Phenolic and Antioxidant Characterization of Fruit By-Products for Their Nutraceuticals and Dietary Supplements Valorization under a Circular Bio-Economy Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Equipment
2.3. Samples
2.4. UAE of Polyphenols from Agri-Food Samples
2.5. Gravimetric Determination (Yield of Extraction)
2.6. Liquid Chromatography–Diode Array Detection (HPLC-DAD) Analysis of Polyphenols
HPLC-DAD Method Validation
- A pre-UAE: peak area of standard spiked in the sample, obtained before UAE.
- A post-UAE: peak area of standard spiked in the sample obtained after UAE.
2.7. TPC Assay
2.8. TAS—ABTS•+ Radical Cation Scavenging Activity
- I% = [(ΔAbs734nm)/A] × 100;
- A: control absorbance (ABTS•+);
- A1: sample absorbance.
2.9. Determination of the Protein Content by the Kjeldahl Method
2.10. Statistical Evaluation
3. Results and Discussion
3.1. Gravimetric Determination—Extract Yield (%) by UAE
3.2. Characterization of Agri-Food Samples by HPLC-DAD
3.2.1. HPLC-DAD Quali/Quantitative Analysis
Apple Products
Peach Products
Apricot Products
Tomato Products
3.3. TPC
3.4. Total Antioxidant Status Assay (TAS)
3.5. Protein Content Evaluation
3.6. Valorization of By-Products under Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UAE | Ultrasound-assisted extraction. |
HPLC-DAD | High-performance liquid chromatography–diode array detector. |
TPC | Total phenolic content. |
TAS | Total antioxidant status. |
TEAC | Trolox equivalent antioxidant capacity. |
ByP | By-products. |
FinalP | Final products. |
Ac-Bio-ByP | Apricot biological by-product. |
Ac-Conv-ByP | Apricot conventional by-product. |
Ac-Bio-FinalP | Apricot biological final product. |
Ac-Conv-FinalP | Apricot conventional final product. |
Pch-Bio-ByP | Peach biological by-product. |
Pch-Conv-ByP | Peach conventional by-product. |
Pch-Bio-FinalP | Peach biological final product. |
Pch-Conv-FinalP | Peach conventional final product. |
Apl-Bio-ByP | Apple biological by-product. |
Apl-Conv-ByP | Apple conventional by-product. |
Apl-FinalP | Apple final product. |
T-Bio-ByP | Tomato biological peels. |
LI | Lotta integrata. |
T-LI-ByP | Tomato lotta integrata biological peels. |
T-Bio-FinalP | Tomato biological final product. |
T-Conv-FinalP | Tomato conventional final product. |
DW | Dry weight. |
LoD | Limit of detection. |
LoQ | Limit of quantification. |
SS | Stock solutions. |
AOAC | Association of Official Agricultural Chemists International. |
NCHA | Neochlorogenic acid. |
SPC | Sum of the individual phenolic compounds. |
DES | Deep Eutectic Solvents. |
References
- Moreno-González, M.; Ottens, M. A Structured Approach to Recover Valuable Compounds from Agri-Food Side Streams. Food Bioprocess. Technol. 2021, 14, 1387–1406. [Google Scholar] [CrossRef]
- Virtanen, S.; Chowreddy, R.R.; Irmak, S.; Honkapää, K.; Isom, L. Food Industry Co-Streams: Potential Raw Materials for Biodegradable Mulch Film Applications. J. Polym. Environ. 2017, 25, 1110–1130. [Google Scholar] [CrossRef]
- European Commission. A New Circular Economy Action Plan; COM(2020) 98 final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Parliament. Circular Economy: Definition, Importance and Benefits; 20151201STO05603; European Parliament: Strasbourg, France, 2022. [Google Scholar]
- Morganti, P.; Gao, X.; Vukovic, N.; Gagliardini, A.; Lohani, A.; Morganti, G. Food Loss and Food Waste for Green Cosmetics and Medical Devices for a Cleaner Planet. Cosmetics 2022, 9, 19. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Pollini, L.; Cossignani, L.; Juan, C.; Mañes, J. Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Molecules 2021, 26, 4272. [Google Scholar] [CrossRef] [PubMed]
- Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Modelling the Recovery of Biocompounds from Peach Waste Assisted by Pulsed Electric Fields or Thermal Treatment. J. Food Eng. 2021, 290, 110196. [Google Scholar] [CrossRef]
- Cheaib, D.; El Darra, N.; Rajha, H.N.; Maroun, R.G.; Louka, N. Systematic and Empirical Study of the Dependence of Polyphenol Recovery from Apricot Pomace on Temperature and Solvent Concentration Levels. Sci. World J. 2018, 2018, 8249184. [Google Scholar] [CrossRef] [PubMed]
- Allaqaband, S.; Dar, A.H.; Patel, U.; Kumar, N.; Nayik, G.A.; Khan, S.A.; Ansari, M.J.; Alabdallah, N.M.; Kumar, P.; Pandey, V.K.; et al. Utilization of Fruit Seed-Based Bioactive Compounds for Formulating the Nutraceuticals and Functional Food: A Review. Front. Nutr. 2022, 9, 902554. [Google Scholar] [CrossRef]
- López Bermúdez, Y.N.; Aldana Heredia, J.F.; Sánchez-Camargo, A.d.P.; Hernández-Carrión, M. Valorization Strategies for a By-Product of Organic Tomato Processing as Potential Ingredient in Functional Food Formulations. Front. Food Sci. Technol. 2022, 2, 893795. [Google Scholar] [CrossRef]
- Savatovic, S.; Cetkovic, G.; Canadanovic-Brunet, J.; Djilas, S. Utilization of Tomato Waste as a Source of Polyphenolic Antioxidants. Acta Period. Technol. 2010, 2010, 187–194. [Google Scholar] [CrossRef]
- Hoss, I.; Rajha, H.N.; El Khoury, R.; Youssef, S.; Manca, M.L.; Manconi, M.; Louka, N.; Maroun, R.G. Valorization of Wine-Making By-Products’ Extracts in Cosmetics. Cosmetics 2021, 8, 109. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Montanari, S.; Davani, L.; Tumiatti, V.; Dimilta, M.; Gaddi, A.V.; De Simone, A.; Andrisano, V. Development of an UHPLC-Diode Arrays Detector (DAD) Method for the Analysis of Polydatin in Human Plasma. J. Pharm. Biomed. Anal. 2021, 198, 113985. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; SRV, A.; Chiang, J.H.; Henry, C.J. Plant Proteins for Future Foods: A Roadmap. Foods 2021, 10, 1967. [Google Scholar] [CrossRef]
- Husein el Hadmed, H.; Castillo, R.F. Cosmeceuticals: Peptides, Proteins, and Growth Factors. J. Cosmet. Dermatol. 2016, 15, 514–519. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-Assisted Extraction and Modification of Plant-Based Proteins: Impact on Physicochemical, Functional, and Nutritional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC Text with EEA Relevance. Available online: http://data.europa.eu/eli/reg/2005/396/oj (accessed on 23 February 2024).
- Regulation (EU) 2018/848 of the European Parliament and of the Council on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No. 834/2007. Available online: https://leap.unep.org/en/countries/eu/national-legislation/regulation-eu-2018848-european-parliament-and-council-organic#:~:text=This%20Regulation%20establishes%20the%20principles,(EU)%202017%2F625 (accessed on 23 February 2024).
- Mesquita, E.; Monteiro, M. Simultaneous HPLC Determination of Flavonoids and Phenolic Acids Profile in Pêra-Rio Orange Juice. Food Res. Int. 2018, 106, 54–63. [Google Scholar] [CrossRef]
- Redmile-Gordon, M.A.; Armenise, E.; White, R.P.; Hirsch, P.R.; Goulding, K.W.T. A Comparison of Two Colorimetric Assays, Based upon Lowry and Bradford Techniques, to Estimate Total Protein in Soil Extracts. Soil. Biol. Biochem. 2013, 67, 166–173. [Google Scholar] [CrossRef]
- Davani, L.; Terenzi, C.; Tumiatti, V.; De Simone, A.; Andrisano, V.; Montanari, S. Integrated Analytical Approaches for the Characterization of Spirulina and Chlorella Microalgae. J. Pharm. Biomed. Anal. 2022, 219, 114943. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC international: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Yokotani, N.; Uraji, M.; Hara, M.; Hihara, S.; Hatanaka, T.; Oda, K. Low Accumulation of Chlorogenic Acids Represses Reddening during Flesh Browning in Japanese Peach “Okayama PEH7”. Biosci. Biotechnol. Biochem. 2017, 81, 147–152. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Bastola, K.P.; Guragain, Y.N.; Bhadriraju, V.; Vadlani, P.V. Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. Am. J. Anal. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin−Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Xu, B.; Wang, Y.; Zhang, C.; Cao, Y.; Xing, X. Research Progress on Classification, Sources and Functions of Dietary Polyphenols for Prevention and Treatment of Chronic Diseases. J. Future Foods 2023, 3, 289–305. [Google Scholar] [CrossRef]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of Dietary Polyphenols on Gut Microbiota, Their Metabolites and Health Benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Mármol, I.; Quero, J.; Ibarz, R.; Ferreira-Santos, P.; Teixeira, J.A.; Rocha, C.M.R.; Pérez-Fernández, M.; García-Juiz, S.; Osada, J.; Martín-Belloso, O.; et al. Valorization of Agro-Food by-Products and Their Potential Therapeutic Applications. Food Bioprod. Process. 2021, 128, 247–258. [Google Scholar] [CrossRef]
- Makris, D.P.; Şahin, S. Polyphenolic Antioxidants from Agri-Food Waste Biomass. Antioxidants 2019, 8, 624. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cao, J.; Zhao, T.; Liu, Y.; Khan, A.; Cheng, G. The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int. J. Mol. Sci. 2021, 22, 962. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, K.E.; Tennant, D.R.; Bellion, P. Dietary Intake of Phloridzin from Natural Occurrence in Foods. Br. J. Nutr. 2020, 123, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Maisto, M.; Piccolo, V.; Novellino, E.; Schiano, E.; Iannuzzo, F.; Ciampaglia, R.; Summa, V.; Tenore, G.C. Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology. Antioxidants 2022, 11, 1933. [Google Scholar] [CrossRef] [PubMed]
- Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The Potential Effects of Chlorogenic Acid, the Main Phenolic Components in Coffee, on Health: A Comprehensive Review of the Literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef]
Sample | Acronym | |
---|---|---|
Apricot | Biological by-product | Ac-Bio-ByP |
Conventional by-product | Ac-Conv-ByP | |
Biological final product | Ac-Bio-FinalP | |
Conventional final product | Ac-Conv-FinalP | |
Peach | Biological by-product | Pch-Bio-ByP |
Conventional by-product | Pch-Conv-ByP | |
Biological final product | Pch-Bio-FinalP | |
Conventional final product | Pch-Conv-FinalP | |
Apple | Biological by-product | Apl-Bio-ByP |
Conventional by-product | Apl-Conv-ByP | |
Apple final product | Apl-FinalP | |
Tomato | Biological peels | T-Bio-ByP |
LI* peels | T-LI-ByP | |
Biological final product | T-Bio-FinalP | |
Conventional final product | T-Conv-FinalP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terenzi, C.; Bermudez, G.; Medri, F.; Davani, L.; Tumiatti, V.; Andrisano, V.; Montanari, S.; De Simone, A. Phenolic and Antioxidant Characterization of Fruit By-Products for Their Nutraceuticals and Dietary Supplements Valorization under a Circular Bio-Economy Approach. Antioxidants 2024, 13, 604. https://doi.org/10.3390/antiox13050604
Terenzi C, Bermudez G, Medri F, Davani L, Tumiatti V, Andrisano V, Montanari S, De Simone A. Phenolic and Antioxidant Characterization of Fruit By-Products for Their Nutraceuticals and Dietary Supplements Valorization under a Circular Bio-Economy Approach. Antioxidants. 2024; 13(5):604. https://doi.org/10.3390/antiox13050604
Chicago/Turabian StyleTerenzi, Cristina, Gabriela Bermudez, Francesca Medri, Lara Davani, Vincenzo Tumiatti, Vincenza Andrisano, Serena Montanari, and Angela De Simone. 2024. "Phenolic and Antioxidant Characterization of Fruit By-Products for Their Nutraceuticals and Dietary Supplements Valorization under a Circular Bio-Economy Approach" Antioxidants 13, no. 5: 604. https://doi.org/10.3390/antiox13050604