Comparison of Antioxidant Properties of Fruit from Some Cultivated Varieties and Hybrids of Rubus idaeus and Rubus occidentalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Samples
2.3. Methods
2.3.1. Analysis of Polyphenols Content by Spectrophotometric Method
2.3.2. Analysis of Anthocyanins Content by Spectrophotometric Method
2.3.3. Analysis via the Spectrophotometric Method of Antioxidant Activity
Stable 2,2-Diphenyl-1-picrylhydrazyl (DPPH•) Radical Test
Determination of the Ability to Reduce Iron (III) Ions—FRAP Test
- 300 mM acetate buffer solution, pH 3.6.
- 10 mM solution of 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) in 40 mM hydrochloric acid (HCl).
- 20 mM FeCl3 × 6H2O solution in water against a standard curve prepared from six dilutions of trolox in water at the following concentrations: 0.02; 0.03; 0.06; 0.12; 0.36; 0.48 mM.
Determination of Antioxidant Activity Using 2,2′-Azobis(3-ethylbenzothiazoline-6-sulfonate) Diammonium Salt—ABTS Test
- 2 mL of 7 mM solution of 2,2′-azobis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS).
- 0.35 mL of 140 mM potassium persulphate.
2.3.4. Analysis of Anthocyanin Content Using Chromatographic Methods—HPLC/HPTLC
2.4. Statistical Analysis
3. Results
3.1. Determination of Active Compounds in Fruits of the Genus Rubus
3.1.1. Determination of Total Anthocyanin Content
3.1.2. Determination of Total Polyphenol Content
3.2. Antioxidant Activity
3.2.1. DPPH
3.2.2. ABTS
3.2.3. FRAP
3.3. Correlation
3.4. Kruskal–Wallis Test
3.5. Post Hoc Dunn’s Test
3.6. Factor Analysis
3.7. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szymanowska, U.; Baraniak, B.; Bogucka-Kocka, A. Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry (Rubus idaeus L.) Fruit and Juice—In Vitro Study. Molecules 2018, 23, 1812. [Google Scholar] [CrossRef]
- Veljković, B.; Jakovljević, V.; Stanković, M.; Dajić-Stevanović, Z. Phytochemical and Antioxidant Properties of Fresh Fruits and Some Traditional Products of Wild Grown Raspberry (Rubus idaeus L.). Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 565–573. [Google Scholar] [CrossRef]
- Jeong, J.H.; Jung, H.; Lee, S.R.; Lee, H.J.; Hwang, K.T.; Kim, T.Y. Anti-Oxidant, Anti-Proliferative and Anti-Inflammatory Activities of the Extracts from Black Raspberry Fruits and Wine. Food Chem. 2010, 123, 338–344. [Google Scholar] [CrossRef]
- Vuorela, S.; Kreander, K.; Karonen, M.; Nieminen, R.; Hämäläinen, M.; Galkin, A.; Laitinen, L.; Salminen, J.P.; Moilanen, E.; Pihlaja, K.; et al. Preclinical Evaluation of Rapeseed, Raspberry, and Pine Bark Phenolics for Health Related Effects. J. Agric. Food Chem. 2005, 53, 5922–5931. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.P.; Da Silva, T.L.T.; De Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the Bioactive Compounds, Antioxidant Activity and Chemical Composition of Brazilian Blackberry, Red Raspberry, Strawberry, Blueberry and Sweet Cherry Fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef]
- Castilho Maro, L.A.; Pio, R.; Santos Guedes, M.N.; Patto De Abreu, C.M.; Nogueira Curi, P. Bioactive Compounds, Antioxidant Activity and Mineral Composition of Fruits of Raspberry Cultivars Grown in Subtropical Areas in Brazil. Fruits 2013, 68, 209–217. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Šeruga, B.; Novak, I.; Medvidović-Kosanović, M. Phenolic Compound Composition and Antioxidant Activity of Fruits of Rubus and Prunus Species from Croatia. Int. J. Food Sci. Technol. 2009, 44, 860–868. [Google Scholar] [CrossRef]
- García, A.V.; Pérez, S.E.M.; Butsko, M.; Moya, M.S.P.; Sanahuja, A.B. Authentication of “Adelita” Raspberry Cultivar Based on Physical Properties, Antioxidant Activity and Volatile Profile. Antioxidants 2020, 9, 593. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A.; Ledwozyw-Smoleń, I.; Augustynowicz, J.; Wyzgolik, G.; Kruczek, M.; Kaszycki, P. Antioxidant Properties of Fruits of Raspberry and Blackberry Grown in Central Europe. Open Chem. 2015, 13, 1313–1325. [Google Scholar] [CrossRef]
- Viskelis, P.; Bobinaitė, R. Bioactive Compounds and Antioxidant Activity of Small Fruits in Lithuania. J. Food Agric. Environ. 2010, 8, 259–263. [Google Scholar]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of Different Drying Methods on the Physical Properties, Bioactive Compounds and Antioxidant Activity of Raspberry Powders. J. Sci. Food Agric. 2016, 96, 2055–2062. [Google Scholar] [CrossRef]
- Basu, P.; Maier, C. In Vitro Antioxidant Activities and Polyphenol Contents of Seven Commercially Available Fruits. Pharmacogn. Res. 2016, 8, 258–264. [Google Scholar] [CrossRef]
- Noratto, G.D.; Chew, B.P.; Atienza, L.M. Red Raspberry (Rubus idaeus L.) Intake Decreases Oxidative Stress in Obese Diabetic (Db/Db) Mice. Food Chem. 2017, 227, 305–314. [Google Scholar] [CrossRef]
- Raudone, L.; Bobinaite, R.; Janulis, V.; Viskelis, P.; Trumbeckaite, S. Effects of Raspberry Fruit Extracts and Ellagic Acid on Respiratory Burst in Murine Macrophages. Food Funct. 2014, 5, 1167–1174. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, E.; Lee, J.E.; Auh, J.H.; Choi, H.K.; Lee, J.; Cho, S.; Kim, J.H. Effects of a Rubus Coreanus Miquel Supplement on Plasma Antioxidant Capacity in Healthy Korean Men. Nutr. Res. Pract. 2011, 5, 429–434. [Google Scholar] [CrossRef]
- Huang, X.; Wu, Y.; Zhang, S.; Yang, H.; Wu, W.; Lyu, L.; Li, W. Variation in Bioactive Compounds and Antioxidant Activity of Rubus Fruits at Different Developmental Stages. Foods 2022, 11, 1169. [Google Scholar] [CrossRef]
- Bezmaternykh, K.V.; Shirshova, T.I.; Beshlei, I.V.; Matistov, N.V.; Smirnova, G.V.; Oktyabr’Skii, O.N.; Volodin, V.V. Antioxidant Activity of Extracts from Allium schoenoprasum L. and Rubus chamaemorus L. Growing in the Komi Republic. Pharm. Chem. J. 2014, 48, 116–120. [Google Scholar] [CrossRef]
- Kähkönen, M.; Kylli, P.; Ollilainen, V.; Salminen, J.P.; Heinonen, M. Antioxidant Activity of Isolated Ellagitannins from Red Raspberries and Cloudberries. J. Agric. Food Chem. 2012, 60, 1167–1174. [Google Scholar] [CrossRef]
- Faleva, A.V.; Ul’yanovskii, N.V.; Onuchina, A.A.; Falev, D.I.; Kosyakov, D.S. Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.). Metabolites 2023, 13, 598. [Google Scholar] [CrossRef]
- Kim, L.S.; Youn, S.H.; Kim, J.Y. Comparative Study on Antioxidant Effects of Extracts from Rubus Coreanus and Rubus Occidentalis. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1357–1362. [Google Scholar] [CrossRef]
- Jung, J.; Son, M.Y.; Jung, S.; Nam, P.; Sung, J.S.; Leec, S.J.; Lee, K.G. Antioxidant Properties of Korean Black Raspberry Wines and Their Apoptotic Effects on Cancer Cells. J. Sci. Food Agric. 2009, 89, 970–977. [Google Scholar] [CrossRef]
- Huang, T.R.; Chen, J.H.; Hummer, K.E.; Alice, L.A.; Wang, W.H.; He, Y.; Yu, S.X.; Yang, M.F.; Chai, T.Y.; Zhu, X.Y.; et al. Phylogeny of Rubus (Rosaceae): Integrating Molecular and Morphological Evidence into an Infrageneric Revision. Taxon 2023, 72, 278–306. [Google Scholar] [CrossRef]
- Wada, L.; Ou, B. Antioxidant Activity and Phenolic Content of Oregon Caneberries. J. Agric. Food Chem. 2002, 50, 3495–3500. [Google Scholar] [CrossRef]
- Schulz, M.; Chim, J.F. Nutritional and Bioactive Value of Rubus Berries. Food Biosci. 2019, 31, 100438. [Google Scholar] [CrossRef]
- Adamczuk, N.; Migas, P.; Kimel, K.; Choma, I.M.; Krauze-Baranowska, M. TLC with Densitometric and Image Analysis in the Control of Anthocyanin Content in Fruits of Rubus Occidentalis and Rubus Idaeus Cultivars and Hybrids. J. Food Compos. Anal. 2025, 137, 106886. [Google Scholar] [CrossRef]
- Kula, M.; Majdan, M.; Głód, D.; Krauze-Baranowska, M. Phenolic Composition of Fruits from Different Cultivars of Red and Black Raspberries Grown in Poland. J. Food Compos. Anal. 2016, 52, 74–82. [Google Scholar] [CrossRef]
- Adamczuk, N.; Ośko, J.; Grembecka, M.; Konieczyński, P.; Migas, P.; Orzeł, A.; Baj-Wójtowicz, B.; Krauze-Baranowska, M. Evaluation of the Content of Micro- and Macroelements in Raspberries Depending on the Species, Cultivar Variety, and Geographical Environment. Nutrients 2023, 15, 3782. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499. [Google Scholar] [CrossRef]
- Pruteanu, L.L.; Bailey, D.S.; Grădinaru, A.C.; Jäntschi, L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants 2023, 12, 860. [Google Scholar] [CrossRef]
- Ozgen, M.; Wyzgoski, F.J.; Tulio, A.Z.; Gazula, A.; Miller, A.R.; Scheerens, J.C.; Reese, R.N.; Wright, S.R. Antioxidant Capacity and Phenolic Antioxidants of Midwestern Black Raspberries Grown for Direct Markets Are Influenced by Production Site. HortScience 2008, 43, 2039–2047. [Google Scholar] [CrossRef]
- Benvenuti, S.; Pellati, F.; Melegari, M.; Bertelli, D. Polyphenols, Anthocyanins, Ascorbic Acid, and Radical Scavenging Activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, FCT164–FCT169. [Google Scholar] [CrossRef]
- Milivojević, J.; Maksimović, V.; Nikolić, M.; Bogdanović, J.; Maletić, R.; Milatović, D. Chemical and Antioxidant Properties of Cultivated and Wild Fragaria and Rubus Berries. J. Food Qual. 2011, 34, 1–9. [Google Scholar] [CrossRef]
- Brown, J.E.; Kelly, M.F. Inhibition of Lipid Peroxidation by Anthocyanins, Anthocyanidins and Their Phenolic Degradation Products. Eur. J. Lipid Sci. Technol. 2007, 109, 66–71. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant Activity of Anthocyanins and Their Aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Landete, J.M. Ellagitannins, Ellagic Acid and Their Derived Metabolites: A Review about Source, Metabolism, Functions and Health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Ali, H.M.; Almagribi, W.; Al-Rashidi, M.N. Antiradical and Reductant Activities of Anthocyanidins and Anthocyanins, Structure–Activity Relationship and Synthesis. Food Chem. 2016, 194, 1275–1282. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Beekwilder, J.; Jonker, H.; Meesters, P.; Hall, R.D.; Van Der Meer, I.M.; De Vos, C.H.R. Antioxidants in Raspberry: On-Line Analysis Links Antioxidant Activity to a Diversity of Individual Metabolites. J. Agric. Food Chem. 2005, 53, 3313–3320. [Google Scholar] [CrossRef]
- Beekwilder, J.; Hall, R.D.; De Vos, C.H.R. Identification and Dietary Relevance of Antioxidants from Raspberry. Biofactors 2005, 23, 197–205. [Google Scholar] [CrossRef]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of Freezing and Storage on the Phenolics, Ellagitannins, Flavonoids, and Antioxidant Capacity of Red Raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef]
- Mullen, W.; McGinn, J.; Lean, M.E.J.; MacLean, M.R.; Gardner, P.; Duthie, G.G.; Yokota, T.; Crozier, A. Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. J. Agric. Food Chem. 2002, 50, 5191–5196. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Lin, H.S. Antioxidant Activity in Fruits and Leaves of Blackberry, Raspberry, and Strawberry Varies with Cultivar and Developmental Stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and Antiproliferative Activities of Raspberries. J. Agric. Food Chem. 2002, 50, 2926–2930. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Healthcare. European Pharmacopoeia (Ph. Eur.), 11th ed.; European Directorate for the Quality of Medicines & Healthcare, Council of Europe: Strasbourg, France, 2013. [Google Scholar]
- Konić-Ristić, A.; Šavikin, K.; Zdunić, G.; Janković, T.; Juranic, Z.; Menković, N.; Stanković, I. Biological Activity and Chemical Composition of Different Berry Juices. Food Chem. 2011, 125, 1412–1417. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy, M. The Importance of Solvent Type in Estimating Antioxidant Properties of Phenolic Compounds by ABTS Assay. Eur. Food Res. Technol. 2013, 236, 1099–1105. [Google Scholar] [CrossRef]
- Deng, G.F.; Shen, C.; Xu, X.R.; Kuang, R.D.; Guo, Y.J.; Zeng, L.S.; Gao, L.L.; Lin, X.; Xie, J.F.; Xia, E.Q.; et al. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds. Int. J. Mol. Sci. 2012, 13, 8308–8323. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. Environmental and Genetic Variation of Phenolic Compounds in Red Raspberry. J. Food Compos. Anal. 2005, 18, 759–769. [Google Scholar] [CrossRef]
- García-Viguera, C.; Zafrilla, P.; Artés, F.; Romero, F.; Abellán, P.; Tomás-Barberán, F.A. Colour and Anthocyanin Stability of Red Raspberry Jam. J. Sci. Food Agric. 1998, 78, 565–573. [Google Scholar] [CrossRef]
- Weber, C.A.; Perkins-Veazie, P.; Moore, P.P.; Howard, L. Variability of Antioxidant Content in Raspberry Germplasm. Acta Hortic. 2008, 777, 493–498. [Google Scholar] [CrossRef]
- Ma, H.; Johnson, S.L.; Liu, W.; Dasilva, N.A.; Meschwitz, S.; Dain, J.A.; Seeram, N.P. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects. Int. J. Mol. Sci. 2018, 19, 461. [Google Scholar] [CrossRef]
- Mitic, V.; Stankov Jovanovic, V.; Dimitrijevic, M.; Cvetkovic, J.; Simonovic, S.; Nikolic Mandic, S. Chemometric Analysis of Antioxidant Activity and Anthocyanin Content of Selected Wild and Cultivated Small Fruit from Serbia. Fruits 2014, 69, 413–422. [Google Scholar] [CrossRef]
- Heinonen, M. Antioxidant Activity and Antimicrobial Effect of Berry Phenolics--a Finnish Perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Bradis, C.M.; Yousef, G.G.; Ma, G.; Perkins-Veazie, P.; Fernandez, G.E. Anthocyanin, Carotenoid, Tocopherol, Andellagitannin Content of Red Raspberry Cultivars Grown Under Field or High Tunnel Cultivation in the Southeastern United States. J. Am. Soc. Hortic. Sci. 2015, 140, 163–171. [Google Scholar] [CrossRef]
- Toledo-Martín, E.M.; del Carmen García-García, M.; Font, R.; Moreno-Rojas, J.M.; Salinas-Navarro, M.; Gómez, P.; del Río-Celestino, M. Quantification of Total Phenolic and Carotenoid Content in Blackberries (Rubus fructicosus L.) Using Near Infrared Spectroscopy (NIRS) and Multivariate Analysis. Molecules 2018, 23, 3191. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Halvorsen, B.L.; Blomhoff, R. Validation of a Quantitative Assay for the Total Content of Lipophilic and Hydrophilic Antioxidants in Foods. Food Chem. 2011, 127, 761–768. [Google Scholar] [CrossRef]
Cultivar or Hybrids/Colour of Fruit | Origin of the Cultivar | Pedigree * op—Open Pollination |
---|---|---|
R. occidentalis ‘Jewel’/black | Brzezna/Poland—from Niwa Berry Breeding Ltd. | ‘Dundee’ × (‘Bristol’ × ‘Dundee’) |
R. occidentalis ‘Niwot’/black | Brzezna/Poland—from Niwa Berry Breeding Ltd. | A complex cross between two breeding clones from a natural environment of origin in the USA |
R. occidentalis ‘Mac Black’/black | Brzezna/Poland—from Niwa Berry Breeding Ltd. | - |
R. occidentalis/R. idaeus R1613411/Purple | Brzezna/Poland—from Niwa Berry Breeding Ltd. | ‘Jewell’ × R121304 (‘Litacz’ (‘Bristol’ × op) × purple raspberry × op) |
R. idaeus/R. occidentalis R1613409/dark purple | Brzezna/Poland—from Niwa Berry Breeding Ltd. | ‘Jewell’ × R121304 (purple raspberry × op) |
R. occidentalis/R. idaeus R1613412/black | Brzezna/Poland—from Niwa Berry Breeding Ltd. | ‘Jewell’ × R121304 (‘Litacz’ × purple raspberry) × op |
R. idaeus/ R. occidentalis R1314701/dark purple | Brzezna/Poland—from Niwa Berry Breeding Ltd. | ‘Litacz’ × ‘Sokolica’ |
R. occidentalis ‘Heban’ (R139501)/dark purple | Brzezna/Poland—from Niwa Berry Breeding Ltd. | (purple raspberry × ‘Polka’) × op |
R. occidentalis ‘Bristol’ A/black | Nałęczów/Poland from “Czarna malina” Barbara Rusiecka-Górniak’ | - |
R. occidentalis ‘Bristol’ B/black | Łaziska/Poland from “BiGrim” Grzegorz Maryniowski | - |
R. idaeus R1616002/red | Brzezna/Poland—from Niwa Berry Breeding Ltd. | R1634401 × ‘Polana’ |
R. idaeus ‘Husaria’/red | Brzezna/Poland—from Niwa Berry Breeding Ltd. | R120701 × ‘Sokolica’ |
R. idaeus ‘Delniwa’/red | Brzezna/Poland—from Niwa Berry Breeding Ltd. | ‘Polka’ × R1211101 |
Species/Variety | DPPH (mmol TE/g DW) | ABTS (mmol TE/g DW) | FRAP (mmol TE/g DW) | Content % of Anthocyanin | Content % of Polyphenolic Compounds | Polyphenols Without Anthocyanins |
---|---|---|---|---|---|---|
R. occidentalis ‘Bristol’ A a | 2.14 ± 0.25 gjklm | 1.24 ± 0.21 klm | 3.87 ± 0.82 klm | 1.37 ± 0.06 bcdegjklm | 4.9 ± 0.18 c–m | 3.53 ± 0.19 c–m |
R. occidentalis ‘Bristol’ B b | 1.95 ± 0.22 gklm | 1.24 ± 0.44 klm | 4.09 ± 0.09 hklm | 2.17 ± 0.11 klm | 4.63 ± 0.23 c–m | 3.26 ± 0.13 c–m |
R. occidentalis ‘Jewel’ c | 1.82 ± 0.44 gkm | 1.70 ± 0.11 klm | 3.21 ± 0.25 klm | 2.56 ± 0.17 hklm | 3.8 ± 0.21 abfhiklm | 1.24 ± 0.09 ab |
R. occidentalis ‘MacBlack’ d | 1.63 ± 0.47 | 1.61 ± 0.24 klm | 3.56 ± 0.28 klm | 2.89 ± 0.09 hklm | 3.72 ± 0.3 abfklm | 0.83 ± 0.04 abf |
R. occidentalis ‘Niwot’ e | 1.59 ± 0.20 | 2.12 ± 0.24 klm | 2.73 ± 0.36 m | 2.36 ± 0.05 klm | 3.70 ± 0.15 abfklm | 1.34 ± 0.05 abgm |
R. occidentalis ‘Heban’ f | 1.53 ± 0.22 | 0.97 ± 0.68 k | 2.47 ± 0.07 m | 1.67 ± 0.03 gklm | 3.84 ± 0.11 abcdegklm | 2.17 ± 0.21 ab |
R. occidentalis/R. idaeus R1613412 g | 1.03 ± 0.14 abci | 1.10 ± 0.32 k | 3.79 ± 0.23 klm | 3.66 ± 0.21 afhiklm | 4.16 ± 0.07 fhijklm | 0.5 ± 0.11 abefhi |
Rubus occidentalis/Rubus idaeus R1613411 h | 1.60 ± 0.20 | 0.71 ± 0.33 k | 2.18 ± 0.24 bklm | 1.17 ± 0.04 cdgklm | 2.98 ± 0.14 abcgklm | 1.81 ± 0.1 adgjlm |
R. idaeus/R. occidentalis R1314701 i | 1.95 ± 0.21 gklm | 2.31 ± 0.66 klm | 3.52 ± 0.29 | 1.57 ± 0.06 gklm | 3.05 ± 0.23 abcgklm | 1.48 ± 0.11 abgm |
R. idaeus/R. occidentalis R1613409 j | 1.16 ± 0.05 a | 0.75 ± 0.36 k | 2.68 ± 0.33 m | 2.19 ± 0.04 klm | 3.16 ± 0.21 abgklm | 0.97 ± 0.1 abf |
R. idaeus ‘Delniwa’ k | 0.97 ± 0.08 abci | 0.27 ± 0.07 a–j | 1.05 ± 0.09 a–g | 0.6 ± 0.08 a–j | 1.76 ± 0.16 a–j | 1.16 ± 0.03 ab |
R. idaeus ‘Husaria’ l | 1.10 ± 0.22 abi | 0.54 ± 0.13 e | 1.49± 0.81 | 0.57 ± 0.06 a–j | 1.56 ± 0.2 a–j | 0.99 ± 0.07 abf |
R. idaeus ‘002′ m | 1.02 ± 0.09 abci | 0.55 ± 0.14 abcdei | 1.03± 0.04 a–j | 0.59 ± 0.03 a–j | 1.15 ± 0.09 a–j | 0.56 ± 0.08 abefhi |
R. idaeus | R. occidentalis/ R. idaeus | R. occidentalis | R. idaeus/ R. occidenatlis | |
---|---|---|---|---|
R. idaeus | - | TPC (spectrophotometric) a, FRAP a, cyanidin 3-O-xylosyl rutinoside a, anthocyanins (HPLC) b, anthocyanins (HPTLC) b, anthocyanins (spectrophotometric) b, cyanidin 3-O-rutinoside b, cyanidin 3-O-glucoside b, pelargonidin 3-O-rutinoside c, cyanidin 3-O-sambubioside c | cyanidin 3-O-sambubioside b, anthocyanins (HPLC) c, anthocyanins (HPTLC) c, anthocyanins (spectrophotometric) c, TPC (spectrophotometric) c, DPPH c, ABTS c, FRAP c, cyanidin 3-O-rutinosidec, cyanidin 3-O-xylosyl rutinoside c, cyanidin 3-O-glucoside c, pelargonidin 3-O-rutinoside c | |
R. occidentalis/ R. idaeus | TPC (spectrophotometric) a, FRAP a, cyanidin 3-O-xylosyl rutinoside a, anthocyanins (HPLC) b, anthocyanins (HPTLC) b, anthocyanins (spectrophotometric) b, cyanidin 3-O-rutinoside b, cyanidin 3-O-glucoside b, pelargonidin 3-O-rutinoside c, cyanidin 3-O-sambubioside c | - | ||
R. occidentalis | cyanidin 3-O-sambubioside b, anthocyanins (HPLC) c, anthocyanins (HPTLC) c, anthocyanins (spectrophotometric) c, TPC (spectrophotometric) c, DPPH c, ABTS c, FRAP c, cyanidin 3-O-rutinoside c, cyanidin 3-O-xylosyl rutinoside c, cyanidin 3-O-glucoside c, pelargonidin 3-O-rutinoside c | - | ||
R. idaeus/ R. occidenatlis | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczuk, N.; Krauze-Baranowska, M.; Ośko, J.; Grembecka, M.; Migas, P. Comparison of Antioxidant Properties of Fruit from Some Cultivated Varieties and Hybrids of Rubus idaeus and Rubus occidentalis. Antioxidants 2025, 14, 86. https://doi.org/10.3390/antiox14010086
Adamczuk N, Krauze-Baranowska M, Ośko J, Grembecka M, Migas P. Comparison of Antioxidant Properties of Fruit from Some Cultivated Varieties and Hybrids of Rubus idaeus and Rubus occidentalis. Antioxidants. 2025; 14(1):86. https://doi.org/10.3390/antiox14010086
Chicago/Turabian StyleAdamczuk, Natalia, Mirosława Krauze-Baranowska, Justyna Ośko, Małgorzata Grembecka, and Piotr Migas. 2025. "Comparison of Antioxidant Properties of Fruit from Some Cultivated Varieties and Hybrids of Rubus idaeus and Rubus occidentalis" Antioxidants 14, no. 1: 86. https://doi.org/10.3390/antiox14010086
APA StyleAdamczuk, N., Krauze-Baranowska, M., Ośko, J., Grembecka, M., & Migas, P. (2025). Comparison of Antioxidant Properties of Fruit from Some Cultivated Varieties and Hybrids of Rubus idaeus and Rubus occidentalis. Antioxidants, 14(1), 86. https://doi.org/10.3390/antiox14010086