Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material
2.3. Extraction Method
- Extract 1: 0% EtOH, 100% H2O
- Extract 2: 25% EtOH, 75% H2O
- Extract 3: 50% EtOH, 50% H2O
- Extract 4: 75% EtOH, 25% H2O
- Extract 5: 98% EtOH, 0% H2O
2.4. Analysis of the Content of Bioactive Compounds
2.5. Dextran System Preparation
2.6. Biological Activity
2.7. Evaluation of Prebiotic Potential
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Chu, J.; Hao, W.; Zhang, J.; Li, H.; Yang, C.; Yang, J.; Chen, X.; Wang, H. Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediat. Inflamm. 2021, 2021, 5110276. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Z.; Zhai, T.; Ding, Q.; Yang, H.; Wang, J.; Zhang, L.; Zhao, L. Global Research Trends on the Links between the Gut Microbiota and Diabetes between 2001 and 2021: A Bibliometrics and Visualized Study. Front. Microbiol. 2022, 13, 1011050. [Google Scholar] [CrossRef]
- Li, W.-Z.; Stirling, K.; Yang, J.-J.; Zhang, L. Gut Microbiota and Diabetes: From Correlation to Causality and Mechanism. World J. Diabetes 2020, 11, 293. [Google Scholar] [CrossRef]
- Bander, Z.A.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Armet, A.M.; Deehan, E.C.; O’Sullivan, A.F.; Mota, J.F.; Field, C.J.; Prado, C.M.; Lucey, A.J.; Walter, J. Rethinking Healthy Eating in Light of the Gut Microbiome. Cell Host Microbe 2022, 30, 764–785. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut 2016, 65, 330. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Somasundaram, I.; Das, D.; Jain Manoj, S.; Banu, H.; Mitta Suresh, P.; Paul, S.; Bisgin, A.; Zhang, H.; Sun, X.-F.; et al. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023, 15, 2631. [Google Scholar] [CrossRef] [PubMed]
- Sip, S.; Sip, A.; Szulc, P.; Cielecka-Piontek, J. Haskap Berry Leaves (Lonicera caerulea L.)—The Favorable Potential of Medical Use. Nutrients 2022, 14, 3898. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Omari, N.E.; EL Hachlafi, N.; Jemly, M.E.; Hakkour, M.; Balahbib, A.; El Menyiy, N.; Bakrim, S.; Naceiri Mrabti, H.; Khouchlaa, A.; et al. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022, 27, 3286. [Google Scholar] [CrossRef] [PubMed]
- An, M.-Y.; Eo, H.J.; Son, H.J.; Geum, N.G.; Park, G.H.; Jeong, J.B. Anti-inflammatory Effects of Leaf and Branch Extracts of Honeyberry (Lonicera caerulea) on Lipopolysaccharide-stimulated RAW264.7 Cells through ATF3 and Nrf2/HO-1 Activation. Mol. Med. Rep. 2020, 22, 5219–5230. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Dong, M.; Guo, N.; Tian, J.; Lei, P.; Wang, S.; Yang, Y.; Shi, Y. Flavonoids Improve Type 2 Diabetes Mellitus and Its Complications: A Review. Front. Nutr. 2023, 10, 1192131. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef]
- Bazyar, H.; Javid, A.Z.; Ahangarpour, A.; Zaman, F.; Hosseini, S.A.; Zohoori, V.; Aghamohammadi, V.; Yazdanfar, S.; Cheshmeh, M.G.D. The Effects of Rutin Supplement on Blood Pressure Markers, Some Serum Antioxidant Enzymes, and Quality of Life in Patients with Type 2 Diabetes Mellitus Compared with Placebo. Front. Nutr. 2023, 10, 1214420. [Google Scholar] [CrossRef]
- Rahmani, S.; Naraki, K.; Roohbakhsh, A.; Hayes, A.W.; Karimi, G. The Protective Effects of Rutin on the Liver, Kidneys, and Heart by Counteracting Organ Toxicity Caused by Synthetic and Natural Compounds. Food Sci. Nutr. 2023, 11, 39. [Google Scholar] [CrossRef]
- Shabbir, U.; Rubab, M.; Daliri, E.B.-M.; Chelliah, R.; Javed, A.; Oh, D.-H. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients 2021, 13, 206. [Google Scholar] [CrossRef]
- Wen, L.; Wu, D.; Tan, X.; Zhong, M.; Xing, J.; Li, W.; Li, D.; Cao, F. The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients 2022, 14, 4681. [Google Scholar] [CrossRef]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chin. Med. 2010, 5, 13. [Google Scholar] [CrossRef]
- Ito, A.; Matsui, Y.; Takeshita, M.; Katashima, M.; Goto, C.; Kuriki, K. Gut Microbiota-Mediated Associations of Green Tea and Catechin Intakes with Glucose Metabolism in Individuals without Type 2 Diabetes Mellitus: A Four-Season Observational Study with Mediation Analysis. Arch. Microbiol. 2023, 205, 191. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Z.; Zhao, X.; Xie, H.; Du, L.; Gao, H.; Xie, C. Mechanisms of Kaempferol in the Treatment of Diabetes: A Comprehensive and Latest Review. Front. Endocrinol. 2022, 13, 990299. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Arroo, R. The Protective Effects of Flavonoids and Carotenoids against Diabetic Complications—A Review of in Vivo Evidence. Front. Nutr. 2023, 10, 1020950. [Google Scholar] [CrossRef]
- Agraharam, G.; Girigoswami, A.; Girigoswami, K. Myricetin: A Multifunctional Flavonol in Biomedicine. Curr. Pharmacol. Rep. 2022, 8, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Arabshomali, A.; Bazzazzadehgan, S.; Mahdi, F.; Shariat-Madar, Z. Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules 2023, 28, 7209. [Google Scholar] [CrossRef]
- Liao, H.; Zhu, J.; Feng, H.; Ni, J.; Zhang, N.; Chen, S.; Liu, H.; Yang, Z.; Deng, W.; Tang, Q.-Z. Myricetin Possesses Potential Protective Effects on Diabetic Cardiomyopathy through Inhibiting IκBα/NFκB and Enhancing Nrf2/HO-1. Oxidative Med. Cell. Longev. 2017, 2017, 8370593. [Google Scholar] [CrossRef]
- De Silva, A.B.K.H.; Rupasinghe, H.P.V. Polyphenols Composition and Anti-Diabetic Properties in Vitro of Haskap (Lonicera caerulea L.) Berries in Relation to Cultivar and Harvesting Date. J. Food Compos. Anal. 2020, 88, 103402. [Google Scholar] [CrossRef]
- Shandilya, S.; Kumar, S.; Kumar Jha, N.; Kumar Kesari, K.; Ruokolainen, J. Interplay of Gut Microbiota and Oxidative Stress: Perspective on Neurodegeneration and Neuroprotection. J. Adv. Res. 2022, 38, 223–244. [Google Scholar] [CrossRef]
- Fu, Y.; Li, S.; Xiao, Y.; Liu, G.; Fang, J. A Metabolite Perspective on the Involvement of the Gut Microbiota in Type 2 Diabetes. Int. J. Mol. Sci. 2023, 24, 14991. [Google Scholar] [CrossRef]
- Yoha, K.S.; Nida, S.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob. Proteins 2022, 14, 15. [Google Scholar] [CrossRef]
- You, S.; Ma, Y.; Yan, B.; Pei, W.; Wu, Q.; Ding, C.; Huang, C. The Promotion Mechanism of Prebiotics for Probiotics: A Review. Front. Nutr. 2022, 9, 1000517. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef]
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduct. Target. Ther. 2018, 3, 7. [Google Scholar] [CrossRef]
- Sip, S.; Gościniak, A.; Szulc, P.; Walkowiak, J.; Cielecka-Piontek, J. Assisted Extraction with Cyclodextrins as a Way of Improving the Antidiabetic Activity of Actinidia Leaves. Pharmaceutics 2022, 14, 2473. [Google Scholar] [CrossRef]
- Sip, S.; Sip, A.; Miklaszewski, A.; Żarowski, M.; Cielecka-Piontek, J. Zein as an Effective Carrier for Hesperidin Delivery Systems with Improved Prebiotic Potential. Molecules 2023, 28, 5209. [Google Scholar] [CrossRef]
- Sip, S.; Szymanowska, D.; Chanaj-Kaczmarek, J.; Skalicka-Woźniak, K.; Budzyńska, B.; Wronikowska-Denysiuk, O.; Słowik, T.; Szulc, P.; Cielecka-Piontek, J. Potential for Prebiotic Stabilized Cornus mas L. Lyophilized Extract in the Prophylaxis of Diabetes Mellitus in Streptozotocin Diabetic Rats. Antioxidants 2022, 11, 380. [Google Scholar] [CrossRef]
- Pawłowicz, K.; Sip, S.; Plech, T.; Kaproń, B.; Kobus-Cisowska, J.; Cielecka-Piontek, J. Aloe Arborescens: In Vitro Screening of Genotoxicity, Effective Inhibition of Enzyme Characteristics for Disease Etiology, and Microbiological Activity. Molecules 2022, 27, 2323. [Google Scholar] [CrossRef]
- Telagari, M.; Hullatti, K. In-Vitro α-Amylase and α-Glucosidase Inhibitory Activity of Adiantum Caudatum Linn. and Celosia Argentea Linn. Extracts and Fractions. Indian J. Pharmacol. 2015, 47, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Liu, D. Direct Measurement of Lipase Inhibition by Orlistat Using a Dissolution Linked In Vitro Assay. Clin. Pharmacol. Biopharm. 2012, 1, 1000103. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Podolak, I.; Galanty, A.; Załuski, D.; Makowska-Wąs, J.; Sobolewska, D.; Janeczko, Z.; Żmudzki, P. In Vitro Anti-Denaturation and Anti-Hyaluronidase Activities of Extracts and Galactolipids from Leaves of Impatiens Parviflora DC. Nat. Prod. Res. 2016, 30, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Lee, H.-J. Lonicera Caerulea: An Updated Account of Its Phytoconstituents and Health-Promoting Activities. Trends Food Sci. Technol. 2021, 107, 130–149. [Google Scholar] [CrossRef]
- Dzydzan, O.; Brodyak, I.; Sokół-Łętowska, A.; Kucharska, A.Z.; Sybirna, N. Loganic Acid, an Iridoid Glycoside Extracted from Cornus Mas L. Fruits, Reduces of Carbonyl/Oxidative Stress Biomarkers in Plasma and Restores Antioxidant Balance in Leukocytes of Rats with Streptozotocin-Induced Diabetes Mellitus. Life 2020, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Y.; Huang, D.; Chen, S.; Xia, Y.; Zhu, S. The Inhibitory Mechanism of Chlorogenic Acid and Its Acylated Derivatives on α-Amylase and α-Glucosidase. Food Chem. 2022, 372, 131334. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and Chlorogenic Acids Inhibit Key Enzymes Linked to Type 2 Diabetes (in Vitro): A Comparative Study. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 165–170. [Google Scholar] [CrossRef]
- Ye, X.; Liu, Y.; Hu, J.; Gao, Y.; Ma, Y.; Wen, D. Chlorogenic Acid-Induced Gut Microbiota Improves Metabolic Endotoxemia. Front. Endocrinol. 2021, 12, 762691. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Q.; Shen, L.; Guo, K.; Zhou, X. Chlorogenic Acid Improves Glucose Tolerance, Lipid Metabolism, Inflammation and Microbiota Composition in Diabetic Db/Db Mice. Front. Endocrinol. 2022, 13, 1042044. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review. Evid. Based Complement. Altern. Med. ECAM 2013, 2013, 801457. [Google Scholar] [CrossRef] [PubMed]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Huang, J.; Xie, M.; He, L.; Song, X.; Cao, T. Chlorogenic Acid: A Review on Its Mechanisms of Anti-Inflammation, Disease Treatment, and Related Delivery Systems. Front. Pharmacol. 2023, 14, 1218015. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Wianowska, D. Influence of Selected Factors on Antioxidant Properties of Chlorogenic Acid and Kaempferol as Well as Their Binary Mixtures. Appl. Sci. 2023, 13, 11138. [Google Scholar] [CrossRef]
- Bandeira, S.d.M.; da Fonseca, L.J.S.; Guedes, G.d.S.; Rabelo, L.A.; Goulart, M.O.F.; Vasconcelos, S.M.L. Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus. Int. J. Mol. Sci. 2013, 14, 3265–3284. [Google Scholar] [CrossRef]
- Bao, L.; Li, J.; Zha, D.; Zhang, L.; Gao, P.; Yao, T.; Wu, X. Chlorogenic Acid Prevents Diabetic Nephropathy by Inhibiting Oxidative Stress and Inflammation through Modulation of the Nrf2/HO-1 and NF-ĸB Pathways. Int. Immunopharmacol. 2018, 54, 245–253. [Google Scholar] [CrossRef]
- Murai, T.; Matsuda, S. The Chemopreventive Effects of Chlorogenic Acids, Phenolic Compounds in Coffee, against Inflammation, Cancer, and Neurological Diseases. Molecules 2023, 28, 2381. [Google Scholar] [CrossRef]
- Wang, D.; Hou, J.; Wan, J.; Yang, Y.; Liu, S.; Li, X.; Li, W.; Dai, X.; Zhou, P.; Liu, W.; et al. Dietary Chlorogenic Acid Ameliorates Oxidative Stress and Improves Endothelial Function in Diabetic Mice via Nrf2 Activation. J. Int. Med. Res. 2021, 49, 0300060520985363. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef]
- Rosa, F.; Marigliano, B.; Mannucci, S.; Candelli, M.; Savioli, G.; Merra, G.; Gabrielli, M.; Gasbarrini, A.; Franceschi, F.; Piccioni, A. Coffee and Microbiota: A Narrative Review. Curr. Issues Mol. Biol. 2024, 46, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Berding, K.; Vlckova, K.; Marx, W.; Schellekens, H.; Stanton, C.; Clarke, G.; Jacka, F.; Dinan, T.G.; Cryan, J.F. Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Adv. Nutr. 2021, 12, 1239–1285. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.A.; dos Santos Pereira, E.; de Oliveira Raphaelli, C.; Radünz, M.; Camargo, T.M.; da Rocha Concenço, F.I.G.; Cantillano, R.F.F.; Fiorentini, Â.M.; Nora, L. Application of Prebiotics in Apple Products and Potential Health Benefits. J. Food Sci. Technol. 2022, 59, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- de Alencar Silva, A.; Pereira-de-Morais, L.; Rodrigues da Silva, R.E.; de Menezes Dantas, D.; Brito Milfont, C.G.; Gomes, M.F.; Araújo, I.M.; Kerntopf, M.R.; Alencar de Menezes, I.R.; Barbosa, R. Pharmacological Screening of the Phenolic Compound Caffeic Acid Using Rat Aorta, Uterus and Ileum Smooth Muscle. Chem. Biol. Interact. 2020, 332, 109269. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Zieliński, H.; Laparra-Llopis, J.M.; Szawara-Nowak, D.; Honke, J.; Giménez-Bastida, J.A. Caffeic Acid Modulates Processes Associated with Intestinal Inflammation. Nutrients 2021, 13, 554. [Google Scholar] [CrossRef] [PubMed]
- Toma, L.; Sanda, G.M.; Niculescu, L.S.; Deleanu, M.; Stancu, C.S.; Sima, A.V. Caffeic Acid Attenuates the Inflammatory Stress Induced by Glycated LDL in Human Endothelial Cells by Mechanisms Involving Inhibition of AGE-Receptor, Oxidative, and Endoplasmic Reticulum Stress. BioFactors 2017, 43, 685–697. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxidative Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. SPJ 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, D.; Roza, J.M. Assessment of Anti-Inflammatory and Antioxidant Activity of Quercetin-Rutin Blend (SophorOxTM)—An Invitro Cell Based Assay. J. Complement. Integr. Med. 2022, 19, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Ukom, A.; Usman, V.; Ojimelukwe, P. Assessment of Heavy Metal Content and Antioxidant Activity of Some Selected Vegetables. J. Chem. Soc. Niger. 2019, 44, 466–478. [Google Scholar]
- Angeloni, S.; Spinozzi, E.; Maggi, F.; Sagratini, G.; Caprioli, G.; Borsetta, G.; Ak, G.; Sinan, K.I.; Zengin, G.; Arpini, S.; et al. Phytochemical Profile and Biological Activities of Crude and Purified Leonurus Cardiaca Extracts. Plants 2021, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Masteikova, R.; Majiene, D.; Savickas, A.; Kevelaitis, E.; Bernatoniene, R.; Dvorácková, K.; Civinskiene, G.; Lekas, R.; Vitkevicius, K.; et al. Free Radical-Scavenging Activities of Crataegus Monogyna Extracts. Medicina 2008, 44, 706–712. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which Polyphenolic Compounds Contribute to the Total Antioxidant Activities of Apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef] [PubMed]
- Riyaphan, J.; Pham, D.-C.; Leong, M.K.; Weng, C.-F. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021, 11, 1877. [Google Scholar] [CrossRef] [PubMed]
- Assefa, S.T.; Yang, E.-Y.; Chae, S.-Y.; Song, M.; Lee, J.; Cho, M.-C.; Jang, S. Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables. Plants 2019, 9, 2. [Google Scholar] [CrossRef]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-Glucosidase Inhibitors from Plants: A Natural Approach to Treat Diabetes. Pharmacogn. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef]
- Marinho, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 1518. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.; Sabere, A.S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef]
- Cho, Y.-H.; Kim, N.-H.; Khan, I.; Yu, J.M.; Jung, H.G.; Kim, H.H.; Jang, J.Y.; Kim, H.J.; Kim, D.-I.; Kwak, J.-H.; et al. Anti-Inflammatory Potential of Quercetin-3-O-β-D-(“2”-Galloyl)-Glucopyranoside and Quercetin Isolated from Diospyros Kaki Calyx via Suppression of MAP Signaling Molecules in LPS-Induced RAW 264.7 Macrophages. J. Food Sci. 2016, 81, C2447–C2456. [Google Scholar] [CrossRef]
- Aryangat, A.V.; Gerich, J.E. Type 2 Diabetes: Postprandial Hyperglycemia and Increased Cardiovascular Risk. Vasc. Health Risk Manag. 2010, 6, 145–155. [Google Scholar] [PubMed]
- Hiyoshi, T.; Fujiwara, M.; Yao, Z. Postprandial Hyperglycemia and Postprandial Hypertriglyceridemia in Type 2 Diabetes. J. Biomed. Res. 2019, 33, 1–16. [Google Scholar] [CrossRef] [PubMed]
Strain Name | Category | Origin |
---|---|---|
Gram-positive bacteria | ||
Bifidobacterium longum | Probiotic bacteria | ATCC 15707 |
Bifidobacterium animalis | Probiotic bacteria | ATCC BAA-2848 |
Faecalibacterium prausnitzii | Probiotic bacteria | ATCC 29739 |
Lactobacillus salivarius | Probiotic bacteria | ATCC 11741 |
Lactiplantibacillus plantarum 299v | Probiotic bacteria | Isolate from commercial product SanProbi IBS |
Lactobacillus helveticus | Probiotic bacteria | ATCC 27558 |
Lacticaseibacillus rhamnosus GG | Probiotic bacteria | ATCC 53103 |
Bacillus subtilis | Spore-forming bacteria causing food spoilage | Isolate from food |
Enterococcus faecalis | Antibiotic-resistant faecal bacteria; an indicator of faecal contamination | Isolate from food |
Listeria monocytogenes | Pathogenic bacteria: parasites of animals and humans | ATCC 19111 |
Staphylococcus aureus | Pathogenic bacteria with enterotoxigenic properties | ATCC 25923 |
Gram-negative bacteria | ||
Escherichia coli | Intestinal bacteria; sanitary indicator | ATCC 10536 |
Pseudomonas aeruginosa | Pathogenic bacteria resistant to antibiotics | ATCC 15442 |
Salmonella enterica | Pathogenic bacteria causing food poisoning | Clinical isolate from WSSE |
TPC * [mg/g DL **] | Loganic Acid [mg/g DL **] | Chlorogenic Acid [mg/g DL **] | Caffeic Acid [mg/g DL **] | Rutin [mg/g DL **] | Quercetin [mg/g DL **] | |
---|---|---|---|---|---|---|
Extract 1 | 54.127 ± 1.214 a | 2.814 ± 0.155 b | 0.989 ± 0.068 a | 0.080 ± 0.002 a | 0.895 ± 0.117 a | 1.314 ± 0.115 a |
Extract 2 | 56.256 ± 1.304 b | 2.877 ± 0.151 b | 1.024 ± 0.077 a | 0.082 ± 0.003 a | 0.912 ± 0.122 a,b | 1.349 ± 0.110 a |
Extract 3 | 60.014 ± 1.311 c | 2.982 ± 0.164 b | 1.127 ± 0.089 b | 0.097 ± 0.005 b | 1.157 ± 0.131 c | 1.509 ± 0.127 c |
Extract 4 | 58.259 ± 1.287 b | 2.824 ± 0.152 b | 1.007 ± 0.074 a | 0.089 ± 0.005 b | 0.949 ± 0.120 b | 1.407 ± 0.111 b |
Extract 5 | 51.057 ± 1.109 a | 2.754 ± 0.137 a | 0.956 ± 0.061 a | 0.077 ± 0.004 a | 0.871 ± 0.114 a | 1.249 ± 0.099 a |
TPC * [mg/g DL **] | Loganic Acid [mg/g DL **] | Chlorogenic Acid [mg/g DL **] | Caffeic Acid [mg/g DL **] | Rutin [mg/g DL **] | Quercetin [mg/g DL **] | |
---|---|---|---|---|---|---|
System 1 (Dextran 5.000) | 59.124 ± 1.214 | 2.907 ± 0.161 | 1.124 ± 0.087 | 0.095 ± 0.004 | 1.129 ± 0.124 | 1.497 ± 0.124 |
System 2 (Dextran 40.000) | 59.667 ± 1.127 | 2.980 ± 0.155 | 1.125 ± 0.084 | 0.093 ± 0.005 | 1.143 ± 0.122 | 1.507 ± 0.127 |
System 3 (Dextran 70.000) | 59.551 ± 1.124 | 2.974 ± 0.153 | 1.125 ± 0.083 | 0.092 ± 0.003 | 1.137 ± 0.121 | 1.501 ± 0.121 |
Extract 3 (reference) | 60.014 ± 1.311 | 2.982 ± 0.164 | 1.127 ± 0.089 | 0.097 ± 0.005 | 1.157 ± 0.131 | 1.509 ± 0.127 |
System 1 | System 2 | System 3 | Extract 3 (Reference) | |
---|---|---|---|---|
Antioxidant potential expressed as Trolox equivalent [mg/mL] | ||||
ABTS | 0.2312 ± 0.0095 | 0.2514 ± 0.0103 | 0.2447 ± 0.0101 | 0.2412 ± 0.0109 |
CUPRAC | 0.3056 ±0.0113 | 0.3215 ±0.0119 | 0.3121 ± 0.0115 | 0.3156 ± 0.0099 |
DPPH | 0.2005 ±0.0063 | 0.2245 ±0.0070 | 0.21001 ± 0.0066 | 0.2106 ± 0.0084 |
FRAP | 0.3288 ± 0.0124 | 0.3647 ± 0.0137 | 0.3411 ± 0.0129 | 0.3488 ± 0.0147 |
Biological activity | ||||
α-glucosidase expressed as acarbose equivalent [mg/mL] | 1.5048 ± 0.0571 | 1.5541 ± 0.05889 | 1.4915 ± 0.0565 | 1.5848 ± 0.0659 |
Hyaluronidase inhibition expressed as quercetin equivalent [mg/mL] | 0.3052 ± 0.0122 | 0.3144 ± 0.0126 | 0.2982 ± 0.0119 | 0.3245 ± 0.0129 |
Lipase inhibition expressed as Orlistat equivalent [µg/mL] | 5.9781 ± 0.2397 | 6.1112 ± 0.2397 | 5.8715 ± 0.2397 | 6.1271 ± 0.2433 |
Time [H] | Control | System 1 | System 2 | System 3 | Dextran 5000 | Dextran 40,000 | Dextran 70,000 | |
---|---|---|---|---|---|---|---|---|
Bifidobacterium longum | 24 | 1.08 × 109 | 2.61 × 108 * | 2.73 × 108 * | 2.05 × 108 * | 8.29 × 107 * | 9.41 × 107 * | 9.54 × 107 * |
48 | 1.30 × 109 | 1.49 × 109 | 1.49 × 109 | 1.82 × 109 | 1.40 × 109 | 1.23 × 109 | 1.57 × 1010 * | |
72 | 1.09 × 109 | 1.34 × 109 | 1.58 × 109 | 1.00 × 109 | 1.27 × 109 | 9.59 × 108 * | 1.35 × 1010 * | |
Bifidobacterium animalis | 24 | 1.62 × 108 | 2.61 × 108 | 3.17 × 108 * | 2.75 × 108 | 1.72 × 108 | 1.21 × 108 | 8.53 × 107 * |
48 | 3.21 × 108 | 5.65 × 108 * | 4.25 × 108 | 4.71 × 108 * | 2.60 × 108 | 2.96 × 108 | 2.91 × 108 | |
72 | 2.05 × 108 | 5.78 × 108 * | 1.56 × 109 * | 7.32 × 108 * | 2.65 × 108 | 2.70 × 108 | 3.41 × 107 * | |
Faecalibacterium prausnitzii | 24 | 4.82 × 108 | 1.32 × 109 * | 9.64 × 108 | 1.12 × 109 * | 5.49 × 108 | 5.14 × 108 | 4.71 × 108 |
48 | 7.45 × 108 | 1.55 × 109 * | 1.08 × 109 * | 1.12 × 109 * | 4.71 × 108 | 4.23 × 108 | 3.48 × 108 | |
72 | 2.27 × 108 | 8.62 × 108 * | 8.67 × 108 * | 5.99 × 108 | 1.34 × 108 | 1.87 × 108 | 2.01 × 108 | |
Lactobacillus salivarius | 24 | 1.48 × 1010 | 1.54 × 1010 | 1.98 × 1010 | 2.03 × 1010 | 1.54 × 1010 | 1.47 × 1010 | 1.36 × 1010 |
48 | 1.36 × 1010 | 1.42 × 1010 | 1.37 × 1010 | 1.38 × 1010 | 1.27 × 1010 | 1.53 × 1010 | 1.12 × 109 * | |
72 | 1.72 × 1010 | 3.31 × 1010 | 2.84 × 1010 | 2.86 × 1010 | 1.75 × 1010 | 1.69 × 1010 | 9.75 × 108 * | |
Lactiplantibacillus plantarum 299v | 24 | 1.13 × 1010 | 1.98 × 1010 | 1.52 × 1010 | 1.65 × 1010 | 1.25 × 1010 | 1.10 × 1010 | 1.42 × 1010 |
48 | 1.33 × 1010 | 1.18 × 1010 | 1.25 × 1010 | 2.13 × 1010 | 1.32 × 1010 | 1.32 × 1010 | 1.24 × 1010 | |
72 | 1.73 × 1010 | 3.41 × 1010 | 2.99 × 1010 | 3.03 × 1010 * | 1.73 × 1010 | 1.47 × 1010 | 1.62 × 1010 | |
Lactobacillus helveticus | 24 | 4.17 × 108 | 6.20 × 108 | 8.82 × 108 | 9.59 × 108 | 4.46 × 108 | 3.39 × 108 | 2.96 × 108 |
48 | 4.00 × 108 | 8.02 × 108 * | 6.68 × 108 | 6.95 × 108 | 3.42 × 108 | 3.81 × 108 | 4.30 × 108 | |
72 | 3.81 × 108 | 1.16 × 109 * | 8.67 × 108 | 1.29 × 109 * | 3.06 × 108 | 3.15 × 108 | 4.15 × 108 | |
Lacticaseibacillus rhamnosus GG | 24 | 2.28 × 109 | 1.57 × 1010 * | 1.96 × 109 | 1.61 × 109 | 2.16 × 109 | 1.77 × 109 | 3.48 × 108 * |
48 | 5.74 × 109 | 2.22 × 1010 * | 9.53 × 109 | 1.22 × 1010 * | 7.32 × 109 | 6.24 × 109 | 1.59 × 109 | |
72 | 2.23 × 1010 | 4.15 × 1010 | 3.44 × 1010 | 2.79 × 1010 | 1.90 × 1010 | 2.13 × 1010 | 1.32 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sip, S.; Sip, A.; Szulc, P.; Selwet, M.; Żarowski, M.; Czerny, B.; Cielecka-Piontek, J. Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement. Antioxidants 2024, 13, 357. https://doi.org/10.3390/antiox13030357
Sip S, Sip A, Szulc P, Selwet M, Żarowski M, Czerny B, Cielecka-Piontek J. Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement. Antioxidants. 2024; 13(3):357. https://doi.org/10.3390/antiox13030357
Chicago/Turabian StyleSip, Szymon, Anna Sip, Piotr Szulc, Marek Selwet, Marcin Żarowski, Bogusław Czerny, and Judyta Cielecka-Piontek. 2024. "Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement" Antioxidants 13, no. 3: 357. https://doi.org/10.3390/antiox13030357
APA StyleSip, S., Sip, A., Szulc, P., Selwet, M., Żarowski, M., Czerny, B., & Cielecka-Piontek, J. (2024). Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement. Antioxidants, 13(3), 357. https://doi.org/10.3390/antiox13030357