does ROS reshape host and bacterial cell metabolism, and how is this reflected phenotypically?
- What histopathological patterns are linked to ROS-modulated bacterial invasion and cytotoxicity?
- Can we therapeutically intervene in ROS-driven signalling during infection, and how do ROS affect outcomes?
- Can therapeutic intervention attenuate the signalling pathway modulations?
5. Future Works: Systems-Level Approaches to Host–Pathogen and ROS Interactions
5.1. Multi-Omics Integration for Functional Insights
5.1.1. Transcriptomics for Host–Pathogen Profiling
5.1.2. Proteomics and Post-Translational Modulation by ROS
5.2. Imaging-Guided Spatial and Temporal Resolution
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Aviello, G.; Knaus, U.G. NADPH Oxidases and ROS Signaling in the Gastrointestinal Tract Review-Article. Mucosal Immunol. 2018, 11, 1011–1023. [Google Scholar] [CrossRef]
- Vaishampayan, A.; Grohmann, E. Antimicrobials Functioning through Ros-mediated Mechanisms: Current Insights. Microorganisms 2022, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Herb, M.; Gluschko, A.; Schramm, M. Reactive Oxygen Species: Not Omnipresent but Important in Many Locations. Front. Cell Dev. Biol. 2021, 9, 716406. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.P.; Mileto, S.J.; Lyras, D. Impact of Enteric Bacterial Infections at and beyond the Epithelial Barrier. Nat. Rev. Microbiol. 2023, 21, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, X.; Huang, Y.; Liao, B.; Cheng, L.; Ren, B. Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Front. Microbiol. 2021, 11, 622534. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef]
- Andrés Juan, C.; Manuel Pérez de la Lastra, J.; Plou, F.J.; Pérez-Lebeña, E.; Reinbothe, S. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell. Longev. 2020, 2019, 6175804. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Villalpando-Rodriguez, G.E.; Gibson, S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxid. Med. Cell. Longev. 2021, 2021, 9912436. [Google Scholar] [CrossRef]
- Herring, S.E.; Mao, S.; Bhalla, M.; Tchalla, E.Y.I.; Kramer, J.M.; Bou Ghanem, E.N. Mitochondrial ROS Production by Neutrophils Is Required for Host Antimicrobial Function against Streptococcus Pneumoniae and Is Controlled by A2B Adenosine Receptor Signaling. PLoS Pathog. 2022, 18, e1010700. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of Ros in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef]
- Ogboo, B.C.; Grabovyy, U.V.; Maini, A.; Scouten, S.; van der Vliet, A.; Mattevi, A.; Heppner, D.E. Architecture of the NADPH Oxidase Family of Enzymes. Redox Biol. 2022, 52, 102298. [Google Scholar] [CrossRef]
- Cipriano, A.; Viviano, M.; Feoli, A.; Milite, C.; Sarno, G.; Castellano, S.; Sbardella, G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J. Med. Chem. 2023, 66, 11632–11655. [Google Scholar] [CrossRef] [PubMed]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. Nadph Oxidases (Nox): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Pecchillo Cimmino, T.; Ammendola, R.; Cattaneo, F.; Esposito, G. NOX Dependent ROS Generation and Cell Metabolism. Int. J. Mol. Sci. 2023, 24, 2086. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Diebold, B.A.; Hughes, Y.; Lambeth, J.D. Nox1-Dependent Reactive Oxygen Generation Is Regulated by Rac1. J. Biol. Chem. 2006, 281, 17718–17726. [Google Scholar] [CrossRef]
- Bos, J.L.; Rehmann, H.; Wittinghofer, A. GEFs and GAPs: Critical Elements in the Control of Small G Proteins. Cell 2007, 129, 865–877. [Google Scholar] [CrossRef]
- Dickinson, B.C.; Chang, C.J. Chemistry and Biology of Reactive Oxygen Species in Signaling or Stress Responses. Nat. Chem. Biol. 2011, 7, 504–511. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cell Signal 2012, 24, 981–990. [Google Scholar] [CrossRef]
- Shu, P.; Liang, H.; Zhang, J.; Lin, Y.; Chen, W.; Zhang, D. Reactive Oxygen Species Formation and Its Effect on CD4+ T Cell-Mediated Inflammation. Front. Immunol. 2023, 14, 1199233. [Google Scholar] [CrossRef]
- Jones, R.M.; Neish, A.S. Redox Signaling Mediates Symbiosis between the Gut Microbiota and the Intestine. Gut Microbes 2014, 5, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Kunst, C.; Schmid, S.; Michalski, M.; Tümen, D.; Buttenschön, J.; Müller, M.; Gülow, K. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023, 11, 1388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, A.J.P.O.; De Oliveira, J.C.P.L.; Da Silva Pontes, L.V.; De Souza Júnior, J.F.; Gonçalves, T.A.F.; Dantas, S.H.; De Almeida Feitosa, M.S.; Silva, A.O.; De Medeiros, I.A. ROS: Basic Concepts, Sources, Cellular Signaling, and Its Implications in Aging Pathways. Oxid. Med. Cell. Longev. 2022, 2022, 1225578. [Google Scholar] [CrossRef]
- Sinenko, S.A.; Starkova, T.Y.; Kuzmin, A.A.; Tomilin, A.N. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front. Cell Dev. Biol. 2021, 9, 714370. [Google Scholar] [CrossRef]
- Slauch, J.M. How Does the Oxidative Burst of Macrophages Kill Bacteria? Still an Open Question. Mol. Microbiol. 2011, 80, 580–583. [Google Scholar] [CrossRef]
- Randow, F.; MacMicking, J.D.; James, L.C. Cellular Self-Defense: How Cell-Autonomous Immunity Protects against Pathogens. Science 2013, 340, 701–706. [Google Scholar] [CrossRef]
- Dowdell, A.S.; Cartwright, I.M.; Kitzenberg, D.A.; Kostelecky, R.E.; Mahjoob, O.; Saeedi, B.J.; Welch, N.; Glover, L.E.; Colgan, S.P. Essential Role for Epithelial HIF-Mediated Xenophagy in Control of Salmonella Infection and Dissemination. Cell Rep. 2022, 40, 111409. [Google Scholar] [CrossRef]
- Lobato-Márquez, D.; Xu, J.; Güler, G.Ö.; Ojiakor, A.; Pilhofer, M.; Mostowy, S. Mechanistic Insight into Bacterial Entrapment by Septin Cage Reconstitution. Nat. Commun. 2021, 12, 4511. [Google Scholar] [CrossRef]
- Ramanan, D.; Cadwell, K. Intrinsic Defense Mechanisms of the Intestinal Epithelium. Cell Host Microbe 2016, 19, 434–441. [Google Scholar] [CrossRef]
- Tam, J.C.H.; Jacques, D.A. Intracellular Immunity: Finding the Enemy within—How Cells Recognize and Respond to Intracellular Pathogens. J. Leukoc. Biol. 2014, 96, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Ratner, A.J.; Aguilar, J.L.; Shchepetov, M.; Lysenko, E.S.; Weiser, J.N. Nod1 Mediates Cytoplasmic Sensing of Combinations of Extracellular Bacteria. Cell Microbiol. 2007, 9, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Keestra-Gounder, A.M.; Tsolis, R.M. NOD1 and NOD2: Beyond Peptidoglycan Sensing. Trends Immunol. 2017, 38, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.P.; Tse, H.M. The Role of NADPH Oxidases in Infectious and Inflammatory Diseases. Redox Biol. 2021, 48, 102159. [Google Scholar] [CrossRef]
- Elatrech, I.; Marzaioli, V.; Boukemara, H.; Bournier, O.; Neut, C.; Darfeuille-Michaud, A.; Luis, J.; Dubuquoy, L.; El-Benna, J.; My-Chan Dang, P.; et al. Escherichia Coli LF82 Differentially Regulates Ros Production and Mucin Expression in Intestinal Epithelial T84 Cells: Implication of NOX1. Inflamm. Bowel Dis. 2015, 21, 1018–1026. [Google Scholar] [CrossRef]
- van der Post, S.; Birchenough, G.M.H.; Held, J.M. NOX1-Dependent Redox Signaling Potentiates Colonic Stem Cell Proliferation to Adapt to the Intestinal Microbiota by Linking EGFR and TLR Activation. Cell Rep. 2021, 35, 108949. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar]
- Lee, J.H.; Joo, J.H.; Kim, J.; Lim, H.J.; Kim, S.; Curtiss, L.; Seong, J.K.; Cui, W.; Yabe-Nishimura, C.; Bae, Y.S. Interaction of NADPH Oxidase 1 with Toll-like Receptor 2 Induces Migration of Smooth Muscle Cells. Cardiovasc. Res. 2013, 99, 483–493. [Google Scholar] [CrossRef]
- Mai Le, N.; Li, J. Ras-Related C3 Botulinum Toxin Substrate 1 Role in Pathophysiology of Neurological Diseases. Brain Hemorrhages 2022, 3, 200–209. [Google Scholar] [CrossRef]
- Corcionivoschi, N.; Alvarez, L.A.J.; Sharp, T.H.; Strengert, M.; Alemka, A.; Mantell, J.; Verkade, P.; Knaus, U.G.; Bourke, B. Mucosal Reactive Oxygen Species Decrease Virulence by Disrupting Campylobacter Jejuni Phosphotyrosine Signaling. Cell Host Microbe 2012, 12, 47–59. [Google Scholar] [CrossRef]
- Peterson, L.W.; Artis, D. Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153. [Google Scholar] [CrossRef]
- Elphick, D.A.; Mahida, Y.R. Paneth Cells: Their Role in Innate Immunity and Inflammatory Disease. Gut 2005, 54, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Knoop, K.A.; Newberry, R.D. Goblet Cells: Multifaceted Players in Immunity at Mucosal Surfaces. Mucosal Immunol. 2018, 11, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Bosco, E.E.; Mulloy, J.C.; Zheng, Y. Rac1 GTPase: A “Rac” of All Trades. Cell. Mol. Life Sci. 2009, 66, 370–374. [Google Scholar] [CrossRef]
- Hong, G.; Davies, C.; Omole, Z.; Liaw, J.; Grabowska, A.D.; Canonico, B.; Corcionivoschi, N.; Wren, B.W.; Dorrell, N.; Elmi, A.; et al. Campylobacter Jejuni Modulates Reactive Oxygen Species Production and NADPH Oxidase 1 Expression in Human Intestinal Epithelial Cells. Cell Microbiol. 2023, 2023, 3286330. [Google Scholar] [CrossRef]
- de Souza Santos, M.; Salomon, D.; Orth, K. T3SS Effector VopL Inhibits the Host ROS Response, Promoting the Intracellular Survival of Vibrio Parahaemolyticus. PLoS Pathog. 2017, 13, e1006438. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, L.; Wu, H.; Chen, F.; Liu, X.; Xu, H.; Cui, Y.; Zhu, Q.; Wang, M.; Hao, H.; et al. CagA+ Helicobacter Pylori, Not CagA– Helicobacter Pylori, Infection Impairs Endothelial Function Through Exosomes-Mediated ROS Formation. Front. Cardiovasc. Med. 2022, 9, 881372. [Google Scholar] [CrossRef]
- Luo, J.; Bai, L.; Tao, J.; Wen, Y.; Li, M.; Zhu, Y.; Luo, S.; Pu, G.; Ma, L. Autophagy Induced by H. Pylori VacA Regulated the Survival Mechanism of the SGC7901 Human Gastric Cancer Cell Line. Genes Genom. 2021, 43, 1223–1230. [Google Scholar] [CrossRef]
- Sah, D.K.; Arjunan, A.; Lee, B.; Jung, Y. Do Reactive Oxygen Species and H. Pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants 2023, 12, 1712. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, M. Helicobacter Pylori Secretary Proteins-Induced Oxidative Stress and Its Role in NLRP3 Inflammasome Activation. Cell Immunol. 2024, 399–400, 104811. [Google Scholar] [CrossRef]
- Alzahrani, S.; Lina, T.T.; Gonzalez, J.; Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Effect of Helicobacter Pylori on Gastric Epithelial Cells. World J. Gastroenterol. 2014, 20, 12767–12780. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, M.; Fiore, A.; Travaglione, S.; Marcon, F.; Rainaldi, G.; Germinario, E.A.P.; Laterza, I.; Donati, S.; Macchia, D.; Spada, M.; et al. E. coli Cytotoxic Necrotizing Factor-1 Promotes Colorectal Carcinogenesis by Causing Oxidative Stress, DNA Damage and Intestinal Permeability Alteration. J. Exp. Clin. Cancer Res. 2025, 44, 29. [Google Scholar] [CrossRef]
- Farrow, M.A.; Chumbler, N.M.; Lapierre, L.A.; Franklin, J.L.; Rutherford, S.A.; Goldenring, J.R.; Lacy, D.B. Clostridium Difficile Toxin B-Induced Necrosis Is Mediated by the Host Epithelial Cell NADPH Oxidase Complex. Proc. Natl. Acad. Sci. USA 2013, 110, 18674–18679. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.J.; Cho, E.J.; Kim, M.K.; Kim, Y.R.; Kim, S.H.; Yang, H.Y.; Chung, K.C.; Lee, S.E.; Rhee, J.H.; Choy, H.E.; et al. RtxA1-Induced Expression of the Small GTPase Rac2 Plays a Key Role in the Pathogenicity of Vibrio Vulnificus. J. Infect. Dis. 2010, 201, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Baümler, A.J.; Sperandio, V. Interactions between the Microbiota and Pathogenic Bacteria in the Gut. Nature 2016, 535, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Larock, D.L.; Chaudhary, A.; Miller, S.I. Salmonellae Interactions with Host Processes. Nat. Rev. Microbiol. 2015, 13, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Kohjima, M.; Kuwano, Y.; Mino, H.; Teshima-Kondo, S.; Takeya, R.; Tsunawaki, S.; Wada, A.; Sumimoto, H.; Rokutan, K.; et al. Helicobacter Pylori Lipopolysaccharide Activates Rac1 and Transcription of NADPH Oxidase Nox1 and Its Organizer NOXO1 in Guinea Pig Gastric Mucosal Cells. Am. J. Physiol. Cell Physiol. 2005, 288, 450–457. [Google Scholar] [CrossRef]
- Chumbler, N.M.; Farrow, M.A.; Lapierre, L.A.; Franklin, J.L.; Lacy, D.B. Clostridium Difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms. Infect. Immun. 2016, 84, 2871–2877. [Google Scholar] [CrossRef] [PubMed]
- Black, D.S.; Bliska, J.B. The RhoGAP Activity of the Yersinia Pseudotuberculosis Cytotoxin YopE Is Required for Antiphagocytic Function and Virulence. Mol. Microbiol. 2000, 37, 515–527. [Google Scholar] [CrossRef]
- Lam, G.Y.; Fattouh, R.; Muise, A.M.; Grinstein, S.; Higgins, D.E.; Brumell, J.H. Listeriolysin o Suppresses Phospholipase C-Mediated Activation of the Microbicidal NADPH Oxidase to Promote Listeria Monocytogenes Infection. Cell Host Microbe 2011, 10, 627–634. [Google Scholar] [CrossRef]
- Fang, F.C. Antimicrobial Actions of Reactive Oxygen Species. mBio 2011, 2. [Google Scholar] [CrossRef]
- Makhezer, N.; Ben Khemis, M.; Liu, D.; Khichane, Y.; Marzaioli, V.; Tlili, A.; Mojallali, M.; Pintard, C.; Letteron, P.; Hurtado-Nedelec, M.; et al. NOX1-Derived ROS Drive the Expression of Lipocalin-2 in Colonic Epithelial Cells in Inflammatory Conditions. Mucosal Immunol. 2019, 12, 117–131. [Google Scholar] [CrossRef]
- Flo, T.H.; Smith, K.D.; Sato, S.; Rodriguez, D.J.; Holmes, M.A.; Strong, R.K.; Akira, S.; Aderem, A. Lipocalin 2 Mediates an Innate Immune Response to Bacterial Infection by Sequestrating Iron. Nature 2004, 432, 917–921. [Google Scholar] [CrossRef]
- Chen, G.; Wu, M.; Liu, W.; Xie, M.; Zhang, W.; Fan, E.; Liu, Q. Reactive Oxygen Species Inhibits Listeria Monocytogenes Invasion into HepG2 Epithelial Cells. Food Sci. Nutr. 2018, 6, 1501–1507. [Google Scholar] [CrossRef]
- Ware, H.H.; Kulkarni, V.V.; Wang, Y.; Pantaleón García, J.; Juarez, M.L.; Kirkpatrick, C.T.; Wali, S.; Syed, S.; Kontoyiannis, A.D.; Sikkema, W.K.A.; et al. Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation to Protect against Bacterial Infections. PLoS ONE 2019, 14, e0208216. [Google Scholar] [CrossRef]
- Paiva, C.N.; Bozza, M.T. Are Reactive Oxygen Species Always Detrimental to Pathogens? Antioxid. Redox Signal 2014, 20, 1000–1034. [Google Scholar] [CrossRef]
- Belenky, P.; Ye, J.D.; Porter, C.B.M.; Cohen, N.R.; Lobritz, M.A.; Ferrante, T.; Jain, S.; Korry, B.J.; Schwarz, E.G.; Walker, G.C.; et al. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations That Lead to Cellular Damage. Cell Rep. 2015, 13, 968–980. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Fleming, A.M.; Burrows, C.J. Chemistry of ROS-Mediated Oxidation to the Guanine Base in DNA and Its Biological Consequences. Int. J. Radiat. Biol. 2022, 98, 452–460. [Google Scholar]
- Hofer, T.; Badouard, C.; Bajak, E.; Ravanat, J.-L.; Mattsson, Å.; Cotgreave, I.A. Hydrogen Peroxide Causes Greater Oxidation in Cellular RNA than in DNA. Biol. Chem. 2005, 386. [Google Scholar] [CrossRef]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter Jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef]
- Joshi, S.G.; Cooper, M.; Yost, A.; Paff, M.; Ercan, U.K.; Fridman, G.; Friedman, G.; Fridman, A.; Brooks, A.D. Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 2011, 55, 1053–1062. [Google Scholar] [CrossRef]
- Hu, L.; Wang, H.; Xia, T.; Fang, B.; Shen, Y.; Zhang, Q.; Tian, X.; Zhou, H.; Wu, J.; Tian, Y. Two-Photon-Active Organotin(IV) Complexes for Antibacterial Function and Superresolution Bacteria Imaging. Inorg. Chem. 2018, 57, 6340–6348. [Google Scholar] [CrossRef]
- Borisov, V.B.; Siletsky, S.A.; Nastasi, M.R.; Forte, E. Ros Defense Systems and Terminal Oxidases in Bacteria. Antioxidants 2021, 10, 839. [Google Scholar] [CrossRef]
- Maurya, R.; Namdeo, M. Reactive Oxygen Species; Ahmad, R., Ed.; Biochemistry; IntechOpen: London, UK, 2022; Volume 28, ISBN 978-1-83968-281-0. [Google Scholar]
- Yuan, F.; Yin, S.; Xu, Y.; Xiang, L.; Wang, H.; Li, Z.; Fan, K.; Pan, G. The Richness and Diversity of Catalases in Bacteria. Front. Microbiol. 2021, 12, 645477. [Google Scholar] [CrossRef] [PubMed]
- Kochanowsky, R.; Carothers, K.; Roxas, B.A.P.; Anwar, F.; Viswanathan, V.K.; Vedantam, G. Clostridioides Difficile Superoxide Reductase Mitigates Oxygen Sensitivity. J. Bacteriol. 2024, 206. [Google Scholar] [CrossRef]
- Liu, X.; Omar, M.; Abrahante, J.E.; Nagaraja, K.V.; Vidovic, S. Insights into the Oxidative Stress Response of Salmonella Enterica Serovar Enteritidis Revealed by the next Generation Sequencing Approach. Antioxidants 2020, 9, 849. [Google Scholar] [CrossRef]
- Addorisio, S.R.; Shteynberg, R.M.; Dasilva, M.S.; Mixon, J.M.; Mucciarone, K.; Vu, L.; Arsenault, K.L.; Briand, V.; Parker, S.; Smith, S.L.; et al. Oxidative Stress Response in Bacteria: A Review. Fine Focus 2022, 8, 36–46. [Google Scholar] [CrossRef]
- Chanin, R.B.; Winter, M.G.; Spiga, L.; Hughes, E.R.; Zhu, W.; Taylor, S.J.; Arenales, A.; Gillis, C.C.; Büttner, L.; Jimenez, A.G.; et al. Epithelial-Derived Reactive Oxygen Species Enable AppBCX-Mediated Aerobic Respiration of Escherichia Coli during Intestinal Inflammation. Cell Host Microbe. 2020, 28, 780–788.e5. [Google Scholar] [CrossRef]
- Miller, B.M.; Liou, M.J.; Zhang, L.F.; Nguyen, H.; Litvak, Y.; Schorr, E.M.; Jang, K.K.; Tiffany, C.R.; Butler, B.P.; Bäumler, A.J. Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface. Cell Host Microbe. 2020, 28, 789–797.e5. [Google Scholar] [CrossRef]
- Glorieux, C.; Liu, S.; Trachootham, D.; Huang, P. Targeting ROS in Cancer: Rationale and Strategies. Nat. Rev. Drug Discov. 2024, 23, 583–606. [Google Scholar] [CrossRef]
- White, A.L.; Talkington, G.M.; Ouvrier, B.; Ismael, S.; Solch-Ottaiano, R.J.; Bix, G. Reactive Oxygen Species, a Potential Therapeutic Target for Vascular Dementia. Biomolecules 2025, 15, 6. [Google Scholar] [CrossRef]
- Bennici, G.; Almahasheer, H.; Alghrably, M.; Valensin, D.; Kola, A.; Kokotidou, C.; Lachowicz, J.; Jaremko, M. Mitigating Diabetes Associated with Reactive Oxygen Species (ROS) and Protein Aggregation through Pharmacological Interventions. RSC Adv. 2024, 14, 17448–17460. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, Q.; Hu, Z.; Tang, X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front. Neurosci 2019, 13, 1036. [Google Scholar] [CrossRef]
- Kitano, H. Systems Biology: A Brief Overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Chen, J.; Zhang, X.; Guo, M.; Yu, G. A Literature Review of Gene Function Prediction by Modeling Gene Ontology. Front. Genet. 2020, 11, 400. [Google Scholar] [CrossRef]
- van Dam, S.; Võsa, U.; van der Graaf, A.; Franke, L.; de Magalhães, J.P. Gene Co-Expression Analysis for Functional Classification and Gene-Disease Predictions. Brief. Bioinform. 2018, 19, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; et al. Pathway Enrichment Analysis and Visualization of Omics Data Using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 2019, 14, 482–517. [Google Scholar] [CrossRef] [PubMed]
- Westermann, A.J.; Barquist, L.; Vogel, J. Resolving Host–Pathogen Interactions by Dual RNA-Seq. PLoS Pathog. 2017, 13, e1006033. [Google Scholar]
- Hu, W.; Zhai, Z.Y.; Huang, Z.Y.; Chen, Z.M.; Zhou, P.; Li, X.X.; Yang, G.H.; Bao, C.J.; You, L.J.; Cui, X.B.; et al. Dual RNA Sequencing of Helicobacter Pylori and Host Cell Transcriptomes Reveals Ontologically Distinct Host-Pathogen Interaction. mSystems 2024, 9, e00206-24. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Yaffe, M.B. Protein Regulation in Signal Transduction. Cold Spring Harb. Perspect. Biol. 2016, 8, a005918. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The Antimicrobial Peptides and Their Potential Clinical Applications. Am. J. Transl. Res. 2019, 11, 3919. [Google Scholar]
- Gordon, E.M.; Hatzios, S.K. Chemical Tools for Decoding Redox Signaling at the Host–Microbe Interface. PLoS Pathog. 2020, 16, e1009070. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial Peptides: Mechanism of Action, Activity and Clinical Potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Megason, S.G.; Fraser, S.E. Imaging in Systems Biology. Cell 2007, 130, 784–795. [Google Scholar] [CrossRef]
- Negretti, N.M.; Clair, G.; Talukdar, P.K.; Gourley, C.R.; Huynh, S.; Adkins, J.N.; Parker, C.T.; Corneau, C.M.; Konkel, M.E. Campylobacter Jejuni Demonstrates Conserved Proteomic and Transcriptomic Responses When Co-Cultured with Human INT 407 and Caco-2 Epithelial Cells. Front. Microbiol. 2019, 10, 755. [Google Scholar] [CrossRef]
- Hasle, N.; Cooke, A.; Srivatsan, S.; Huang, H.; Stephany, J.J.; Krieger, Z.; Jackson, D.; Tang, W.; Pendyala, S.; Monnat, R.J.; et al. High-throughput, Microscope-based Sorting to Dissect Cellular Heterogeneity. Mol. Syst. Biol. 2020, 16, e9942. [Google Scholar] [CrossRef]
- Park, A.J.; Wright, M.A.; Roach, E.J.; Khursigara, C.M. Imaging Host–Pathogen Interactions Using Epithelial and Bacterial Cell Infection Models. J. Cell Sci. 2021, 134, jcs250647. [Google Scholar] [CrossRef]
- Ren, J.; Luo, S.; Shi, H.; Wang, X. Spatial Omics Advances for in Situ RNA Biology. Mol. Cell 2024, 84, 3737–3757. [Google Scholar] [CrossRef]
Bacterial Species | Changes in ROS | Host or Bacteria Driven | Proposed Mechanism of Action on ROS | Cell Lines | References |
---|---|---|---|---|---|
Helicobacter pylori | Increase | Bacteria | Bacterial LPS from whole bacteria activates transcription of NOX1 and NOXO1 genes, and activates Rac1 to increase intracellular ROS | Guinea pig mucosal cell | [59] |
Escherichia coli LF82 | Increase | Host | ROS production is induced by NOX1, and increases NOX1 and NOXO1 gene expression, mostly likely as an antimicrobial response | T84 | [37] |
Escherichia coli | Increase | Bacteria | The toxin cytotoxic necrotisingfactor-1 acts (hypothesised) as a GEF to permanently activate Rac1 and subsequent ROS production | IEC-6 cells (normal rat small intestine) | [54] |
Clostridioides difficile | Increase | Bacteria | Toxin TcdB induces ROS production via transient activation of Rac1 and subsequently NOX1, leading to IEC necrosis | Young adult mouse colonic epithelial cells | [55,60] |
Vibrio vulnificus | Increase | Bacteria | The release of toxin RtxA1 acts via NOX1 to overproduce ROS, and also modulates Rac2 activity | Caco-2 | [56] |
Campylobacter jejuni | Increase | Host | Binding via CadF protein leads to NOX1 activation as a defence mechanism | HCT-8 | [42] |
Campylobacter jejuni | Decrease | Bacteria | Unknown bacterial component downregulates NOX1-mediated ROS production. This is hypothesised to correlate with Rac1 activity | Caco-2 and T84 | [47] |
Yersinia pseudotuberculosis | Decrease | Bacteria | The cytotoxin YopE acts as a GAP protein to decrease Rac1 activity | HeLa | [61] |
Listeria monocytogenes | Decrease | Bacteria | Pore-forming cytolysin listeriolysin O prevents NOX2 phagosome localisation in phagocytes | RAW 264.7 macrophage | [62,63] |
Vibrio parahaemolyticus | Decrease | Bacteria | T3SS effector protein VopL paralyses actin cytoskeleton and stops NOX1 complex | Caco-2 | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kansakar, P.; Gupta, S.; Mallick, A.I.; Wren, B.W.; Aksoy, E.; Elmi, A.; Gundogdu, O. Host-Derived Reactive Oxygen Species in the Gut Epithelium: Defence Mechanism and Target of Bacterial Subversion. Antioxidants 2025, 14, 1156. https://doi.org/10.3390/antiox14101156
Kansakar P, Gupta S, Mallick AI, Wren BW, Aksoy E, Elmi A, Gundogdu O. Host-Derived Reactive Oxygen Species in the Gut Epithelium: Defence Mechanism and Target of Bacterial Subversion. Antioxidants. 2025; 14(10):1156. https://doi.org/10.3390/antiox14101156
Chicago/Turabian StyleKansakar, Pranaya, Subhadeep Gupta, Amirul Islam Mallick, Brendan W. Wren, Ezra Aksoy, Abdi Elmi, and Ozan Gundogdu. 2025. "Host-Derived Reactive Oxygen Species in the Gut Epithelium: Defence Mechanism and Target of Bacterial Subversion" Antioxidants 14, no. 10: 1156. https://doi.org/10.3390/antiox14101156
APA StyleKansakar, P., Gupta, S., Mallick, A. I., Wren, B. W., Aksoy, E., Elmi, A., & Gundogdu, O. (2025). Host-Derived Reactive Oxygen Species in the Gut Epithelium: Defence Mechanism and Target of Bacterial Subversion. Antioxidants, 14(10), 1156. https://doi.org/10.3390/antiox14101156