Ferroptosis: The Initiation Process of Lipid Peroxidation in Muscle Food
Abstract
1. Introduction
2. Ferroptosis Inducers, in General and in Muscle Cells
3. Ferroptosis Prevention, in General and in Food Muscle Cells
Antioxidant Enzymes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kanner, J.; German, J.B.; Kinsella, J.E. Initiation of Lipid Peroxidation in Biological Systems. Crit. Rev. Food Sci. Nutr. 1987, 25, 317–364. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in Ferroptosis and Its Pharmacological Implication. Free Radic. Biol. Med. 2019, 133, 144–152. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and Function. Cell Death Differ. 2016, 23, 369–379. [Google Scholar] [CrossRef]
- Turrens, J.F. Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef]
- Homma, T.; Kobayashi, S.; Sato, H.; Fujii, J. Superoxide Produced by Mitochondrial Complex III Plays a Pivotal Role in the Execution of Ferroptosis Induced by Cysteine Starvation. Arch. Biochem. Biophys. 2021, 700, 108775. [Google Scholar] [CrossRef]
- Chazelas, P.; Steichen, C.; Favreau, F.; Trouillas, P.; Hannaert, P.; Thuillier, R.; Giraud, S.; Hauet, T.; Guillard, J. Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int. J. Mol. Sci. 2021, 22, 2366. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, Z.; Zhang, Y.; Yang, M.; Wang, C.; Xu, J.; Zhu, Y.; Mi, Y.; Jiang, J.; Sun, Z. Ferroptosis and Myocardial Ischemia-Reperfusion: Mechanistic Insights and New Therapeutic Perspectives. Front. Pharmacol. 2024, 15, 1482986. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J. Mechanism of Nonenzymic Lipid-Peroxidation in Muscle Foods. ACS Symp. Ser. 1992, 500, 55–73. [Google Scholar] [CrossRef]
- Harel, S.; Kanner, J. Hydrogen-Peroxide Generation in Ground Muscle Tissues. J. Agric. Food Chem. 1985, 33, 1186–1188. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S. Initiation of Membranal Lipid-Peroxidation by Activated Metmyoglobin and Methemoglobin. Arch. Biochem. Biophys. 1985, 237, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Kohen, R.; Kakunda, A.; Rubinstein, A. The Role of Cationized Catalase and Cationized Glucose Oxidase in Mucosal Oxidative Damage Induced in the Rat Jejunum. J. Biol. Chem. 1992, 267, 21349–21354. [Google Scholar] [CrossRef] [PubMed]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef]
- Ma, X.H.; Liu, J.H.Z.; Liu, C.Y.; Sun, W.Y.; Duan, W.J.; Wang, G.; Kurihara, H.; He, R.R.; Li, Y.F.; Chen, Y.; et al. ALOX15-Launched PUFA-Phospholipids Peroxidation Increases the Susceptibility of Ferroptosis in Ischemia-Induced Myocardial Damage. Signal Transduct. Target. Ther. 2022, 7, 288. [Google Scholar] [CrossRef]
- Rochette, L.; Dogon, G.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int. J. Mol. Sci. 2023, 24, 449. [Google Scholar] [CrossRef]
- Fuhrmann, D.C.; Brüne, B. A Graphical Journey through Iron Metabolism, MicroRNAs, and Hypoxia in Ferroptosis. Redox Biol. 2022, 54, 102365. [Google Scholar] [CrossRef]
- Badu-Boateng, C.; Naftalin, R.J. Ascorbate and Ferritin Interactions: Consequences for Iron Release in Vitro and in Vivo and Implications for Inflammation. Free Radic. Biol. Med. 2019, 133, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.; Chow, C.K. Dietary Vitamin E Reduces Labile Iron in Rat Tissues. J. Biochem. Mol. Toxicol. 2005, 19, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Doll, L. Ferritin in Turkey Muscle-Tissue—A Source of Catalytic Iron Ions for Lipid-Peroxidation. J. Agric. Food Chem. 1991, 39, 247–249. [Google Scholar] [CrossRef]
- Kanner, J.; Salan, M.A.; Harel, S.; Shegalovich, J. Lipid-Peroxidation of Muscle Food—The Role of the Cytosolic Fraction. J. Agric. Food Chem. 1991, 39, 242–246. [Google Scholar] [CrossRef]
- Bechaux, J.; de La Pomélie, D.; Théron, L.; Santé-Lhoutellier, V.; Gatellier, P. Iron-Catalysed Chemistry in the Gastrointestinal Tract: Mechanisms, Kinetics and Consequences. A Review. Food Chem. 2018, 268, 27–39. [Google Scholar] [CrossRef]
- Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; et al. Oxidized Arachidonic and Adrenic PEs Navigate Cells to Ferroptosis. Nat. Chem. Biol. 2017, 13, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Hinman, A.; Holst, C.R.; Latham, J.C.; Bruegger, J.J.; Ulas, G.; McCusker, K.P.; Amagata, A.; Davis, D.; Hoff, K.G.; Kahn-Kirby, A.H.; et al. Vitamin E Hydroquinone Is an Endogenous Regulator of Ferroptosis via Redox Control of 15-Lipoxygenase. PLoS ONE 2018, 13, e0201369. [Google Scholar] [CrossRef]
- Shah, R.; Shchepinov, M.S.; Pratt, D.A. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Cent. Sci. 2018, 4, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Granit, R.; Angel, S.; Akiri, B.; Holzer, Z.; Aharoni, Y.; Orlov, A.; Kanner, J. Effects of Vitamin E Supplementation on Lipid Peroxidation and Color Retention of Salted Calf Muscle from a Diet Rich in Polyunsaturated Fatty Acids. J. Agric. Food Chem. 2001, 49, 5951–5956. [Google Scholar] [CrossRef]
- Kanner, J.; Sofer, F.; Harel, S.; Doll, L. Antioxidant Activity of Ceruloplasmin in Muscle Membrane and Insitu Lipid-Peroxidation. J. Agric. Food Chem. 1988, 36, 415–417. [Google Scholar] [CrossRef]
- Dragoev, S.G. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024, 13, 797. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Harel, S.; Hazan, B. Muscle Membranal Lipid-Peroxidation by an Iron Redox Cycle System—Initiation by Oxy Radicals and Site-Specific Mechanism. J. Agric. Food Chem. 1986, 34, 506–510. [Google Scholar] [CrossRef]
- Rhee, S.G.; Woo, H.A. Multiple Functions of 2-Cys Peroxiredoxins, I and II, and Their Regulations via Post-Translational Modifications. Free Radic. Biol. Med. 2020, 152, 107–115. [Google Scholar] [CrossRef]
- Halliwell, B. Understanding Mechanisms of Antioxidant Action in Health and Disease. Nat. Rev. Mol. Cell Biol. 2024, 25, 13–33. [Google Scholar] [CrossRef]
- Fujii, J.; Yamada, K.I. Defense Systems to Avoid Ferroptosis Caused by Lipid Peroxidation-Mediated Membrane Damage. Free Radic. Res. 2023, 57, 353–372. [Google Scholar] [CrossRef]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Grocin, A.G.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; et al. FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef]
- Zheng, D.; Liu, J.; Piao, H.; Zhu, Z.; Wei, R.; Liu, K. ROS-Triggered Endothelial Cell Death Mechanisms: Focus on Pyroptosis, Parthanatos, and Ferroptosis. Front. Immunol. 2022, 13, 1039241. [Google Scholar] [CrossRef]
- Kanner, J. Food Polyphenols as Preventive Medicine. Antioxidants 2023, 12, 2103. [Google Scholar] [CrossRef] [PubMed]
- Ursini, F.; Maiorino, M. Lipid Peroxidation and Ferroptosis: The Role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.M.; Decker, E.A. Endogenous Skeletal Muscle Antioxidants. Crit. Rev. Food Sci. Nutr. 1994, 34, 403–426. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lange, M.; Dixon, S.J.; Olzmann, J.A. Lipid Quality Control and Ferroptosis: From Concept to Mechanism. Annu. Rev. Biochem. 2024, 93, 499–528. [Google Scholar] [CrossRef]
- Lapidot, T.; Granit, R.; Kanner, J. Lipid Hydroperoxidase Activity of Myoglobin and Phenolic Antioxidants in Simulated Gastric Fluid. J. Agric. Food Chem. 2005, 53, 3391–3396. [Google Scholar] [CrossRef]
- Reeder, B.J.; Wilson, M.T. The Effects of pH on the Mechanism of Hydrogen Peroxide and Lipid Hydroperoxide Consumption by Myoglobin: A Role for the Protonated Ferryl Species. Free Rad. Biol. Med. 2001, 30, 1311–1318. [Google Scholar] [CrossRef]
- Kröger-Ohlsen, M.V.; Andersen, M.L.; Skibsted, L.H. Acid-Catalysed Autoreduction of Ferrylmyoglobin in Aqueous Solution Studied by Freeze Quenching and ESR Spectroscopy. Free Radic. Res. 1999, 30, 305–314. [Google Scholar] [CrossRef]
- Flögel, U.; Gödecke, A.; Klotz, L.; Schrader, J. Role of Myoglobin in the Antioxidant Defense of the Heart. FASEB J. 2004, 18, 1156–1158. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, B.; Tirosh, O.; Kanner, J. Reactivity of Vitamin e as an Antioxidant in Red Meat and the Stomach Medium. J. Agric. Food Chem. 2022, 70, 12172–12179. [Google Scholar] [CrossRef]
- Adepu, K.K.; Anishkin, A.; Adams, S.H.; Chintapalli, S. V A Versatile Delivery Vehicle for Cellular Oxygen and Fuels, or Metabolic Sensor?—A Review and Perspective on the Functions of Myoglobin. Physiol. Rev. 2024, 104, 1611–1642. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Bengera, I.; Berman, S. Nitric-Oxide Myoglobin as an Inhibitor of Lipid Oxidation. Lipids 1980, 15, 944–948. [Google Scholar] [CrossRef]
- Baron, C.P.; Møller, J.K.S.; Skibsted, L.H.; Andersen, H.J. Nitrosylmyoglobin as Antioxidant-Kinetics and Proposed Mechanism for Reduction of Hydroperoxides. Free Radic. Res. 2007, 41, 892–902. [Google Scholar] [CrossRef]
- Thomas, S.R.; Stocker, R. Forum: Role of Oxidation in Atherosclerosis Molecular Action of Vitamin E in Lipoprotein Oxidation: Implications for Atherosclerosis. Free Radic. Biol. Med. 2000, 28, 1795–1805. [Google Scholar] [CrossRef]
- Arnold, R.N.; Scheller, K.K.; Arp, S.C.; Williamsz, S.N.; Buege, D.R.; Schaefer3, D.M. Effect of Long-or Short-Term Feeding of a-Tocopheryl Acetate to Holstein and Crossbred Beef Steers on Performance, Carcass Characteristics, and Beef Color Stability. Animal. Sci. 1992, 70, 3055–3065. [Google Scholar] [CrossRef]
- Buckley, D.J.; Morrissey, P.A.; Gray, J.I. Influence of Dietary Vitamin E on the Oxidative Stability and Quality of Pig Meat. J. Anim. Sci. 1994, 73, 3122–3130. [Google Scholar] [CrossRef]
- Zheng, K.; Dong, Y.; Yang, R.; Liang, Y.; Wu, H.; He, Z. Regulation of Ferroptosis by Bioactive Phytochemicals: Implications for Medical Nutritional Therapy. Pharmacol. Res. 2021, 168, 105580. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wei, Y.; Hua, H.; Jing, X.; Zhu, H.; Xiao, K.; Zhao, J.; Liu, Y. Polyphenols Sourced from Ilex latifolia Thunb. Relieve Intestinal Injury via Modulating Ferroptosis in Weanling Piglets under Oxidative Stress. Antioxidants 2022, 11, 966. [Google Scholar] [CrossRef]
- Wang, B.; Yang, L.N.; Yang, L.T.; Liang, Y.; Guo, F.; Fu, P.; Ma, L. Fisetin Ameliorates Fibrotic Kidney Disease in Mice via Inhibiting ACSL4-Mediated Tubular Ferroptosis. Acta Pharmacol. Sin. 2024, 45, 150–165. [Google Scholar] [CrossRef]
- Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals 2021, 11, 401. [Google Scholar] [CrossRef]
- Mihaylova, D.; Dimitrova-Dimova, M.; Popova, A. Dietary Phenolic Compounds—Wellbeing and Perspective Applications. Int. J. Mol. Sci. 2024, 25, 4769. [Google Scholar] [CrossRef]
- Shearer, M.J.; Okano, T. Annual Review of Nutrition Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism. Annu. Rev. Nutr. 2018, 38, 127–151. [Google Scholar] [CrossRef]
- Vervoort, L.M.T.; Ronden~, J.E.; Thijssen, H.H.W. The Potent Antioxidant Activity of the Vitamin K Cycle in Microsomal Lipid. Peroxidation 1997, 54, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Mishima, E.; Ito, J.; Wu, Z.; Nakamura, T.; Wahida, A.; Doll, S.; Tonnus, W.; Nepachalovich, P.; Eggenhofer, E.; Aldrovandi, M.; et al. A Non-Canonical Vitamin K Cycle Is a Potent Ferroptosis Suppressor. Nature 2022, 608, 778–783. [Google Scholar] [CrossRef]
- Poeggeler, B.; Singh, S.K.; Sambamurti, K.; Pappolla, M.A. Nitric Oxide as a Determinant of Human Longevity and Health Span. Int. J. Mol. Sci. 2023, 24, 14533. [Google Scholar] [CrossRef] [PubMed]
- Gantner, B.N.; LaFond, K.M.; Bonini, M.G. Nitric Oxide in Cellular Adaptation and Disease. Redox Biol. 2020, 34, 101550. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Shagalovich, J.; Berman, S. Antioxidative Effect of Nitrite in Cured Meat-Products—Nitric-Oxide Iron Complexes of Low-Molecular Weight. J. Agric. Food Chem. 1984, 32, 512–515. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Rina, G. Nitric Oxide as an Antioxidant. Arch. Biochem. Biophys. 1991, 289, 130–136. [Google Scholar] [CrossRef]
- Kanner, J.; Shpaizer, A.; Nelgas, L.; Tirosh, O. S-Nitroso-N-Acetylcysteine (NAC-SNO) as an Antioxidant in Cured Meat and Stomach Medium. J. Agric. Food Chem. 2019, 67, 10930–10936. [Google Scholar] [CrossRef]
- Volk, J.; Gorelik, S.; Granit, R.; Kohen, R.; Kanner, J. The Dual Function of Nitrite under Stomach Conditions Is Modulated by Reducing Compounds. Free Radic. Biol. Med. 2009, 47, 496–502. [Google Scholar] [CrossRef]
- Radi, R. Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Redox Pathways in Molecular Medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Soula, M.; Weber, R.A.; Zilka, O.; Alwaseem, H.; La, K.; Yen, F.; Molina, H.; Garcia-Bermudez, J.; Pratt, D.A.; Birsoy, K. Metabolic Determinants of Cancer Cell Sensitivity to Canonical Ferroptosis Inducers. Nat. Chem. Biol. 2020, 16, 1351–1360. [Google Scholar] [CrossRef]
- Skibsted, L.H. Nitric Oxide and Quality and Safety of Muscle Based Foods. Nitric Oxide 2011, 24, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Homma, T.; Kobayashi, S.; Conrad, M.; Konno, H.; Yokoyama, C.; Fujii, J. Nitric Oxide Protects against Ferroptosis by Aborting the Lipid Peroxidation Chain Reaction. Nitric Oxide 2021, 115, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Møller, J.K.S.; Skibsted, L.H. Nitric Oxide and Myoglobins. Chem. Rev. 2002, 102, 1167–1178. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Granit, R. Nitric-Oxide, an Inhibitor of Lipid Oxidation by Lipoxygenase, Cyclooxygenase and Hemoglobin. Lipids 1992, 27, 46–49. [Google Scholar] [CrossRef]
- Wood, I.; Trostchansky, A.; Rubbo, H. Structural Considerations on Lipoxygenase Function, Inhibition and Crosstalk with Nitric Oxide Pathways. Biochimie 2020, 178, 170–180. [Google Scholar] [CrossRef]
- Abu-Halaka, D.; Shpaizer, A.; Zeigerman, H.; Kanner, J.; Tirosh, O. DMF-Activated Nrf2 Ameliorates Palmitic Acid Toxicity While Potentiates Ferroptosis Mediated Cell Death: Protective Role of the NO-Donor S-Nitroso-N-Acetylcysteine. Antioxidants 2023, 12, 512. [Google Scholar] [CrossRef] [PubMed]
- Zilka, O.; Shah, R.; Li, B.; Friedmann Angeli, J.P.; Griesser, M.; Conrad, M.; Pratt, D.A. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent. Sci. 2017, 3, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Miotto, G.; Rossetto, M.; Di Paolo, M.L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A.M.; Bosello Travain, V.; Zaccarin, M.; Zennaro, L.; et al. Insight into the Mechanism of Ferroptosis Inhibition by Ferrostatin-1. Redox Biol. 2020, 28, 101328. [Google Scholar] [CrossRef] [PubMed]
- Faraji, P.; Borchert, A.; Ahmadian, S.; Kuhn, H. Butylated Hydroxytoluene (BHT) Protects SH-SY5Y Neuroblastoma Cells from Ferroptotic Cell Death: Insights from In Vitro and In Vivo Studies. Antioxidants 2024, 13, 242. [Google Scholar] [CrossRef]
- Yu, H.; Chen, X.; Guo, X.; Chen, D.; Jiang, L.; Qi, Y.; Shao, J.; Tao, L.; Hang, J.; Lu, G.; et al. The Clinical Value of Serum Xanthine Oxidase Levels in Patients with Acute Ischemic Stroke. Redox Biol. 2023, 60, 102623. [Google Scholar] [CrossRef]
- Kanner, J. Oxidative Processes in Meat and Meat-Products—Quality Implications. Meat Sci. 1994, 36, 169–189. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanner, J.; Shpaizer, A.; Tirosh, O. Ferroptosis: The Initiation Process of Lipid Peroxidation in Muscle Food. Antioxidants 2025, 14, 1157. https://doi.org/10.3390/antiox14101157
Kanner J, Shpaizer A, Tirosh O. Ferroptosis: The Initiation Process of Lipid Peroxidation in Muscle Food. Antioxidants. 2025; 14(10):1157. https://doi.org/10.3390/antiox14101157
Chicago/Turabian StyleKanner, Joseph, Adi Shpaizer, and Oren Tirosh. 2025. "Ferroptosis: The Initiation Process of Lipid Peroxidation in Muscle Food" Antioxidants 14, no. 10: 1157. https://doi.org/10.3390/antiox14101157
APA StyleKanner, J., Shpaizer, A., & Tirosh, O. (2025). Ferroptosis: The Initiation Process of Lipid Peroxidation in Muscle Food. Antioxidants, 14(10), 1157. https://doi.org/10.3390/antiox14101157