Antioxidant Activity of Essential Oils from Pinaceae Species
Abstract
:1. Introduction
2. Methods Available for Antioxidant Testing of Essential Oils
- TEAC (Trolox equivalence antioxidant capacity);
- FRAP (ferric ion reducing antioxidant power);
- Total antioxidant potential methods based on a Cu2+ complex used as an oxidant;
- DMPD•+ (N,N-dimethyl-p-phenylenediamine) radical scavenging;
- CUPRAC (Cupric ions reducing antioxidant power);
- Total phenolics assay by the Folin–Ciocâlteu reagent;
- TAC (total antioxidant capacity);
- Phosphomolybdenum scavenging;
- Scavenging of xanthine oxidase;
- DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical scavenging;
- ORAC (oxygen radical absorbance capacity);
- TRAP (total radical trapping antioxidant parameter);
- Methods based on the inhibition of LDL oxidation;
- TOSC(A) (total oxyradical scavenging capacity);
- β-carotene bleaching methods;
- CBAs (crocin-bleaching assays);
- Chemiluminescent assay;
- Nitric oxide scavenging;
- TBARS (thiobarbituric acid reactive substances);
- Inhibited oxygen uptake;
- DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical scavenging;
- Radical scavenging assays (e.g., DPPH, ABTS, hydroxyl radical);
- Lipid peroxidation assays (e.g., β-carotene/linoleic acid bleaching assay, thiobarbituric acid reactive substances (TBARS));
- Reduction power assays (e.g., FRAP, CUPRAC, phosphomolybdenum assay) [31].
- Percentage of DPPH inhibition measured for a single sample prepared in a wide variety of ways (i.e., very different concentrations, e.g., 5 mg of essential oil diluted to 5 mL with ethanol, treated with 250 µL of DPPH in methanol (5.07 × 10−4 M) [55], 100 µL of essential oil mixed with 3.9 mL of DPPH solution [86], 50 μL/mL [87], or even without details on the way the sample was processed but referencing a published source without clear statement whether identical amounts were used [53,82,88]);
- Equivalents to certain antioxidant substances expressed as mg per gram of essential oil (hydroxytoluene equivalent; ascorbic acid equivalent; Trolox equivalent) [90,91], μM equivalents per gram of essential oil [51], mM equivalents per ml [48] or per liter of essential oil [56], or μg of equivalents per ml of essential oil [92].
- The superoxide radical inhibition based on the autooxidation of pyrogallol [88];
- The method based on 3-morpholino-sydnonimine and 1-keto-4-methylthiobutyric acid (SIN-1—KMB) [112];
- The method based on 1-aminocyclopropane-1-carboxylic acid (ACC) fragmentation induced by HOCl (hypochlorous acid) [112];
- The ferric–phenanthroline assay (Phen assay) based on the ability of ferric ions to form a complex with phenanthroline [115];
- A method based on the xanthine/xanthine oxidase system [112];
- A method based on the NADH/diaphorase system [112];
- Two methods based on the impact of the EO on catalase and glutathione reductase [119];
- The phosphomolybdenum method (total antioxidant capacity (TAC) assay) [64];
- The Folin–Ciocâlteu method of quantifying total phenolics [43];
- The 20,70-dichlorofluorescein diacetate probe to estimate the intracellular antioxidant activity in the human keratinocytes HaCaT cell line [73].
3. Comparing Antioxidant Effects of Pinaceae EOs
4. Variability of EO Antioxidant Effects
5. Correlation among Various Antioxidant Methods
6. Chemical Composition of EOs and Correlation with Antioxidant Effects
7. Pharmacological Interest of Pinaceae EOs
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ran, J.-H.; Shen, T.-T.; Wu, H.; Gong, X.; Wang, X.-Q. Phylogeny and Evolutionary History of Pinaceae Updated by Transcriptomic Analysis. Mol. Phylogenet. Evol. 2018, 129, 106–116. [Google Scholar] [CrossRef]
- World Flora Online Consortium. World Flora Online 2023. Available online: https://www.worldfloraonline.org/ (accessed on 23 February 2024).
- Wei, J.; Pei, X.; Hu, X.; Sun, S.; Zhao, C.; Han, R.; Zhao, X. Applications of Transcriptome in Conifer Species. Plant Cell Tissue Organ Cult. PCTOC 2022, 150, 511–525. [Google Scholar] [CrossRef]
- Sokołowska, J.; Fuchs, H.; Celiński, K. Assessment of ITS2 Region Relevance for Taxa Discrimination and Phylogenetic Inference among Pinaceae. Plants 2022, 11, 1078. [Google Scholar] [CrossRef]
- Ouyang, F.; Hu, J.; Wang, J.; Ling, J.; Wang, Z.; Wang, N.; Ma, J.; Zhang, H.; Mao, J.-F.; Wang, J. Complete Plastome Sequences of Picea asperata and P. crassifolia and Comparative Analyses with P. abies and P. morrisonicola. Genome 2019, 62, 317–328. [Google Scholar] [CrossRef]
- Song, Y.; Poorter, L.; Horsting, A.; Delzon, S.; Sterck, F. Pit and Tracheid Anatomy Explain Hydraulic Safety but Not Hydraulic Efficiency of 28 Conifer Species. J. Exp. Bot. 2022, 73, 1033–1048. [Google Scholar] [CrossRef]
- Alicandri, E.; Paolacci, A.R.; Osadolor, S.; Sorgonà, A.; Badiani, M.; Ciaffi, M. On the Evolution and Functional Diversity of Terpene Synthases in the Pinus Species: A Review. J. Mol. Evol. 2020, 88, 253–283. [Google Scholar] [CrossRef]
- Mitić, Z.S.; Stojanović-Radić, Z.Z.; Jovanović, S.Č.; Cvetković, V.J.; Nikolić, J.S.; Ickovski, J.D.; Mitrović, T.L.; Nikolić, B.M.; Zlatković, B.K.; Stojanović, G.S. Essential Oils of Three Balkan Abies Species: Chemical Profiles, Antimicrobial Activity and Toxicity toward Artemia salina and Drosophila melanogaster. Chem. Biodivers. 2022, 19, e202200235. [Google Scholar] [CrossRef]
- Franz, C.; Novak, J. Sources of Essential Oils. In Handbook of Essential Oils: Science, Technology, and Applications; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-8153-7096-3. [Google Scholar]
- Sell, C. Chemistry of Essential Oils. In Handbook of Essential Oils: Science, Technology, and Applications; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-8153-7096-3. [Google Scholar]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A Comprehensive Review of the Antibacterial, Antifungal and Antiviral Potential of Essential Oils and Their Chemical Constituents against Drug-Resistant Microbial Pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Kerr, D.; Hegg, M.; Mohebbi, M. Effects of Diffused Essential Oils for Reducing Stress and Improving Mood for Clinical Nurses: An Interventional Time Series Study. Nurs. Forum 2021, 56, 305–312. [Google Scholar] [CrossRef]
- Zhang, N.; Yao, L. Anxiolytic Effect of Essential Oils and Their Constituents: A Review. J. Agric. Food Chem. 2019, 67, 13790–13808. [Google Scholar] [CrossRef]
- Lillehei, A.S.; Halcon, L.L. A Systematic Review of the Effect of Inhaled Essential Oils on Sleep. J. Altern. Complement. Med. 2014, 20, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Benny, A.; Thomas, J. Essential Oils as Treatment Strategy for Alzheimer’s Disease: Current and Future Perspectives. Planta Med. 2019, 85, 239–248. [Google Scholar] [PubMed]
- Dobetsberger, C.; Buchbauer, G. Actions of Essential Oils on the Central Nervous System: An Updated Review. Flavour Fragr. J. 2011, 26, 300–316. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Wang, S.; Gao, Y.; Jin, F. Molecular Mechanism of the Anti-Inflammatory Effects of Plant Essential Oils: A Systematic Review. J. Ethnopharmacol. 2023, 301, 115829. [Google Scholar] [CrossRef]
- Tanveer, M.; Wagner, C.; Haq, M.I.U.; Ribeiro, N.C.; Rathinasabapathy, T.; Butt, M.S.; Shehzad, A.; Komarnytsky, S. Spicing up Gastrointestinal Health with Dietary Essential Oils. Phytochem. Rev. 2020, 19, 243–263. [Google Scholar] [CrossRef]
- Peterfalvi, A.; Miko, E.; Nagy, T.; Reger, B.; Simon, D.; Miseta, A.; Czéh, B.; Szereday, L. Much More than a Pleasant Scent: A Review on Essential Oils Supporting the Immune System. Molecules 2019, 24, 4530. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-S.; Lee, W.-C.; Lin, Y.-E.; Ho, C.-T.; Lu, K.-H.; Lin, S.-H.; Panyod, S.; Chu, Y.-L.; Sheen, L.-Y. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease. J. Agric. Food Chem. 2016, 64, 2062–2071. [Google Scholar] [CrossRef]
- Garzoli, S.; Alarcón-Zapata, P.; Seitimova, G.; Alarcón-Zapata, B.; Martorell, M.; Sharopov, F.; Fokou, P.V.T.; Dize, D.; Yamthe, L.R.T.; Les, F.; et al. Natural Essential Oils as a New Therapeutic Tool in Colorectal Cancer. Cancer Cell Int. 2022, 22, 407. [Google Scholar] [CrossRef]
- Tabatabaeichehr, M.; Mortazavi, H. The Effectiveness of Aromatherapy in the Management of Labor Pain and Anxiety: A Systematic Review. Ethiop. J. Health Sci. 2020, 30, 449–458. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Kehrer, J.P.; Klotz, L.-O. Free Radicals and Related Reactive Species as Mediators of Tissue Injury and Disease: Implications for Health. Crit. Rev. Toxicol. 2015, 45, 765–798. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rosés, R.; Risco, E.; Vila, R.; Peñalver, P.; Cañigueral, S. Biological and Nonbiological Antioxidant Activity of Some Essential Oils. J. Agric. Food Chem. 2016, 64, 4716–4724. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of Essential Oils in Food Safety: Antimicrobial and Antioxidant Applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Zuzarte, M.; Salgueiro, L. Essential Oils Chemistry. In Bioactive Essential Oils and Cancer; De Sousa, D.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–61. ISBN 978-3-319-19143-0. [Google Scholar]
- Pick, J.L.; Nakagawa, S.; Noble, D.W.A. Reproducible, Flexible and High Throughput Data Extraction from Primary Literature: The metaDigitise R Package. BioRxiv 2019, 10, 426–431. [Google Scholar] [CrossRef]
- Diniz Do Nascimento, L.; Moraes, A.A.B.D.; Costa, K.S.D.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; De Aguiar Andrade, E.H.; Faria, L.J.G.D. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-78923-919-5. [Google Scholar]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; AL-Farga, A.M. Mode of Action and Determination of Antioxidant Activity in the Dietary Sources: An Overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef]
- Singh, S.; Singh, R.P. In Vitro Methods of Assay of Antioxidants: An Overview. Food Rev. Int. 2008, 24, 392–415. [Google Scholar] [CrossRef]
- Lü, J.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and Molecular Mechanisms of Antioxidants: Experimental Approaches and Model Systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Furger, C. Live Cell Assays for the Assessment of Antioxidant Activities of Plant Extracts. Antioxidants 2021, 10, 944. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Liu, Z.; Li, Z. Chemical Composition and Antioxidant Activity of Essential Oil of Six Pinus Taxa Native to China. Molecules 2015, 20, 9380–9392. [Google Scholar] [CrossRef] [PubMed]
- Marjanovic-Balaban, Z.; Cvjetkovic, V.G.; Stanojevic, L.; Stanojevic, J.; Nikolic, L.; Danilovic, B. Quality Testing of Industrially Produced Essential Oil of Fir (Abies alba L.) from the Republic of Srpska. J. Essent. Oil Bear. Plants 2020, 23, 503–513. [Google Scholar] [CrossRef]
- Kolaylı, S.; Ocak, M.; Alıyazıcıoglu, R.; Karaoglu, S. Chemical Analysis and Biological Activities of Essential Oils from Trunk-Barks of Eight Trees. Asian J. Chem. 2009, 21, 2684–2694. [Google Scholar]
- Kawai, H.; Kuraya, E.; Touyama, A.; Higa, O.; Tokeshi, K.; Tsujikawa, Y.; Hokamoto, K.; Itoh, S. Improving the Efficiency and Antioxidant Activity of Essential Oil Extraction from Abies sachalinensis by Underwater Shockwave Pretreatment for the Construction of Low-Energy and Sustainable Essential Oil Extraction System. Processes 2022, 10, 2534. [Google Scholar] [CrossRef]
- Poaty, B.; Lahlah, J.; Porqueres, F.; Bouafif, H. Composition, Antimicrobial and Antioxidant Activities of Seven Essential Oils from the North American Boreal Forest. World J. Microbiol. Biotechnol. 2015, 31, 907–919. [Google Scholar] [CrossRef]
- Benouchenne, D.; Bellil, I.; Bensouici, C.; AbdullahYilmaz, M.; Akkal, S.; Keskinkaya, H.B.; Khelifi, D. GC-MS Chemical Profile, Antioxidant Ability, Antibacterial Effect, A-Glucosidase, A-Amylase and Acetylcholinesterase Inhibitory Activity of Algerian Fir Essential Oil. Jordan J. Biol. Sci. 2022, 15, 303–310. [Google Scholar]
- Karapandzova, M.; Stefkov, G.; Karanfilova, I.C.; Panovska, T.K.; Stanoeva, J.P.; Stefova, M.; Kulevanova, S. Chemical Characterization and Antioxidant Activity of Mountain Pine (Pinus mugo Turra, Pinaceae) from Republic of Macedonia. Rec. Nat. Prod. 2018, 13, 50–63. [Google Scholar] [CrossRef]
- Khazir, Z.U.; Yatoo, G.N.; Wani, H.; Shah, S.A.; Zargar, M.I.; Rather, M.A.; Banday, J.A. Gas Chromatographic-Mass Spectrometric Analysis, Antibacterial, Antioxidant and Antiproliferative Activities of the Needle Essential Oil of Abies Pindrow Growing Wild in Kashmir, India. Microb. Pathog. 2021, 158, 105013. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fan, W.; Xie, Q. Chemical Composition, Total Phenolic Content, and Antioxidant Activity of the Essential Oils Extracted from the Needle of Ten Pinus Taxa. J. Chem. 2022, 2022, 7440906. [Google Scholar] [CrossRef]
- Namshir, J.; Shatar, A.; Khandaa, O.; Tserennadmid, R.; Shiretorova, V.G.; Nguyen, M.C. Antimicrobial, Antioxidant and Cytotoxic Activity on Human Breast Cancer Cells of Essential Oil from Pinus sylvestris. var mongolica Needle. Mong. J. Chem. 2020, 21, 19–26. [Google Scholar] [CrossRef]
- Albanese, L.; Bonetti, A.; D’Acqui, L.P.; Meneguzzo, F.; Zabini, F. Affordable Production of Antioxidant Aqueous Solutions by Hydrodynamic Cavitation Processing of Silver Fir (Abies alba Mill.) Needles. Foods 2019, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Maggi, F.; Saab, A.M.; Bramucci, M.; Quassinti, L.; Petrelli, D.; Vitali, L.A.; Lupidi, G.; El Samrani, A.; Borgatti, M.; et al. Antiproliferative, Antimicrobial and Antioxidant Properties of Cedrus libani and Pinus pinea Wood Oils and Juniperus excelsa Berry Oil. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2022, 156, 384–395. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Mrabti, H.N.; Al-Mijalli, S.H.; Jeddi, M.; Abdallah, E.M.; Benkhaira, N.; Hadni, H.; Assaggaf, H.; Qasem, A.; Goh, K.W.; et al. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules 2023, 28, 5913. [Google Scholar] [CrossRef]
- Paun, G.; Zrira, S.; Boutakiout, A.; Ungureanu, O.; Simion, D.; Chelaru, C.; Radu, G.L. Chemical Composition, Antioxidant and Antibacterial Activity of Essential Oils from Moroccan Aromatic Herbs. Rev. Roum. Chim. 2013, 58, 891–897. [Google Scholar]
- Mouloud, G.; Rabah, B.; Rebbas, K.; Samir, M.; Hani, B.; Laid, B.; Tahar, S.; Daoud, H. Antioxidant and Antimicrobial Activities of Endemictree Abies numidica Growing in Babor Mountains from Algeria. Glob. J. Res. Med. Plants Indig. Med. 2016, 5, 19. [Google Scholar]
- Lin, C.-W.; Yu, C.-W.; Wu, S.-C.; Yih, K.-H. DPPH Free-Radical Scavenging Activity, Total Phenolic Contents and Chemical Composition Analysis of Forty-Two Kinds of Essential Oils. J. Food Drug Anal. 2020, 17, 9. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Sienkiewicz, M.; Stobiecka, A.; Maciąg, A.; Szoka, Ł.; Karna, E. Chemical Composition and Biological Activity of Abies alba and A. koreana Seed and Cone Essential Oils and Characterization of Their Seed Hydrolates. Chem. Biodivers. 2015, 12, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Maric, S.; Jukic, M.; Katalinic, V.; Milos, M. Comparison of Chemical Composition and Free Radical Scavenging Ability of Glycosidically Bound and Free Volatiles from Bosnian Pine (Pinus heldreichii Christ. var. leucodermis). Molecules 2007, 12, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, H.; Wang, J.; Meng, Q.; Zhang, H.; Yao, L.; Zhang, Y.; Dong, A.; Ma, Y.; Wang, Z.; et al. Chemical Composition and Antioxidant Activity of Essential Oil of Pine Cones of Pinus armandii from the Southwest Region of China. J. Med. Plants Res. 2010, 4, 1668–1672. [Google Scholar]
- Yang, X.; Zhang, H.; Zhang, Y.; Zhao, H.; Dong, A.; Xu, D.; Yang, L.; Ma, Y.; Wang, J. Analysis of the Essential Oils of Pine Cones of Pinus koraiensis Steb. et Zucc. and P. sylvestris L. from China. J. Essent. Oil Res. 2010, 22, 446–448. [Google Scholar] [CrossRef]
- Coimbra, A.; Miguel, S.; Ribeiro, M.; Coutinho, P.; Silva, L.A.; Ferreira, S.; Duarte, A.P. Chemical Composition, Antioxidant, and Antimicrobial Activities of Six Commercial Essential Oils. Lett. Appl. Microbiol. 2023, 76, ovac042. [Google Scholar]
- Ayub, M.A.; Choobkar, N.; Hanif, M.A.; Abbas, M.; Ain, Q.U.; Riaz, M.; Garmakhany, A.D. Chemical Composition, Antioxidant, and Antimicrobial Activities of P. roxburghii Oleoresin Essential Oils Extracted by Steam Distillation, Superheated Steam, and Supercritical Fluid CO2 Extraction. J. Food Sci. 2023, 88, 2425–2438. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative Evaluation of 11 Essential Oils of Different Origin as Functional Antioxidants, Antiradicals and Antimicrobials in Foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Vukovic, N.; Puchalski, C.; Roychoudhury, S.; Kunová, S.; Klūga, A.; Tokár, M.; Kluz, M.; Ivanišová, E. The Antioxidant and Antimicrobial Activity of Essential Oils against Pseudomonas spp. Isolated from Fish. Saudi Pharm. J. 2017, 25, 1108–1116. [Google Scholar] [CrossRef]
- Adjaoud, A.; Laouer, H.; Braca, A.; Cioni, P.; Moussi, K.; Berboucha-Rahmani, M.; Abbaci, H.; Falconieri, D. Chemical Composition, Antioxidant and Insecticidal Activities of a New Essential Oil Chemotype of Pinus nigra ssp. mauritanica (Pinaceae), Northern Algeria. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2022, 156, 358–369. [Google Scholar] [CrossRef]
- Fkiri, S.; Ghazghazi, H.; Rigane, G.; Ben Salem, R.; Mezni, F.; Khaldi, A.; Khouja, M.L.; Nasr, Z.; Forestière, I.N.E.G.L.D. Chemical Composition and Biological Activities Essential Oil from the Needles African of Pinus pinaster Var. Rev. Roum. Chim. 2019, 64, 511–518. [Google Scholar] [CrossRef]
- Efremov, A.A.; Zykova, I.D.; Senashova, V.A.; Grodnitckaya, I.D.; Pashenova, N.V. Antimicrobial and Antiradical Activities of Individual Fractions of Pinus sibirica Du Tour and Abies sibirica Ledeb. Growing in Siberia. Russ. J. Bioorg. Chem. 2021, 47, 1439–1444. [Google Scholar] [CrossRef]
- Djerrad, Z.; Djouahri, A.; Kadik, L. Variability of Pinus halepensis Mill. Essential Oils and Their Antioxidant Activities Depending on the Stage of Growth During Vegetative Cycle. Chem. Biodivers. 2017, 14, e1600340. [Google Scholar] [CrossRef] [PubMed]
- Djerrad, Z.; Kadik, L.; Djouahri, A. Chemical Variability and Antioxidant Activities among Pinus halepensis Mill. Essential Oils Provenances, Depending on Geographic Variation and Environmental Conditions. Ind. Crops Prod. 2015, 74, 440–449. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, L.; Goyal, R. GC/MS Characterization, In-Vitro Antioxidant, Anti-Inflammatory and Antimicrobial Activity of Essential Oils from Pinus Plant Species from Himachal Pradesh, India. J. Essent. Oil Bear. Plants 2020, 23, 522–531. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, Z.; Gao, H.; Jia, L.; He, Q. Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oil from Pine Needle (Cedrus deodara). J. Food Sci. 2012, 77, C824–C829. [Google Scholar] [CrossRef]
- Tümen, İ.; Akkol, E.K.; Taştan, H.; Süntar, I.; Kurtca, M. Research on the Antioxidant, Wound Healing, and Anti-Inflammatory Activities and the Phytochemical Composition of Maritime Pine (Pinus pinaster Ait). J. Ethnopharmacol. 2018, 211, 235–246. [Google Scholar] [CrossRef]
- Yousuf Dar, M.; Shah, W.A.; Mubashir, S.; Rather, M.A. Chromatographic Analysis, Anti-Proliferative and Radical Scavenging Activity of Pinus wallichina Essential Oil Growing in High Altitude Areas of Kashmir, India. Phytomedicine 2012, 19, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Ruas, A.; Graça, A.; Marto, J.; Gonçalves, L.; Oliveira, A.; da Silva, A.N.; Pimentel, M.; Moura, A.M.; Serra, A.T.; Figueiredo, A.C.; et al. Chemical Characterization and Bioactivity of Commercial Essential Oils and Hydrolates Obtained from Portuguese Forest Logging and Thinning. Molecules 2022, 27, 3572. [Google Scholar] [CrossRef]
- Šarac, Z.; Matejić, J.S.; Stojanović-Radić, Z.Z.; Veselinović, J.B.; Džamić, A.M.; Bojović, S.; Marin, P.D. Biological Activity of Pinus nigra Terpenes—Evaluation of FtsZ Inhibition by Selected Compounds as Contribution to Their Antimicrobial Activity. Comput. Biol. Med. 2014, 54, 72–78. [Google Scholar] [CrossRef]
- Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Ates, B.; Erdogan, S.; Cenet, M.; Karaaslan, M.G. Chemical Composition, Antimicrobial, Insecticidal, Phytotoxic and Antioxidant Activities of Mediterranean Pinus brutia and Pinus pinea Resin Essential Oils. Chin. J. Nat. Med. 2014, 12, 901–910. [Google Scholar] [CrossRef]
- Park, J.-S.; Lee, G.-H. Volatile Compounds and Antimicrobial and Antioxidant Activities of the Essential Oils of the Needles of Pinus densiflora and Pinus thunbergii. J. Sci. Food Agric. 2011, 91, 703–709. [Google Scholar] [CrossRef]
- Peng, X.; Feng, C.; Wang, X.; Gu, H.; Li, J.; Zhang, X.; Zhang, X.; Yang, L. Chemical Composition and Antioxidant Activity of Essential Oils from Barks of Pinus pumila Using Microwave-Assisted Hydrodistillation after Screw Extrusion Treatment. Ind. Crops Prod. 2021, 166, 113489. [Google Scholar] [CrossRef]
- Yener, H.O.; Saygideger, S.D.; Sarikurkcu, C.; Yumrutas, O. Evaluation of Antioxidant Activities of Essential Oils and Methanol Extracts of Pinus Species. J. Essent. Oil Bear. Plants 2014, 17, 295–302. [Google Scholar] [CrossRef]
- Apetrei, L.; Spac, A.; Brebu, M.; Tuchilus, C.; Miron, A. Composition, Antioxidant and Antimicrobial Activity of the Essential Oils of a Full Grown Tree of Pinus cembra L. from the Calimani Mountains (Romania). J. Serbian Chem. Soc. 2013, 78, 27–37. [Google Scholar] [CrossRef]
- Politeo, O. Chemical Composition and Evaluation of Acetylcholinesterase Inhibition and Antioxidant Activity of Essential Oil from Dalmatian Endemic Species Pinus nigra Arnold ssp. dalmatica (Vis.) Franco. J. Med. Plants Res. 2011, 5, 6590–6596. [Google Scholar] [CrossRef]
- Dakhlaoui, S.; Bourgou, S.; Bachkouel, S.; Ben Mansour, R.; Ben Jemaa, M.; Jallouli, S.; Megdiche-Ksouri, W.; Hessini, K.; Msaada, K. Essential Oil Composition and Biological Activities of Aleppo Pine (Pinus halepensis Miller) Needles Collected from Different Tunisian Regions. Int. J. Environ. Health Res. 2023, 33, 83–97. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Ali, H.M.; Basalah, M.O. Essential Oils from Wood, Bark, and Needles of Pinus roxburghii Sarg. from Alexandria, Egypt: Antibacterial and Antioxidant Activities. BioResources 2014, 9, 7454–7466. [Google Scholar] [CrossRef]
- Aloui, F.; Baraket, M.; Jedidi, S.; Hosni, K.; Bouchnak, R.; Salhi, O.; Jdaidi, N.; Selmi, H.; Ghazghazi, H.; Khadhri, A.; et al. Chemical Composition, Anti-Radical and Antibacterial Activities of Essential Oils from Needles of Pinus halepensis Mill., P. pinaster Aiton., and P. pinea L. J. Essent. Oil Bear. Plants 2021, 24, 453–460. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Jin, Y.; Li, S.; Zhang, Y. Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil from Needles of Pinus parviflora Siebold & Zucc. J. Essent. Oil Bear. Plants 2015, 18, 1187–1196. [Google Scholar] [CrossRef]
- Yang, S.-A.; Jeon, S.-K.; Lee, E.-J.; Im, N.-K.; Jhee, K.-H.; Lee, S.-P.; Lee, I.-S. Radical Scavenging Activity of the Essential Oil of Silver Fir (Abies alba). J. Clin. Biochem. Nutr. 2009, 44, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Ailli, A.; Handaq, N.; Touijer, H.; Gourich, A.A.; Drioiche, A.; Zibouh, K.; Eddamsyry, B.; El Makhoukhi, F.; Mouradi, A.; Bin Jardan, Y.A.; et al. Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties. Antibiotics 2023, 12, 721. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Vukovič, N.; Horská, E.; Salamon, I.; Bobková, A.; Hleba, L.; Fiskelová, M.; Vatľák, A.; Petrová, J.; Bobko, M. Antibacterial Activity against Clostridium Genus and Antiradical Activity of the Essential Oils from Different Origin. J. Environ. Sci. Health Part B 2014, 49, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Zaman, G.S.; Alshahrani, M.Y.; Barua, P.; Aladel, A.; Zaman, F.A.; Ahmad, I.; Khan, M.I.; Snoussi, M.; Saeed, M. Screening of the Antioxidant and Antibacterial Effects of Extracted Essential Oils from Thunbergia coccinea, Acacia polyacantha, Polygonum micrpcephallum, Abies spectabilis and Clerodendrum colebrookianum. Cell. Mol. Biol. 2022, 67, 56–67. [Google Scholar] [CrossRef]
- Huang, K.; Liu, R.; Zhang, Y.; Guan, X. Characteristics of Two Cedarwood Essential Oil Emulsions and Their Antioxidant and Antibacterial Activities. Food Chem. 2021, 346, 128970. [Google Scholar] [CrossRef]
- Ez-Zriouli, R.; ElYacoubi, H.; Imtara, H.; Mesfioui, A.; ElHessni, A.; Al Kamaly, O.; Zuhair Alshawwa, S.; Nasr, F.A.; Benziane Ouaritini, Z.; Rochdi, A. Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils. Molecules 2023, 28, 2974. [Google Scholar] [CrossRef] [PubMed]
- Khouja, M.; Elaissi, A.; Ghazghazi, H.; Boussaid, M.; Khouja, M.L.; Khaldi, A.; Messaoud, C. Variation of Essential Oil Composition, Antioxidant and Anticholinesterase Activities between Pinus halepensis Mill. Plant Organs. J. Essent. Oil Bear. Plants 2020, 23, 1450–1462. [Google Scholar] [CrossRef]
- Kurti, F.; Giorgi, A.; Beretta, G.; Mustafa, B.; Gelmini, F.; Testa, C.; Angioletti, S.; Giupponi, L.; Zilio, E.; Pentimalli, D.; et al. Chemical Composition, Antioxidant and Antimicrobial Activities of Essential Oils of Different Pinus Species from Kosovo. J. Essent. Oil Res. 2019, 31, 263–275. [Google Scholar] [CrossRef]
- Caldwell, G.W.; Yan, Z.; Lang, W.; Masucci, J.A. The IC50 Concept Revisited. Curr. Top. Med. Chem. 2012, 12, 1282–1290. [Google Scholar] [CrossRef]
- Jo, S.J.; Park, M.-J.; Guo, R.H.; Park, J.U.; Yang, J.Y.; Kim, J.-W.; Lee, S.-S.; Kim, Y.R. Antioxidant, Antibacterial, Antifungal, and Anti-Inflammatory Effects of 15 Tree Essential Oils. Korean J. Food Sci. Technol. 2018, 50, 535–542. [Google Scholar]
- Aidi Wannes, W.; Dakhlaoui, S.; Limam, H.; Tammar, S.; Msaada, K. Chemical Profile, Allelopathic, Antibacterial and Antioxidant Potential of the Essential Oil from Aleppo Pine (Pinus halepensis Miller) Needles. Arch. Phytopathol. Plant Prot. 2021, 54, 2483–2499. [Google Scholar] [CrossRef]
- Postu, P.A.; Sadiki, F.Z.; El Idrissi, M.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L. Pinus halepensis Essential Oil Attenuates the Toxic Alzheimer’s Amyloid Beta (1-42)-Induced Memory Impairment and Oxidative Stress in the Rat Hippocampus. Biomed. Pharmacother. 2019, 112, 108673. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Belmehdi, O.; Abrini, J.; Dakka, N.; Bakri, Y. Chemical Composition of Mentha suaveolens and Pinus halepensis Essential Oils and Their Antibacterial and Antioxidant Activities. Asian Pac. J. Trop. Med. 2019, 12, 117–122. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Kamal, I.; Maache-Rezzoug, Z.; Chemat, F.; Rezzoug, S.A. Antioxidant Activity and Total Phenolic Content of Oils Extracted from Pinus pinaster Sawdust Waste. Screening of Different Innovative Isolation Techniques. Waste Biomass Valorization 2014, 5, 283–292. [Google Scholar] [CrossRef]
- Ustun, O.; Senol, F.S.; Kurkcuoglu, M.; Orhan, I.E.; Kartal, M.; Baser, K.H.C. Investigation on Chemical Composition, Anticholinesterase and Antioxidant Activities of Extracts and Essential Oils of Turkish Pinus Species and Pycnogenol. Ind. Crops Prod. 2012, 38, 115–123. [Google Scholar] [CrossRef]
- Jaouadi, I.; Cherrad, S.; Bouyahya, A.; Koursaoui, L.; Satrani, B.; Ghanmi, M.; Chaouch, A. Chemical Variability and Antioxidant Activity of Cedrus atlantica Manetti Essential Oils Isolated from Wood Tar and Sawdust. Arab. J. Chem. 2021, 14, 103441. [Google Scholar] [CrossRef]
- Halub, B.; Shakya, A.; Elagbar, Z.; Naik, R. GC-MS Analysis and Biological Activity of Essential Oil of Fruits, Needles and Bark of Pinus pinea Grown Wildly in Jordan. Acta Pol. Pharm. Drug Res. 2019, 76, 825–831. [Google Scholar] [CrossRef]
- Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. Nitrite and Nitrate Measurement by Griess Reagent in Human Plasma: Evaluation of Interferences and Standardization. Methods Enzymol. 2008, 440, 361–380. [Google Scholar]
- Ghani, N.A.A.; Channip, A.-A.; Hwa, P.C.H.; Ja’afar, F.; Yasin, H.M.; Usman, A. Physicochemical Properties, Antioxidant Capacities, and Metal Contents of Virgin Coconut Oil Produced by Wet and Dry Processes. Food Sci. Nutr. 2018, 6, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Morabbi Najafabad, A.; Jamei, R. Free Radical Scavenging Capacity and Antioxidant Activity of Methanolic and Ethanolic Extracts of Plum (Prunus domestica L.) in Both Fresh and Dried Samples. Avicenna J. Phytomed. 2014, 4, 343–353. [Google Scholar]
- Rahman, G.; Khan, R. Phytochemical Investigation and Pharmacological Evaluation of Erythraea ramosissima. JAPS J. Anim. Plant Sci. 2017, 27, 1730–1733. [Google Scholar]
- Ruch, R.J.; Cheng, S.; Klaunig, J.E. Prevention of Cytotoxicity and Inhibition of Intercellular Communication by Antioxidant Catechins Isolated from Chinese Green Tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and Pitfalls in Measuring Antioxidant Efficacy: A Critical Evaluation of ABTS, DPPH, and ORAC Assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Prior, R.L. Oxygen Radical Absorbance Capacity (ORAC): New Horizons in Relating Dietary Antioxidants/Bioactives and Health Benefits. J. Funct. Foods 2015, 18, 797–810. [Google Scholar] [CrossRef]
- Dinis, T.C.; Madeira, V.M.; Almeida, L.M. Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Carter, P. Spectrophotometric Determination of Serum Iron at the Submicrogram Level with a New Reagent (Ferrozine). Anal. Biochem. 1971, 40, 450–458. [Google Scholar] [CrossRef]
- Ponti, V.; Dianzani, M.U.; Cheeseman, K.; Slater, T.F. Studies on the Reduction of Nitroblue Tetrazolium Chloride Mediated through the Action of NADH and Phenazine Methosulphate. Chem. Biol. Interact. 1978, 23, 281–291. [Google Scholar] [CrossRef]
- Grassmann, J.; Hippeli, S.; Vollmann, R.; Elstner, E.F. Antioxidative Properties of the Essential Oil from Pinus mugo. J. Agric. Food Chem. 2003, 51, 7576–7582. [Google Scholar] [CrossRef]
- Caillet, S.; Yu, H.; Lessard, S.; Lamoureux, G.; Ajdukovic, D.; Lacroix, M. Fenton Reaction Applied for Screening Natural Antioxidants. Food Chem. 2007, 100, 542–552. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. The Importance of Free Radicals and Catalytic Metal Ions in Human Diseases. Mol. Asp. Med. 1985, 8, 89–193. [Google Scholar] [CrossRef] [PubMed]
- Christodouleas, D.C.; Fotakis, C.; Papadopoulos, K.; Calokerinos, A.C. Evaluation of Total Reducing Power of Edible Oils. Talanta 2014, 130, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Hadorn, H.; Zurcher, K. Zur Bestimmung Der Oxydationsstabilitat von Olen Und Fetten. Dtsch. Lebensm.-Rundsch. 1974, 70, 57–65. [Google Scholar]
- Farhoosh, R. The Effect of Operational Parameters of the Rancimat Method on the Determination of the Oxidative Stability Measures and Shelf-Life Prediction of Soybean Oil. J. Am. Oil Chem. Soc. 2007, 84, 205–209. [Google Scholar] [CrossRef]
- Mateos, R.; Uceda, M.; Aguilera, M.P.; Escuderos, M.E.; Beltrán Maza, G. Relationship of Rancimat Method Values at Varying Temperatures for Virgin Olive Oils. Eur. Food Res. Technol. 2006, 223, 246–252. [Google Scholar] [CrossRef]
- Polyakov, N.A.; Dubinskaya, V.A.; Efremov, A.A.; Efremov, E.A. Biological Activity of Abies Sibirica Essential Oil and Its Major Constituents for Several Enzymes In Vitro. Pharm. Chem. J. 2014, 48, 456–460. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Toutoungy, S.; Saliba, R.; Loupassaki, S.; Tzakou, O.; Roussis, V.; Ioannou, E. Antioxidant Potential of Pine Needles: A Systematic Study on the Essential Oils and Extracts of 46 Species of the Genus Pinus. Foods 2021, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Dodeigne, C. Chemiluminescence as Diagnostic Tool. A Review. Talanta 2000, 51, 415–439. [Google Scholar] [CrossRef] [PubMed]
- Marquette, C.A.; Blum, L.J. Applications of the Luminol Chemiluminescent Reaction in Analytical Chemistry. Anal. Bioanal. Chem. 2006, 385, 546–554. [Google Scholar] [CrossRef]
- Sharifan, A.; Etebari, M.; Zolfaghari, B.; Aliomrani, M. Investigating the Effects of Bark Extract and Volatile Oil of Pinus eldarica against Cisplatin-Induced Genotoxicity on HUVECs Cell Line. Toxicol. Res. 2021, 10, 223–231. [Google Scholar] [CrossRef]
- Hjouji, K.; Atemni, I.; Mehdaoui, I.; Ainane, A.; Berrada, S.; Rais, Z.; Taleb, M.; Ainane, T. Essential Oil of Aleppo Pine Needles: Antioxidant and Antibacterial Activities. Pharmacologyonline 2021, 2, 556–565. [Google Scholar]
- Oreshkova, N.V.; Sedel’nikova, T.S.; Pimenov, A.V.; Efremov, S.P. Analysis of Genetic Structure and Differentiation of the Bog and Dry Land Populations of Pinus sibirica Du Tour Based on Nuclear Microsatellite Loci. Russ. J. Genet. 2014, 50, 934–941. [Google Scholar] [CrossRef]
- Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The Genus Pinus: A Comparative Study on the Needle Essential Oil Composition of 46 Pine Species. Phytochem. Rev. 2014, 13, 741–768. [Google Scholar] [CrossRef]
- Ghaffari, T.; Asnaashari, S.; Irannejad, E.; Delazar, A.; Farajnia, S.; Hong, J.-H.; Pang, C.; Hamishehkar, H.; Kim, K.H. Comparative Evaluation of Apoptosis Induction Using Needles, Bark, and Pollen Extracts and Essential Oils of Pinus eldarica in Lung Cancer Cells. Appl. Sci. 2021, 11, 5763. [Google Scholar] [CrossRef]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Rodrigues, A.M. Metabolomic Variability in the Volatile Composition of Essential Oils from Pinus pinea and P. pinaster. Biol. Life Sci. Forum 2021, 2, 14. [Google Scholar]
- Paul, A.; De Boves Harrington, P. Chemometric Applications in Metabolomic Studies Using Chromatography-Mass Spectrometry. Trends Anal. Chem. 2021, 135, 116165. [Google Scholar] [CrossRef]
- Yang, S.-A.; Jeon, S.-K.; Lee, E.-J.; Shim, C.-H.; Lee, I.-S. Comparative Study of the Chemical Composition and Antioxidant Activity of Six Essential Oils and Their Components. Nat. Prod. Res. 2010, 24, 140–151. [Google Scholar] [CrossRef]
- Rather, M.A.; Dar, B.A.; Dar, M.Y.; Wani, B.A.; Shah, W.A.; Bhat, B.A.; Ganai, B.A.; Bhat, K.A.; Anand, R.; Qurishi, M.A. Chemical Composition, Antioxidant and Antibacterial Activities of the Leaf Essential Oil of Juglans regia L. and Its Constituents. Phytomedicine 2012, 19, 1185–1190. [Google Scholar] [CrossRef]
- Xanthis, V.; Fitsiou, E.; Voulgaridou, G.-P.; Bogadakis, A.; Chlichlia, K.; Galanis, A.; Pappa, A. Antioxidant and Cytoprotective Potential of the Essential Oil Pistacia lentiscus var. chia and Its Major Components Myrcene and α-Pinene. Antioxidants 2021, 10, 127. [Google Scholar] [CrossRef]
- Shindo, K. A Modern Purification Method for Volatile Sesquiterpenes Produced by Recombinant Escherichia coli Carrying Terpene Synthase Genes. Biosci. Biotechnol. Biochem. 2018, 82, 935–939. [Google Scholar] [CrossRef]
- Basholli-Salihu, M.; Schuster, R.; Hajdari, A.; Mulla, D.; Viernstein, H.; Mustafa, B.; Mueller, M. Phytochemical Composition, Anti-Inflammatory Activity and Cytotoxic Effects of Essential Oils from Three Pinus spp. Pharm. Biol. 2017, 55, 1553–1560. [Google Scholar] [CrossRef]
- Ashmawy, N.A.; Al Farraj, D.A.; Salem, M.Z.M.; Elshikh, M.S.; Al-Kufaidy, R.; Alshammari, M.K.; Salem, A.Z.M. Potential Impacts of Pinus halepensis Miller Trees as a Source of Phytochemical Compounds: Antibacterial Activity of the Cones Essential Oil and n-Butanol Extract. Agrofor. Syst. 2020, 94, 1403–1413. [Google Scholar] [CrossRef]
- Rimawi, W.H.; Salim, H.; Shaheen, S.; Mjahed, A. Phytochemical Analysis and Antibacterial Activity of Extracts from Palestinian Aleppo Pine Seeds, Bark and Cones. Asian J. Chem. 2019, 31, 143–147. [Google Scholar]
- Raho, G.B. Antibacterial Potential of Essential Oils of the Needles of Pinus halepensis against Staphylococcus aureus and Escherichia coli. J. Coast. Life Med. 2014, 2, 651–655. [Google Scholar]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J.M. Chemical and Antimicrobial Properties of Essential Oils of Five Moroccan Pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- Saadou, N.C.; Seridi, R.; Helamia, F.; Djahoudi, A. Chemical Composition and Antibacterial Activities of Algerian Pinus halepensis Mill and Pinus maritima Essential Oils. Planta Medica 2013, 79, PI114. [Google Scholar]
- Mohareb, A.S.; Kherallah, I.E.; Badawy, M.E.; Salem, M.Z.; Yousef, H.A. Chemical Composition and Activity of Bark and Leaf Extracts of Pinus halepensis and Olea europaea Grown in AL-Jabel AL-Akhdar Region, Libya against Some Plant Phytopathogens. J. Appl. Biotechnol. Bioeng. 2017, 3, 331–342. [Google Scholar]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Stojanović-Radić, Z.Z.; Mihajilov-Krstev, T.; Jovanović, N.M.; Nikolić, B.M.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Essential Oils of Pinus halepensis and P. heldreichii: Chemical Composition, Antimicrobial and Insect Larvicidal Activity. Ind. Crops Prod. 2019, 140, 111702. [Google Scholar] [CrossRef]
- Fekih, N.; Allali, H.; Merghache, S.; Chaïb, F.; Merghache, D.; El Amine, M.; Djabou, N.; Muselli, A.; Tabti, B.; Costa, J. Chemical Composition and Antibacterial Activity of Pinus halepensis Miller Growing in West Northern of Algeria. Asian Pac. J. Trop. Dis. 2014, 4, 97–103. [Google Scholar] [CrossRef]
- Ghanmi, M.; Satrani, B.; Chaouch, A.; Aafi, A.; Abid, A.E.; Ismaili, M.R.; Farah, A. Composition Chimique et Activité Antimicrobienne de l’essence de Térébenthine Du Pin Maritime (Pinus pinaster) et Du Pin d’Alep (Pinus hale-pensis) Du Maroc. Acta Bot. Gallica 2007, 154, 293–300. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Menichini, F.; Bonesi, M.; Statti, G.A.; Menichini, F. Chemical Composition and Antimicrobial Activity of Essential Oils from Pinus brutia (Calabrian Pine) Growing in Lebanon. Chem. Nat. Compd. 2008, 44, 784–786. [Google Scholar] [CrossRef]
- Amri, I.; Khammassi, M.; Gargouri, S.; Hanana, M.; Jamoussi, B.; Hamrouni, L.; Mabrouk, Y. Tunisian Pine Essential Oils: Chemical Composition, Herbicidal and Antifungal Properties. J. Essent. Oil Bear. Plants 2022, 25, 430–443. [Google Scholar] [CrossRef]
- Kim, H.; Lee, B.; Yun, K.W. Comparison of Chemical Composition and Antimicrobial Activity of Essential Oils from Three Pinus Species. Ind. Crops Prod. 2013, 44, 323–329. [Google Scholar] [CrossRef]
- Hong, E.-J.; Na, K.-J.; Choi, I.-G.; Choi, K.-C.; Jeung, E.-B. Antibacterial and Antifungal Effects of Essential Oils from Coniferous Trees. Biol. Pharm. Bull. 2004, 27, 863–866. [Google Scholar] [CrossRef]
- Oh, Y.J.; Kim, Y.-S.; Kim, J.W.; Kim, D.W. Antibacterial and Antiviral Properties of Pinus densiflora Essential Oil. Foods 2023, 12, 4279. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Lee, B.-K.; Kim, J.-H.; Lee, S.-H.; Hong, S.-K. Comparison of Chemical Compositions and Antimicrobial Activities of Essential Oils from Three Conifer Trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 2009, 19, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Zolfaghari, B.; Jahanian-Najafabadi, A.; Abtahi, S.R. Anti-Pseudomonas Activity of Essential Oil, Total Extract, and Proanthocyanidins of Pinus eldarica Medw. Bark. Res. Pharm. Sci. 2016, 11, 58–64. [Google Scholar] [PubMed]
- Elkady, W.M.; Gonaid, M.H.; Yousif, M.F.; El-Sayed, M.; Omar, H.A.N. Impact of Altitudinal Variation on the Phytochemical Profile, Anthelmintic and Antimicrobial Activity of Two Pinus Species. Molecules 2021, 26, 3170. [Google Scholar] [CrossRef] [PubMed]
- Abi-Ayad, M.; Abi-Ayad, F.; Lazzouni, H.; Rebiahi, S. Antibacterial Activity of Pinus halepensis Essential Oil from Algeria (Tlemcen). J. Nat. Prod. Plant Resour. 2011, 1, 33–36. [Google Scholar]
- Abi-Ayad, M.; Abi-Ayad, F.; Lazzouni, H.; Rebiahi, S.; Ziani-Cherif, C.; Bessiere, B. Chemical Composition and Antifungal Activity of Aleppo Pine Essential Oil. J. Med. Plants Res. 2011, 5, 5433–5436. [Google Scholar]
- Tillah, M.; Batubara, I.; Sari, R.K. Antimicrobial and Antioxidant Activities of Resins and Essential Oil from Pine (Pinus merkusii, Pinuso ocarpa, Pinus insularis) and Agathis (Agathis loranthifolia). Biosaintifika J. Biol. Biol. Educ. 2017, 9, 134–139. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yang, H.-Y.; Lee, H.-S.; Hong, S.-K. Chemical Composition and Antimicrobial Activity of Essential Oil from Cones of Pinus koraiensis. J. Microbiol. Biotechnol. 2008, 18, 497–502. [Google Scholar]
- Liu, J.; Yang, Z.; Wu, F.; Wang, L.; Ni, H. Antimicrobial Effects of Essential Oil from Pinus koraiensis Sieb. et Zucc. Needles in the Bioflims. Afr. J. Microbiol. Res. 2013, 7, 3078–3084. [Google Scholar]
- Kim, J.-H.; Kim, Y.-H.; Park, B.-I.; Choi, N.-Y.; Kim, K.-J. Pinus koraiensis Essential Oil Attenuates the Pathogenicity of Superbacteria by Suppressing Virulence Gene Expression. Molecules 2023, 29, 37. [Google Scholar] [CrossRef]
- Dambolena, J.S.; Gallucci, M.N.; Luna, A.; Gonzalez, S.B.; Guerra, P.E.; Zunino, M.P. Composition, Antifungal and Antifumonisin Activity of Pinus wallichiana, Pinus monticola and Pinus strobus Essential Oils from Patagonia Argentina. J. Essent. Oil Bear. Plants 2016, 19, 1769–1775. [Google Scholar] [CrossRef]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Mihajilov-Krstev, T.; Stojanović-Radić, Z.Z.; Cvetković, V.J.; Mitrović, T.L.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Comparative Study of the Essential Oils of Four Pinus Species: Chemical Composition, Antimicrobial and Insect Larvicidal Activity. Ind. Crops Prod. 2018, 111, 55–62. [Google Scholar] [CrossRef]
- Visan, D.-C.; Oprea, E.; Radulescu, V.; Voiculescu, I.; Biris, I.-A.; Cotar, A.I.; Saviuc, C.; Chifiriuc, M.C.; Marinas, I.C. Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species. Pharmaceuticals 2021, 14, 1159. [Google Scholar] [CrossRef] [PubMed]
- Karapandzova, M.; Cvetkovikj, I.; Stefkov, G.; Trajkovska-Dokik, E.; Kaftandzieva, A.; Kulevanova, S. Antimicrobial Activity of Macedonian Black Pine. Maced. Pharm. Bull. 2016, 62, 503–504. [Google Scholar]
- Politeo, O.; Skocibusic, M.; Maravic, A.; Ruscic, M.; Milos, M. Chemical Composition and Antimicrobial Activity of the Essential Oil of Endemic Dalmatian Black Pine (Pinus nigra ssp. dalmatica). Chem. Biodivers. 2011, 8, 540–547. [Google Scholar] [CrossRef]
- Mimoune, N.A.; Mimoune, D.A.; Yataghene, A. Chemical Composition and Antimicrobial Activity of the Essential Oils of Pinus pinaster. J. Coast. Life Med. 2013, 1, 54–58. [Google Scholar]
- Demirci, F.; Bayramiç, P.; Göger, G.; Demirci, B.; Başer, K. Characterization and Antimicrobial Evaluation of the Essential Oil of Pinus pinea L. from Turkey. Nat. Volatiles Essent. Oils 2015, 2, 39–44. [Google Scholar]
- Krauze-Baranowska, M.; Głód, D.; Kula, M.; Majdan, M.; Hałasa, R.; Matkowski, A.; Kozłowska, W.; Kawiak, A. Chemical Composition and Biological Activity of Rubus idaeus Shoots—A Traditional Herbal Remedy of Eastern Europe. BMC Complement. Altern. Med. 2014, 14, 480. [Google Scholar] [CrossRef] [PubMed]
- Zafar, I.; Fatima, A.; Khan, S.; Rehman, Z.; Mehmud, S. GC-MS Studies of Needles Essential Oil of Pinus roxburghaii and Their Antimicrobial Activity from Pakistan. Elec. J. Environ. Agric. Food Chem. 2010, 9, 468–473. [Google Scholar]
- Hassan, A.; Amjid, I. Gas Chromatography-Mass Spectrometric Studies of Essential Oil of Pinus roxburghaii Stems and Their Antibacterial and Antifungal Activities. J. Med. Plant Res. 2009, 3, 670–673. [Google Scholar]
- Bhagat, M.; Bandral, A.; Bashir, M.; Bindu, K. GC–MS Analysis of Essential Oil of Pinus roxburghii Sarg. (Chir Pine) Needles and Evaluation of Antibacterial and Anti-Proliferative Properties. Indian J. Nat. Prod. Resour. 2018, 9, 34–38. [Google Scholar]
- Singh, R.; Pathak, A.; Dikshit, A.; Mishra, R.K. Antibacterial Evaluation of Essential Oils of Juniperus communis, Pinus roxburghii and Thuja occidentalis against Escherichia coli. Biochem. Cell. Arch. 2018, 18, 241–244. [Google Scholar]
- Kaushik, D.; Kaushik, P.; Kumar, A.; Rana, A.C.; Sharma, C.; Aneja, K.R. GC-MS Analysis and Antimicrobial Activity of Essential Oil of Pinus roxburghii Sarg. from Northern India. J. Essent. Oil Bear. Plants 2013, 16, 563–567. [Google Scholar] [CrossRef]
- Aidarkhanova, G.S.; Kukhar, E.V. Search for the Therapeutic Potential of Biologically Active Substances Contained in Coniferous Plants. Her. Sci. Seifullin Kazakh Agro Tech. Res. Univ. Vet. Sci. 2023, 1, 4–16. [Google Scholar] [CrossRef]
- Jha, V.; Shaikh, M.A.; Devkar, S.; Patel, R.; Walunj, S.; Rai, D.; Koli, J.; Dhamapurkar, V.; Jain, T.; Jadhav, N.; et al. Exploration of Chemical Composition and Unveiling the Phytopharmaceutical Potentials of Essential Oil from Fossilized Resin of Pinus succinefera. Int. Res. J. Pure Appl. Chem. 2022, 23, 19–34. [Google Scholar] [CrossRef]
- Scalas, D.; Mandras, N.; Roana, J.; Tardugno, R.; Cuffini, A.M.; Ghisetti, V.; Benvenuti, S.; Tullio, V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) Essential Oils and Their Main Components to Enhance Itraconazole Activity against Azole Susceptible/Not-Susceptible Cryptococcus neoformans Strains. BMC Complement. Altern. Med. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Njoku, I.S.; Rahman, N.-U.; Khan, A.M.; Otunomo, I.; Asekun, O.T.; Familoni, O.B.; Ngozi, C. Chemical Composition, Antioxidant, and Antibacterial Activity of the Essential Oil from the Leaves of Pinus sylvestris. Pac. J. Sci. Technol. 2022, 23, 85–93. [Google Scholar]
- Shola, A.H.; Olasunnbo, A.A.; Kehinde, O.A.; Abayomi, A.G.; Olumide, F.E.; Adebanjo, J.A. The Effect of Fractionation of the Essential Oil from Pinus syvestris on the Synergistic and Antagonistic Medicinal Activities. Kabale Univ. Interdiscip. Res. J. 2023, 2, 141–154. [Google Scholar]
- Oyewole, K.A.; Oyedara, O.O.; Awojide, S.H.; Olawade, M.O.; Abioye, O.E.; Adeyemi, F.M.; Juárez-Saldivar, A.; Adetunji, C.O.; Elufisan, T.O. Antibacterial and In Silico Evaluation of β-Lactamase Inhibitory Potential of Pinus sylvestris L. (Scots Pine) Essential Oil. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2023, 93, 967–977. [Google Scholar] [CrossRef]
- Markowska-Szczupak, A.; Wesołowska, A.; Borowski, T.; Sołoducha, D.; Paszkiewicz, O.; Kordas, M.; Rakoczy, R. Effect of Pine Essential Oil and Rotating Magnetic Field on Antimicrobial Performance. Sci. Rep. 2022, 12, 9712. [Google Scholar] [CrossRef]
- Bağci, E.; Diğrak, M. Antimicrobial Activity of Essential Oils of Some Abies (Fir) Species from Turkey. Flavour Fragr. J. 1996, 11, 251–256. [Google Scholar] [CrossRef]
- Ancuceanu, R.; Hovaneț, M.V.; Miron, A.; Anghel, A.I.; Dinu, M. Phytochemistry, Biological, and Pharmacological Properties of Abies alba Mill. Plants 2023, 12, 2860. [Google Scholar] [CrossRef] [PubMed]
- Truchan, M.; Tkachenko, H.; Buyun, L.; Kurhaluk, N.; Góralczyk, A.; Tomin, V.; Osadowski, Z. Antimicrobial Activities of Three Commercial Essential Oils Derived from Plants Belonging to Family Pinaceae. Agrobiodivers. Improv. Nutr. Health Life Qual. 2019, 3, 111–126. [Google Scholar]
- Valková, V.; Ďúranová, H.; Vukovic, N.L.; Vukic, M.; Kluz, M.; Kačániová, M. Assessment of Chemical Composition and Anti-Penicillium Activity of Vapours of Essential Oils from Abies alba and Two Melaleuca Species in Food Model Systems. Molecules 2022, 27, 3101. [Google Scholar] [CrossRef] [PubMed]
- Pichette, A.; Larouche, P.-L.; Lebrun, M.; Legault, J. Composition and Antibacterial Activity of Abies balsamea Essential Oil. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006, 20, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Tsasi, G.; Danalatos, G.; Tomou, E.-M.; Sakadani, E.; Bethanis, M.; Kolokouris, A.; Samaras, Y.; Ćirić, A.; Sokoviċ, M.; Skaltsa, H. Chemical Composition and Antimicrobial Activity of the Essential Oil of Abies cephalonica Loudon from Mount Ainos (Kefalonia, Greece). J. Essent. Oil Res. 2022, 34, 143–147. [Google Scholar] [CrossRef]
- Öztürk Pulatoğlu, A.; Güney, K.; Çeter, T.; Yilmaz, E.S. Chemical Composition of Essential Oils Obtained from Abies taxa in Türkiye and Investigation of Antimicrobial Activities. Kastamonu Üniversitesi Orman. Fakültesi Derg. 2023, 23, 31–46. [Google Scholar] [CrossRef]
- Lee, J.-H.; Hong, S.-K. Comparative Analysis of Chemical Compositions and Antimicrobial Activities of Essential Oils from Abies holophylla and Abies koreana. J. Microbiol. Biotechnol. 2009, 19, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, S.-Y.; Cho, S.-M.; Hong, C.-Y.; Park, M.-J.; Choi, I.-G. Evaluation on Anti-Fungal Activity and Synergy Effects of Essential Oil and Their Constituents from Abies holophylla. J. Korean Wood Sci. Technol. 2016, 44, 113–123. [Google Scholar] [CrossRef]
- Jeong, S.-I.; Lim, J.-P.; Jeon, H. Chemical Composition and Antibacterial Activities of the Essential Oil from Abies koreana. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 1246–1250. [Google Scholar] [CrossRef]
- Oh, H.-J.; Ahn, H.-M.; So, K.-H.; Kim, S.-S.; Yun, P.-Y.; Jeon, G.-L.; Riu, K.-Z. Chemical and Antimicrobial Properties of Essential Oils from Three Coniferous Trees Abies koreana, Cryptomeria japonica, and Torreya nucifera. J. Appl. Biol. Chem. 2007, 50, 164–169. [Google Scholar]
- Adjaoud, A.; Laouer, H.; Politeo, O.; Abbaci, H.; Burčul, F.; Moussi, K.; Adjaoud-Benkhellat, O.; Paoli, M.; Tomi, F. Chemical Profile, Enzyme Inhibitory and Antioxidant Activities of Essential Oils of an Endemic Algerian Species: Abies numidica. De Lannoy Ex Carrière. J. Essent. Oil Res. 2024, 36, 1–15. [Google Scholar] [CrossRef]
- Tlili Ait Kaki, Y.; Bennadja, S.; Abdelghani, D. The Therapeutic Importance of Products Extracted from the Fir Tree of Numidia (Abies numidica) and Research on Its Antibacterial Activity. J. For. Fac. Kastamonu Univ. 2012, 12, 279–282. [Google Scholar]
- Ayupova, R.; Sakipova, Z.; Shvaydlenka, E.; Neyezhlebova, M.; Ulrikh, R.; Dilbarkhanov, R.; Datkhaev, U.; Zhemlichka, M. Chemical Composition and Antifungal Activity of Essential Oils Obtained from Abies sibirica L., Growing in the Republic of Kazakhstan. Int. J. Exp. Educ. 2014, 2, 69–71. [Google Scholar]
- Noreikaitė, A.; Ayupova, R.; Satbayeva, E.; Seitaliyeva, A.; Amirkulova, M.; Pichkhadze, G.; Datkhayev, U.; Stankevičius, E. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies sibirica L. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 521–527. [Google Scholar] [CrossRef]
- Radulescu, V.; Saviuc, C.; Chifiriuc, C.; Oprea, E.; Ilies, D.C.; Marutescu, L.; Lazar, V. Chemical Composition and Antimicrobial Activity of Essential Oil from Shoots Spruce (Picea abies L.). Rev. Chim. 2011, 62, 69–74. [Google Scholar]
- Salem, M.Z.M.; Elansary, H.O.; Elkelish, A.A.; Zeidler, A.; Ali, H.M.; Mervat, E.-H.; Yessoufou, K. In Vitro Bioactivity and Antimicrobial Activity of Picea abies and Larix decidua Wood and Bark Extracts. BioResources 2016, 11, 9421–9437. [Google Scholar] [CrossRef]
- Dahiya, P. Evaluation of In Vitro Antimicrobial Potential and Phytochemical Analysis of Spruce, Cajeput and Jamrosa Essential Oil against Clinical Isolates. Int. J. Green Pharm. IJGP 2016, 10, 27–32. [Google Scholar]
- Canillac, N.; Mourey, A. Antibacterial Activity of the Essential Oil of Picea excelsa on Listeria, Staphylococcus aureus and Coliform Bacteria. Food Microbiol. 2001, 18, 261–268. [Google Scholar] [CrossRef]
- Öz, M. Chemical Composition and Antimicrobial Properties of Essential Oils Obtained from the Resin of Picea orientalis L. J. Essent. Oil Bear. Plants 2022, 25, 326–337. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, S.; Sharma, S.S.; Bhagat, M. Characterization of Picea smithiana (Wall.) Boiss Essential Oil and Its Antibacterial Effect against Clinically Isolated Staphylococcus aureus from Pus Sample. Res. Multidiscip. J. 2018, 14, 28–34. [Google Scholar]
- Da Costa Batista, J.; Bugnon, A.; De Moura, P.; Carvalho, A.; Leal, I.; Garrett, R.; Maier, J.; Boylan, F.; Holandino, C.; Huwyler, J.; et al. Antimicrobial and Phytochemical Analyses of European Larch Resins and Essential Oils. Planta Medica 2022, 88, 1485. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, S.-Y.; Hong, C.-Y.; Jang, S.-K.; Lee, S.S.; Park, M.-J.; Choi, I.-G. Evaluation on Anti-Dermatophyte Effect of Larix (kaempferi) Essential Oil on the Morphological Changes of Eermatophyte Fungal Hyphae. J. Korean Wood Sci. Technol. 2013, 41, 247–257. [Google Scholar] [CrossRef]
- Bennouna, F.; Lachkar, M.; El Abed, S.; Saad, I. Cedrus atlantica Essential Oil: Antimicrobial Activity and Effect on the Physicochemical Properties of Cedar Wood Surface. Moroc. J. Biol. 2020, 16, 35–45. [Google Scholar]
- Belkacem, N.; Khettal, B.; Hudaib, M.; Bustanji, Y.; Abu-Irmaileh, B.; Amrine, C.S.M. Antioxidant, Antibacterial, and Cytotoxic Activities of Cedrus atlantica Organic Extracts and Essential Oil. Eur. J. Integr. Med. 2021, 42, 101292. [Google Scholar] [CrossRef]
- Saab, A.M.; Gambari, R.; Sacchetti, G.; Guerrini, A.; Lampronti, I.; Tacchini, M.; El Samrani, A.; Medawar, S.; Makhlouf, H.; Tannoury, M.; et al. Phytochemical and Pharmacological Properties of Essential Oils from Cedrus Species. Nat. Prod. Res. 2018, 32, 1415–1427. [Google Scholar] [CrossRef]
- Zrira, S.; Ghanmi, M. Chemical Composition and Antibacterial Activity of the Essential of Cedrus atlantica (Cedarwood Oil). J. Essent. Oil Bear. Plants 2016, 19, 1267–1272. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical Composition and In Vitro Antibacterial Activity of the Essential Oil of Cedrus atlantica. Int. J. Agric. Biol. 2010, 12, 381–385. [Google Scholar]
- Benouaklil, F.; Hamaidi-Chergui, F.; Hamaidi, M.S.; Saidi, F. Chemical Composition and Antimicrobial Properties of Algerian Cedrus atlantica M. Essential Oils. Rev. Agrobiol. 2017, 7, 355–362. [Google Scholar]
- Boutos, S.; Tomou, E.-M.; Rancic, A.; Socović, M.; Hadjipavlou-Litina, D.; Nikolaou, K.; Skaltsa, H. Composition of the Essential Oil of Cedrus brevifolia Needles. Evaluation of Its Antimicrobial and Antioxidant Activities. Am. J. Essent. Oil Nat. Prod. 2020, 8, 1–5. [Google Scholar]
- Majid, A.; Azim, A.; WajidHussain, Z.; HafsaHameed, J.; Malik, A.; Ismail, K. Antibacterial Effects of Cedrus deodara Oil against Pathogenic Bacterial Strains In-Vitro Approaches. IJB 2015, 6, 185–191. [Google Scholar]
- Kumar, A.; Suravajhala, R.; Bhagat, M. Bioactive Potential of Cedrus deodara (Roxb.) Loud Essential Oil (Bark) against Curvularia lunata and Molecular Docking Studies. SN Appl. Sci. 2020, 2, 1045. [Google Scholar] [CrossRef]
- Zaman, T.; Syed, M.S.; Isfaq, S.; Khan, M.S. Biological Activities of Stem, Leaves and Essential Oil of Cedrus deodara from District Poonch, Rawalakot Azad Kashmir, Pakistan. Turk. J. Agric. Food Sci. Technol. 2018, 6, 1114–1119. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Zheljazkov, V.D.; Cantrell, C.L.; Koleva-Valkova, L.; Maneva, V.; Radoukova, T.; Astatkie, T.; Kačániová, M.; Slavov, S.B.; Atanasova, D.; et al. Phytochemical Composition and Biopesticidal Potential of Pinus mugo Turra Essential Oil. Ind. Crops Prod. 2024, 209, 118019. [Google Scholar] [CrossRef]
- Ameur, E.; Sarra, M.E.; Takoua, K.; Mariem, K.; Nabil, A.; Lynen, F.; Larbi, K.M. Chemical Composition of Five Tunisian Pinus Species’ Essential Oils and Effect of Their Blends on Otitis Infection. Ind. Crops Prod. 2022, 180, 114688. [Google Scholar] [CrossRef]
- Koutsaviti, K.; Giatropoulos, A.; Pitarokili, D.; Papachristos, D.; Michaelakis, A.; Tzakou, O. Greek Pinus Essential Oils: Larvicidal Activity and Repellency against Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 2015, 114, 583–592. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Benelli, G. Chemical Composition, Toxicity and Non-Target Effects of Pinus kesiya Essential Oil: An Eco-Friendly and Novel Larvicide against Malaria, Dengue and Lymphatic Filariasis Mosquito Vectors. Ecotoxicol. Environ. Saf. 2016, 129, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Zoubi, Y.E.; Fouad, E.-A.; Farah, A.; Taghzouti, K.; Lalami, A.E.O. Chemical Composition and Larvicidal Activity of Moroccan Atlas Cedar (Cedrus atlantica Manetti) against Culex pipiens (Diptera: Culicidae). J. Appl. Pharm. Sci. 2017, 7, 30–34. [Google Scholar]
- Cetin, H.; Kurt, Y.; Isik, K.; Yanikoglu, A. Larvicidal Effect of Cedrus libani Seed Oils on Mosquito Culex pipiens. Pharm. Biol. 2009, 47, 665–668. [Google Scholar] [CrossRef]
- Norris, E.J.; Bloomquist, J.R. Fir (Abies balsamea) (Pinales: Pinaceae) Needle Essential Oil Enhances the Knockdown Activity of Select Insecticides. J. Med. Entomol. 2023, 60, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Saab, A.; Tundis, R.; Statti, G.A.; Lampronti, I.; Menichini, F.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical Analysis and in Vitro Evaluation of the Biological Activity against Herpes Simplex Virus Type 1 (HSV-1) of Cedrus libani A. Rich. Phytomedicine 2008, 15, 79–83. [Google Scholar] [CrossRef]
- Kozan, E.; Ilhan, M.; Tümen, I.; Küpeli Akkol, E. The Scolicidal Activity of the Essential Oil Obtained from the Needles of Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe on Hydatid Cyst. J. Ethnopharmacol. 2019, 235, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M. Composition and Molluscicidal Properties of Essential Oils of Five Moroccan Pinaceae. Pharm. Biol. 2003, 41, 207–210. [Google Scholar] [CrossRef]
- Yoon, W.; Kim, S.; Oh, T.; Lee, N.H.; Hyun, C. Abies koreana Essential Oil Inhibits Drug-Resistant Skin Pathogen Growth and LPS-Induced Inflammatory Effects of Murine Macrophage. Lipids 2009, 44, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-K.; Kim, B.; Song, B.-W.; Kim, S.W.; Kim, D.; Kang, J.H.; Hwang, S.H.; Hwang, K.-C.; Lee, S. Borneol Facilitates the Whitening and Anti-Wrinkle Effect of the Essential Oil Extracted from Abies koreana Needles. J. King Saud. Univ. Sci. 2023, 35, 102886. [Google Scholar] [CrossRef]
- Song, B.-W.; Song, M.-J.; Park, M.-J.; Choi, D.-H.; Lee, S.-S.; Kim, M.; Hwang, K.-C.; Kim, I.-K. Anti-Wrinkle and Whitening Effects of Essential Oil from Abies koreana. J. Life Sci. 2018, 28, 524–531. [Google Scholar] [CrossRef]
- Karrat, L.; Nayal, R.; Abajy, M.Y. Chemical Composition of Pinus brutia Ten Essential Oil and Its in Vitro Anti-Inflammatory Activity. Int. Res. J. Pure Appl. Chem. 2020, 21, 112–121. [Google Scholar] [CrossRef]
- Labib, R.; Youssef, F.; Ashour, M.; Abdel-Daim, M.; Ross, S. Chemical Composition of Pinus roxburghii Bark Volatile Oil and Validation of Its Anti-Inflammatory Activity Using Molecular Modelling and Bleomycin-Induced Inflammation in Albino Mice. Molecules 2017, 22, 1384. [Google Scholar] [CrossRef]
- Tandan, S.; Chandra, S.; Gupta, S.; Lal, J. Pharmacodynamic Effects of Cedrus deodara Wood Essential Oil. Indian J. Pharm. Sci. 1998, 60, 20–23. [Google Scholar]
- Al Kamaly, O.; Saleh, A.; Al Sfouk, A.; Alanazi, A.S.; Parvez, M.K.; Ousaaid, D.; Assouguem, A.; Mechchate, H.; Bouhrim, M. Cedrus atlantica (Endl.) Manetti Ex Carrière Essential Oil Alleviates Pain and Inflammation with No Toxicity in Rodent. Processes 2022, 10, 581. [Google Scholar] [CrossRef]
- Chen, Y.; Chi, L.; Liang, X.; Shi, Y.; Wu, T.; Ye, M.; Han, P.; Lin, L.; Zhang, L.; Xu, P.; et al. Essential Oils of Cedrus deodara Leaves Exerting Anti-Inflammation on TPA-Induced Ear Edema by Inhibiting COX-2/TNF-α/NF-κB Activation. J. Essent. Oil Bear. Plants 2020, 23, 422–431. [Google Scholar] [CrossRef]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Studies on the Anti-Inflammatory and Analgesic Activity of Cedrus deodara (Roxb.) Loud. Wood Oil. J. Ethnopharmacol. 1999, 65, 21–27. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.-S.; Jeung, E.-B.; Kim, K.-J.; Park, M.-J. Anti-Inflammatory Effect of Essential Oil Extracted from Pinus densiflora (Sieb. et Zucc.) Wood on RBL-2H3 Cells. J. Wood Sci. 2021, 67, 52. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.-S.; Kim, K.-J.; Eom, C.-D.; Park, M.-J. Investigation of Active Anti-Inflammatory Constituents of Essential Oil from Pinus koraiensis (Sieb. et Zucc.) Wood in LPS-Stimulated RBL-2H3 Cells. Biomolecules 2021, 11, 817. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.-S.; Kim, J.-W.; Lee, S.-S.; Park, M.-J. Anti-Inflammatory Effect of Essential Oils Extracted from Wood of Four Coniferous Tree Species. J. Korean Wood Sci. Technol. 2019, 47, 674–691. [Google Scholar] [CrossRef]
- Park, N.; Park, S.J.; Kim, M.H.; Yang, W.M. Efficacy and Mechanism of Essential Oil from Abies holophylla Leaf on Airway Inflammation in Asthma: Network Pharmacology and in Vivo Study. Phytomedicine 2022, 96, 153898. [Google Scholar] [CrossRef]
- Chung, J.Y.; Park, N.; Kim, M.H.; Yang, W.M. Abies holophylla Leaf Essential Oil Alleviates Allergic Rhinitis Based on Network Pharmacology. Pharmaceutics 2023, 15, 1195. [Google Scholar] [CrossRef]
- Kamal, R.M.; Sabry, M.M.; El-Halawany, A.M.; Rabie, M.A.; El Sayed, N.S.; Hifnawy, M.S.; Younis, I.Y. GC-MS Analysis and the Effect of Topical Application of Essential Oils of Pinus canariensis C.Sm., Cupressus lusitanica Mill. and Cupressus arizonica Greene Aerial Parts in Imiquimod–Induced Psoriasis in Mice. J. Ethnopharmacol. 2024, 318, 116947. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Zolfaghari, B.; Amin, P. Anti-Nociceptive and Anti-Inflammatory Effects of Hydroalcoholic Extract and Essential Oil of Pinus eldarica in Animal Models. Avicenna J. Phytomed. 2021, 11, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.F.; Emer, A.A.; Batisti, A.P.; Donatello, N.; Carlesso, M.G.; Mazzardo-Martins, L.; Venzke, D.; Micke, G.A.; Pizzolatti, M.G.; Piovezan, A.P.; et al. Inhalation of Cedrus atlantica Essential Oil Alleviates Pain Behavior through Activation of Descending Pain Modulation Pathways in a Mouse Model of Postoperative Pain. J. Ethnopharmacol. 2015, 175, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Emer, A.A.; Donatello, N.N.; Batisti, A.P.; Oliveira Belmonte, L.A.; Santos, A.R.S.; Martins, D.F. The Role of the Endocannabinoid System in the Antihyperalgesic Effect of Cedrus atlantica Essential Oil Inhalation in a Mouse Model of Postoperative Pain. J. Ethnopharmacol. 2018, 210, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Satou, T.; Matsuura, M.; Takahashi, M.; Umezu, T.; Hayashi, S.; Sadamoto, K.; Koike, K. Anxiolytic-like Effect of Essential Oil Extracted from Abies sachalinensis. Flavour Fragr. J. 2011, 26, 416–420. [Google Scholar] [CrossRef]
- Matsubara, E.; Fukagawa, M.; Okamoto, T.; Ohnuki, K.; Shimizu, K.; Kondo, R. The Essential Oil of Abies sibirica (Pinaceae) Reduces Arousal Levels after Visual Display Terminal Work. Flavour Fragr. J. 2011, 26, 204–210. [Google Scholar] [CrossRef]
- Tang, M.; Ai, Y.; Song, N.; Geng, L.; Ren, L.; Zhu, S.; Ai, Y.; Cai, S.; Zhang, Z.; Zhang, L.; et al. Chemical Composition and Hypnotic Effect of Picea mariana Essential Oils. J. Essent. Oil Bear. Plants 2023, 26, 362–377. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Jeong, S.; Lee, M.; Kim, S. Essential Oil of Pinus koraiensis Leaves Exerts Antihyperlipidemic Effects via Up-regulation of Low-density Lipoprotein Receptor and Inhibition of Acyl-coenzyme A: Cholesterol Acyltransferase. Phytother. Res. 2012, 26, 1314–1319. [Google Scholar] [CrossRef]
- Rosen, E.D.; Hsu, C.-H.; Wang, X.; Sakai, S.; Freeman, M.W.; Gonzalez, F.J.; Spiegelman, B.M. C/EBPα Induces Adipogenesis through PPARγ: A Unified Pathway. Genes Dev. 2002, 16, 22–26. [Google Scholar] [CrossRef]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin. Med. Insights Cardiol. 2014, 8, 22–33. [Google Scholar] [CrossRef]
- Ma, L.; Robinson, L.N.; Towle, H.C. ChREBP•Mlx Is the Principal Mediator of Glucose-Induced Gene Expression in the Liver. J. Biol. Chem. 2006, 281, 28721–28730. [Google Scholar] [CrossRef]
- Ko, H.-S.; Lee, H.-J.; Sohn, E.J.; Yun, M.; Lee, M.-H.; Kim, S.-H. Essential Oil of Pinus koraiensis Exerts Antiobesic and Hypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling. Evid. Based Complement. Altern. Med. 2013, 2013, 947037. [Google Scholar] [CrossRef]
- Joo, H.-E.; Lee, H.-J.; Sohn, E.J.; Lee, M.-H.; Ko, H.-S.; Jeong, S.-J.; Lee, H.-J.; Kim, S.-H. Anti-Diabetic Potential of the Essential Oil of Pinus koraiensis Leaves toward Streptozotocin-Treated Mice and HIT-T15 Pancreatic β Cells. Biosci. Biotechnol. Biochem. 2013, 77, 1997–2001. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Statti, G.A.; Menichini, F. Composition and α-Amylase Inhibitory Effect of Essential Oils from Cedrus libani. Fitoterapia 2007, 78, 323–326. [Google Scholar] [CrossRef]
- Xu, F.; Gu, D.; Wang, M.; Zhu, L.; Chu, T.; Cui, Y.; Tian, J.; Wang, Y.; Yang, Y. Screening of the Potential α-Amylase Inhibitor in Essential Oil from Cedrus deodara Cones. Ind. Crops Prod. 2017, 103, 251–256. [Google Scholar] [CrossRef]
- Mezni, F.; Fkiri, S.; Khouja, M.; Nasr, Z.; Khaldi, A. In Vitro α-Amylase Inhibitory Activity of the Essential Oils of Pinus nigra ARN.: A Preliminary Assay. J. Food Chem. Nanotechnol. 2022, 8, 18–20. [Google Scholar]
- Maurya, A.K.; Vashisath, S.; Aggarwal, G.; Yadav, V.; Agnihotri, V.K. Chemical Diversity and α-Glucosidase Inhibitory Activity in Needles Essential Oils of Four Pinus Species from Northwestern Himalaya, India. Chem. Biodivers. 2022, 19, e202200428. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Cho, B.-J.; Ko, M.-S.; Jung, J.-M.; Kim, H.-R.; Song, H.-S.; Lee, J.-Y.; Sim, S.-S.; Kim, C.-J. Anti-Oxidant and Anti-Aging Activities of Essential Oils of Pinus densiflora Needles and Twigs. Yakhak Hoeji 2010, 54, 215–225. [Google Scholar]
- Bouzenna, H.; Samout, N.; Amani, E.; Mbarki, S.; Tlili, Z.; Rjeibi, I.; Elfeki, A.; Talarmin, H.; Hfaiedh, N. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-Induced Acute Liver and Kidney Damage in Female Wistar Albino Rats. J. Oleo Sci. 2016, 65, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, V.; Chaudhary, A.K. Gastric Antisecretory and Antiulcer Activities of Cedrus deodara (Roxb.) Loud. in Wistar Rats. J. Ethnopharmacol. 2011, 134, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Gad, H.; Al-Sayed, E.; Ayoub, I. Phytochemical Discrimination of Pinus Species Based on GC–MS and ATR-IR Analyses and Their Impact on Helicobacter pylori. Phytochem. Anal. 2021, 32, 820–835. [Google Scholar] [CrossRef] [PubMed]
- Süntar, I.; Tumen, I.; Ustün, O.; Keleş, H.; Küpeli Akkol, E. Appraisal on the Wound Healing and Anti-Inflammatory Activities of the Essential Oils Obtained from the Cones and Needles of Pinus Species by In Vivo and In Vitro Experimental Models. J. Ethnopharmacol. 2012, 139, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Tumen, I.; Akkol, E.K.; Süntar, I.; Keleş, H. Wound Repair and Anti-Inflammatory Potential of Essential Oils from Cones of Pinaceae: Preclinical Experimental Research in Animal Models. J. Ethnopharmacol. 2011, 137, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, M.; Andjic, M.; Bradic, J.; Kocovic, A.; Tomovic, M.; Samanovic, A.M.; Jakovljevic, V.; Veselinovic, M.; Capo, I.; Krstonosic, V.; et al. Topical Application of Siberian Pine Essential Oil Formulations Enhance Diabetic Wound Healing. Pharmaceutics 2023, 15, 2437. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity of Pinus Species Essential Oils and Their Constituents. J. Enzym. Inhib. Med. Chem. 2010, 25, 622–628. [Google Scholar] [CrossRef]
- Satyal, P.; Paudel, P.; Raut, J.; Deo, A.; Dosoky, N.S.; Setzer, W.N. Volatile Constituents of Pinus roxburghii from Nepal. Pharmacogn. Res. 2013, 5, 43–48. [Google Scholar] [CrossRef]
- Sajid, A.; Manzoor, Q.; Iqbal, M.; Tyagi, A.K.; Sarfraz, R.A.; Sajid, A. Pinus roxburghii Essential Oil Anticancer Activity and Chemical Composition Evaluation. EXCLI J. 2018, 17, 233–245. [Google Scholar] [CrossRef]
- Qadir, M.; Shah, W.A.; Banday, J. GC-MS Analysis, Antibacterial, Antioxidant and Anticancer Activity of Essential Oil of Pinus roxburghii from Kashmir, India. Int. J. Res. Pharm. Chem. 2014, 4, 228–232. [Google Scholar]
- Bhagat, M.; Kumar, A.; Suravajhala, R. Cedrus deodara (Bark) Essential Oil Induces Apoptosis in Human Colon Cancer Cells by Inhibiting Nuclear Factor Kappa B. Curr. Top. Med. Chem. 2020, 20, 1981–1992. [Google Scholar] [CrossRef]
- Legault, J.; Dahl, W.; Debiton, E.; Pichette, A.; Madelmont, J.-C. Antitumor Activity of Balsam Fir Oil: Production of Reactive Oxygen Species Induced by α-Humulene as Possible Mechanism of Action. Planta Medica 2003, 69, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Szoka, Ł.; Kwiatkowski, P.; Maciejczyk, E. Greek Fir Seeds and Cones as Underestimated Source of Essential Oil: Composition and Biological Properties. Appl. Sci. 2023, 13, 13238. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Islam, M.T.; Jayasena, V.; Sharma, B.; Sharma, S.; Sharma, P.; Kuča, K.; Bhardwaj, P. Review on Essential Oils, Chemical Composition, Extraction, and Utilization of Some Conifers in Northwestern Himalayas. Phytother. Res. 2020, 34, 2889–2910. [Google Scholar] [CrossRef]
- Hoai, N.T.; Duc, H.V.; Thao, D.T.; Orav, A.; Raal, A. Selectivity of Pinus sylvestris Extract and Essential Oil to Estrogen-Insensitive Breast Cancer Cells Pinus sylvestris against Cancer Cells. Pharmacogn. Mag. 2015, 11, S290–S295. [Google Scholar] [CrossRef]
- Thalappil, M.A.; Butturini, E.; Carcereri De Prati, A.; Bettin, I.; Antonini, L.; Sapienza, F.U.; Garzoli, S.; Ragno, R.; Mariotto, S. Pinus mugo Essential Oil Impairs STAT3 Activation through Oxidative Stress and Induces Apoptosis in Prostate Cancer Cells. Molecules 2022, 27, 4834. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-M.; Lee, E.-O.; Kim, S.-H.; Lee, H.-J. Essential Oil of Pinus koraiensis Inhibits Cell Proliferation and Migration via Inhibition of P21-Activated Kinase 1 Pathway in HCT116 Colorectal Cancer Cells. BMC Complement. Altern. Med. 2014, 14, 275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xin, C.; Qiu, J.; Wang, Z. Essential Oil from Pinus koraiensis Pinecones Inhibits Gastric Cancer Cells via the HIPPO/YAP Signaling Pathway. Molecules 2019, 24, 3851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xin, C.; Cheng, C.; Wang, Z. Antitumor Activity of Nanoemulsion Based on Essential Oil of Pinus koraiensis Pinecones in MGC-803 Tumor-Bearing Nude Mice. Arab. J. Chem. 2020, 13, 8226–8238. [Google Scholar] [CrossRef]
- Sarvmeili, N.; Jafarian-Dehkordi, A.; Zolfaghari, B. Cytotoxic Effects of Pinus eldarica Essential Oil and Extracts on HeLa and MCF-7 Cell Lines. Res. Pharm. Sci. 2016, 11, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Khatamian, N.; Soltani, M.; Shadan, B.; Neamati, A.; Tabrizi, M.H.; Hormozi, B. Pinus morrisonicola Needles Essential Oil Nanoemulsions as a Novel Strong Antioxidant and Anticancer Agent. Inorg. Nano Met. Chem. 2022, 52, 253–261. [Google Scholar] [CrossRef]
- Jo, J.-R.; Park, J.S.; Park, Y.-K.; Chae, Y.Z.; Lee, G.-H.; Park, G.-Y.; Jang, B.-C. Pinus densiflora Leaf Essential Oil Induces Apoptosis via ROS Generation and Activation of Caspases in YD-8 Human Oral Cancer Cells. Int. J. Oncol. 2012, 40, 1238–1245. [Google Scholar] [CrossRef]
- Saab, A.M.; Lampronti, I.; Borgatti, M.; Finotti, A.; Harb, F.; Safi, S.; Gambari, R. In Vitro Evaluation of the Anti-Proliferative Activities of the Wood Essential Oils of Three Cedrus Species against K562 Human Chronic Myelogenous Leukaemia Cells. Nat. Prod. Res. 2012, 26, 2227–2231. [Google Scholar] [CrossRef]
- Saab, A.M.; Lampronti, I.; Grandini, A.; Borgatti, M.; Finotti, A.; Sacchetti, G.; Gambari, R.; Guerrini, A. Antiproliferative and Erythroid Differentiation Activities of Cedrus libani Seed Extracts against K562 Human Chronic Myelogenus Leukemia Cells. Int. J. Pharm. Biol. Arch. 2011, 2, 1744–1748. [Google Scholar]
- Saab, A.; Guerrini, A.; Sacchetti, G.; Maietti, S.; Zeino, M.; Arend, J.; Gambari, R.; Bernardi, F.; Efferth, T. Phytochemical Analysis and Cytotoxicity Towards Multidrug-Resistant Leukemia Cells of Essential Oils Derived from Lebanese Medicinal Plants. Planta Medica 2012, 78, 1927–1931. [Google Scholar] [CrossRef]
- Ahn, C.; Lee, J.; Park, M.; Kim, J.; Yang, J.; Yoo, Y.; Jeung, E. Cytostatic Effects of Plant Essential Oils on Human Skin and Lung Cells. Exp. Ther. Med. 2020, 19, 2008–2018. [Google Scholar] [CrossRef]
- Negi, P.C.B.S.; Bhatt, A.; Sharma, N. Cedrus deodara Needle Oil and Bark Extract as Potential Therapeutic Candidate for Glaucoma. In Proceedings of Integrated Intelligence Enable Networks and Computing; Singh Mer, K.K., Semwal, V.B., Bijalwan, V., Crespo, R.G., Eds.; Algorithms for Intelligent Systems; Springer: Singapore, 2021; pp. 111–118. ISBN 978-981-336-306-9. [Google Scholar]
- El Omari, N.; Ezzahrae Guaouguaou, F.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G.; et al. Phytochemical and Biological Activities of Pinus halepensis Mill., and Their Ethnomedicinal Use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef]
- Vitalini, S.; Iriti, M.; Vaglia, V.; Garzoli, S. Chemical Investigation and Dose-Response Phytotoxic Effect of Essential Oils from Two Gymnosperm Species (Juniperus communis var. saxatilis Pall. and Larix decidua Mill.). Plants 2022, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Bouzenna, H.; Hfaiedh, N.; Bouaziz, M.; Giroux-Metges, M.-A.; Elfeki, A.; Talarmin, H. Cytoprotective Effects of Essential Oil of Pinus halepensis L. against Aspirin-Induced Toxicity in IEC-6 Cells. Arch. Physiol. Biochem. 2017, 123, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Postu, P.A.; Mihasan, M.; Gorgan, D.L.; Sadiki, F.Z.; El Idrissi, M.; Hritcu, L. Pinus halepensis Essential Oil Ameliorates Aβ1-42-Induced Brain Injury by Diminishing Anxiety, Oxidative Stress, and Neuroinflammation in Rats. Biomedicines 2022, 10, 2300. [Google Scholar] [CrossRef] [PubMed]
- Lazutka, J.R.; Mierauskien, J.; Slapšyt, G.; Dedonyt, V. Genotoxicity of Dill (Anethum graveolens L.), Peppermint (Mentha×piperita L.) and Pine (Pinus sylvestris L.) Essential Oils in Human Lymphocytes and Drosophila melanogaster. Food Chem. Toxicol. 2001, 39, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Szoka, Ł.; Karna, E.; Wiktorowska-Owczarek, A.; Sienkiewicz, M. Abies Concolor Seeds and Cones as New Source of Essential Oils—Composition and Biological Activity. Molecules 2017, 22, 1880. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Szoka, Ł.; Karna, E.; Wiktorowska-Owczarek, A.; Sienkiewicz, M. Composition and Biological Activity of Picea pungens and Picea orientalis Seed and Cone Essential Oils. Chem. Biodivers. 2017, 14, e1600264. [Google Scholar] [CrossRef] [PubMed]
- Parveen, R.; Azmi, M.; Naqvi, S.; Mahmood, S.; Zaldi, I. Effect of Cedrus deodara (Pinaceae) Root Oil on the Histopathology of Rat Liver and Kidney. Trop. J. Pharm. Res. 2010, 9, 127–133. [Google Scholar] [CrossRef]
RP Values | Common Language Term Describing Antioxidant Activity |
---|---|
<0.1 | Very strong |
0.1 < RP < 1.0 | Strong |
1 < −RP < 10 | Moderate |
10 < RP < −100 | Weak |
RP > 100 | Very weak or inactive |
RP to Convert | Conversion Ratio | Mean Ratio | References |
---|---|---|---|
alpha-tocopherol ⇨ ascorbic acid | 100.44/47.58 (=2.11); 0.1/0.04 (=2.5) | 2.305 | [52,123] |
BHA ⇨ ascorbic acid: | 0.093/0.054 (1.72); 3.7/2 (1.85) | 1.785 | [74,85] |
BHT ⇨ ascorbic acid: | 23.71/63.04 (=0.376); 21.51/53.24 (=0.404) | 0.39 | [58,59] |
Taxon | Main Chemical Constituents | IC50 Sample/IC50 Ascorbic Acid | RP (Ascorbic Acid) |
---|---|---|---|
Leaf | |||
Abies pindrow (Royle ex. D.Don) Royle [47] | Limonene (38.9%), α-pinene (36.5%), β-pinene (6.9%), and α-selinene (4.4%) | 8.07 μg/mL/3.27 μg/mL | 2.47 |
Cedrus deodara (Roxb. ex D.Don) G.Don [70] | α-terpineol (30.2%), linalool (24.47%), limonene (17.01%), anethole (14.57%), caryophyllene (3.14%), and eugenol (2.14%) | 0.53 μg/mL/1.75 μg/mL | 0.30 |
Pinus gerardiana Wall. ex D.Don [69] | α-pinene (46.8%), 3-carene (24%), caryophyllene (9.1%), and α-phellandrene (3.9%) | 54.8 μg/mL/19 μg/mL | 2.88 |
Pinus halepensis Mill. [97] | β-caryophyllene (28.04%), myrcene (23.81%), and α-pinene (12.02%) | 113.25 μg/mL/22.61 μg/mL | 5.00 |
Pinus nigra ssp. nigra [74] | α-pinene (45.93%), germacrene D (27.50%), β-caryophyllene (8.13%), β-pinene (6.90%), and germacrene D-4-ol (0.57%) | 25.596 mg/mL/0.054 mg/mL | 474.0 |
Pinus nigra ssp. pallasiana (Lamb.) Holmboe [74] | α-pinene (42.33%), germacrene D (30.59%), β-caryophyllene (7.43%), β-pinene (5.15%), and germacrene D-4-ol (1.93%) | 28.677 mg/mL/0.054 mg/mL | 531.06 |
Pinus nigra ssp. nigra (syn. P. nigra var. banatica Georgescu & Ionescu) [74] | α-pinene (50.83%), germacrene D (23.69%), β-caryophyllene (7.31%), β-pinene (3.10%), and germacrene D-4-ol (0.01%) | 25.08 mg/mL/0.054 mg/mL | 464.4 |
Pinus pinaster Aiton (two producers) [73] | α-pinene (44.6%, 36.5%), β-pinene (23.0%, 18.8%), β-caryophyllene (5.0%, 8.7%), β-myrcene (5.0%, 5.9%), germacrene-D (1.7%, 5.6%), limonene (3.9%, 3.3%), and δ-3-carene (2.1%, 1.8%). | No activity | No activity |
Pinus pinaster Aiton [71] | α-pinene (13.53%), β-caryophyllene (15.46%), abietadiene (10.81%), β-pinene (9.81%), rimuen (9.13%), abietatriene (8.36%), α-amorphene (6.91%), cupressene (5.21%) β-myrcene (4.14%), α-humulene (2.70%), and δ-cadinene (1.52%) | 145.8 μg/mL/6.25 μg/mL | 23.33 |
Pinus pinaster Aiton [73] | α-pinene (27.0%), β-pinene (28.0%), β-myrcene (11.0%), δ-3-carene (6.6%), germacrene-D (6.3%), β-caryophyllene (4.5%), and limonene (4.5%) | 55.2 mg/mL/0.04 mg/mL | 1380 |
Pinus pinea L. [101] | α-pinene (0.51%), β-pinene (0.36%), limonene (11.42%), β-caryophyllene (7.61%), germacrene-D (5.52%), δ-selinene (4.14%), guaiol (12.70%), α-eudesmol (5.19%), and manoyl oxide (3.61%) | 45.1 μg/mL/5.0 μg/mL | 9.02 |
Pinus pinea L. [73] | limonene (72.8%) and α-pinene (7.6%) | 195.7 mg/mL/0.04 mg/mL | 4892.5 |
Pinus roxburghii Sarg. [69] | α-terpinene (50.9%), α-ocimene (25.4%), caryophyllene (19.5%), 3-carene (17.8%), α-pinene (12.7%), humulene (3.1%), and thujopsene (3.1%) | 67.3 μg/mL/19 μg/mL | 3.54 |
Pinus wallichiana A.B.Jacks. [69] | A-pinene (36.0%), sesquisabinene hydrate (10.4%), cadinol (2.2%), and limonene (2.1%) | 69.8 μg/mL/19 μg/mL | 3.67 |
Pinus wallichiana A.B.Jacks. [72] | β-pinene (46.8%), α-pinene (25.2%), myrecene (2.5%), α-terpineol (2.3%), and caryophyllene oxide (2.1%) | 28.8 μg/mL/11.5 μg/mL | 2.50 |
Leaf and twig | |||
Abies alba Mill. [85] | Bornyl acetate (30.31%), camphene (19.81%), 3-carene (13.85%), tricyclene (12.90%), and limonene (7.50%) | 27,000 μg/mL/2 μg/mL | 13,500 |
Wood/sawdust | |||
Cedrus atlantica (Endl.) G.Manetti ex Carrière [52] | β-himachalene (28.99%), α-himachalene (14.43%), longifolene (12.2%), α-bisabolene (7.71%), α-atlantone (4.81%), deodarone (4.18%), and δ-cadinene (3.65%) | 54.19 μg/mL/47.58 μg/mL | 1.14 |
Cedrus atlantica (Endl.) G.Manetti ex Carrière (Itzer forest) [99] | β-himachalene (27.67%), α-himachalene (12%), 11αH-himachal-4-en-1β-ol (9.42%), cadina-1(6), 4 diene (8.45%), and 6-camphenol (3.16%) | 15.559 mg/mL/0.08 mg/mL | 194.49 |
Cedrus atlantica (Endl.) G.Manetti ex Carrière (Senoual Forest) [99] | β-himachalene (44.23%), α-himachalene (16.69%), cadina-1(6) 4 diene (11.27%), 6-camphenol (4.54%), and 11αH-himachal-4-en-1β-ol (1.31%) | 16.264 mg/mL/0.08 mg/mL | 203.3 |
Pinus pinaster Aiton [71] | α-pinene (58.44%), junipene (6.10%), α-terpineol (5.32%), and limonene (4.09%) | 113.45 μg/mL/6.25 μg/mL | 18.15 |
Cone | |||
Pinus armandii Franch. [58] | α-pinene (20.92%), limonene (15.78%), β-pinene (4.91%), and pinocarveol (4.76%) | 378.51 μg/mL/63.04 μg/mL | 6 |
Pinus koraiensis Siebold & Zucc. [59] | α-pinene (35.2%), limonene (18.4%), β-pinene (8.7%), β-caryophyllene (3.5%), and myrcene (3.0%) | 242.39 μg/mL/53.24 μg/mL | 4.55 |
Pinus pinaster Aiton [71] | α-pinene (32.57%), β-pinene (27.39%), junipene (9.45%), δ-3-carene (7.32%), limonene (3.54%), and β-myrcene (3.20%) | 85.82 μg/mL/6.25 μg/mL | 13.73 |
Pinus pinea L. [101] | Limonene (32.56%), α-pinene (6.78%), β-pinene (4.66%), and caryophyllene oxide (3.73%) | 40.5 μg/mL/5 μg/mL | 8.1 |
Pinus sylvestris L. [59] | aromadendrene (20.2%), α-pinene (18.5%), α-longipinene (10.5%), α-terpineol (5.5%), caryophyllene oxide (3.6%), limonene (3.3%), and pinocarveol (3.0%) | 365.61 μg/mL/53.24 μg/mL | 6.87 |
Bark | |||
Pinus gerardiana Wall. ex D.Don [69] | 3-carene (31.1%), α-cubebene (16.4%), α-pinene (16.3%), α-phellandrene (5.9%), isoledene (4.6%), and bornyl acetate (4.0%) | 71.2 μg/mL/19 μg/mL | 3.75 |
Pinus pinea L. [101] | β-caryophyllene (16.51%), limonene (14.83%), caryophyllene oxide (11.83%), longifolene (7.51%), and guaiol (3.13%) | 48.4 μg/mL/5 μg/mL | 9.68 |
Pinus pumila (Pall.) Regel [77] | α-pinene (23.61–32.53%), limonene (9.21–12.67%), camphene (9.12–13.4%), longifolene (5.85–13.23%), β-pinene (2.92–4.58%), δ-cadinene (2.47–4.62%), and bornyl acetate (2.20–4.52%) | 15.26 mg/mL/0.04 mg/mL 14.89 mg/mL/0.04 mg/mL 14.63 mg/mL/0.04 mg/mL | 381.5 372.25 365.75 |
Pinus wallichiana A.B.Jacks. [69] | 3-carene (43.2%), α-pinene (30.2%), cadinol (3.5%), and limonene (3.2%) | 58.4 μg/mL/19 μg/mL | 3.07 |
Pinus roxburghii Sarg. [69] | 3-carene (22.5%), 4-carene (6.2%), limonene (4.9%), longifolene (4.7%), and α-pinene (3.4%), | 51.7 μg/mL/19 μg/mL | 2.72 |
Wood tar | |||
Cedrus atlantica (Endl.) G.Manetti ex Carrière (from Itzer forest) [99] | β-himachalene (24.05%), α-himachalene (13.76%), methyl-1,4 cyclohexadiene (9.06%), cadina-1 (6), 4 diene (7.65%), and 6-camphenol (8.76%) | 0.126 mg/mL/0.084 mg/mL | 1.5 |
Cedrus atlantica (Endl.) G.Manetti ex Carrière (from Senoual Forest) [99] | β-himachalene (24.25%), α-himachalene (1.15%), methyl-1,4 cyclohexadiene (13.56%), cadina-1 (6), 4 diene (7.37%), 6-camphenol (8.76%), and sabinene hydrate (5.92%) | 0.143 mg/mL/0.084 mg/mL | 1.7 |
Taxon | Main Chemical Constituents | IC50 Sample/IC50 Alpha-Tocopherol | RP (Alpha-Tocopherol) | RP (Ascorbic Acid) |
---|---|---|---|---|
Leaf | ||||
Abies numidica de Lannoy ex Carrière [45] | Caryophyllene (17.31%), α-pinene (10.59%), 2,2,6,10-tetramethylbicyclo [5.4.0] undeca-9,11-diene (8.65%), linalylacetate (8.42%), 2,6-octadiene, 2,6-dimethyl (7.63%), β-selinene (7.28%), sabinene (6.88%), β-pinene (5.45%), camphene (3.72%) | IC50 could not be estimated because of the very low effect | Weak/inactive | Weak/inactive |
Pinus densiflora Siebold & Zucc. [76] | Camphene (22.38%), α-pinene (20.58%), α-limonene (20.16%), bornyl acetate (9.79%), β-pinene (6.73%), δ-3-carene (4.36%) | 120 μg/mL/12.6 μg/mL | 9.52 (moderate) | 21.94 |
Pinus nigra J. F. Arnold ssp. mauritanica (Mair. & Pay) [64] | β-caryophyllene (26.2%), germacrene D (17.2%), α-pinene (9.4%), kaur-16-ene (7.1%), δ-cadinene (6.9%), α-humulene (4.1%) | 260.93 mg/mL/0.142 mg/mL | 1837 (very weak) | 4234.285 |
Pinus thunbergii Parl. [76] | α-terpinolene (19.3%), δ-3-carene (16.77%), β-phellandrene (13.36%), α-pinene (10.91%), γ-terpinene (6.25%), 4-terpineol (5.35%), sabinene (5.15%), α-terpinene (4.22%), β-pinene (3.96%) | 30 μg/mL/12.6 μg/mL | 2.38 (moderate) | 5.49 |
Twigs | ||||
Pinus nigra J. F. Arnold ssp. mauritanica (Mair. & Pay) [64] | α-pinene (55.7%), kaur-16-ene (12.4%), β-pinene (2.3%), cembrene (2.3%) | 93.72 mg/mL/0.142 mg/mL | 660 (very weak) | 1521.3 |
Wood | ||||
Cedrus atlantica (Endl.) G.Manetti ex Carrière [52] | β-himachalene (28.99%), α-himachalene (14.43%), α-bisabolene (7.71%), α-atlantone (4.81%), deodarone (4.18%) | 54.19 μg/mL/100.44 μg/mL | 0.54 (strong) | 1.245 |
Bark | ||||
Pinus pumila (Pall.) Regel (three samples with different extraction methods) [77] | α-pinene (23.61–32.53%), limonene (9.21–12.67%), camphene (9.12–13.4%), longifolene (5.85–13.23%), β-pinene (2.92–4.58%), δ-cadinene (2.47–4.62%), bornyl acetate (2.20–4.52%) | 15.26 mg/mL/0.1 mg/mL 14.89 mg/mL/0.1 mg/mL 14.63 mg/mL/0.1 mg/mL | 152.6 (very weak) 148.9 (very weak) 146.3 (very weak) | 351.7 343.2 337.2 |
Taxon (Main Chemical Constituents of the EO) | IC50 Sample/ IC50 BHA | RP (BHA) | RP (Ascorbic Acid) |
---|---|---|---|
Leaf | |||
Pinus cembra L. [79] (α-pinene—69.14%, limonene + β-phellandrene—4.64%, α-cadinene—3.71%) | 19.93 mg/mL/0.0033 mg/mL | 6039 | 10,779.61 |
Pinus halepensis Mill. [67] (myrcene 17.5–21.6%, β-caryophyllene 17.3–21.2%, p-cymene 7.9–11.9%, α-pinene 8.5–12.9%, caryophyllene oxide 5.4–12.6%) | 201.28 μg/mL/23.57 μg/mL to 236.18 μg/mL/23.57 μg/mL | 8.54 to 10.02 | 15.24–17.89 |
Pinus nigra J. F. Arnold ssp. dalmatica (Vis.) [80] (α-pinene—24%, β-pinene—16.0%, germacrene D—14.6%, β-caryophyllene, bornyl acetate—3.3%, limonene—3.3%) | EC50 estimation could not be performed due to very low activity | Very weak | Very weak |
Pinus nigra ssp. nigra [74] (α-pinene—45.93%, germacrene D (27.50%), β-caryophyllene—8.13%, β-pinene—6.90) | 25.596 mg/mL/0.093 mg/mL | 275.23 | 491.29 |
Pinus nigra ssp. pallasiana (Lamb.) Holmboe [74] (α-pinene—42.33%, germacrene D—30.59%, β-caryophyllene —7.43%, β-pinene—5.15%) | 28.677 mg/mL/0.093 mg/mL | 308.35 | 550.40 |
Pinus nigra ssp. nigra (syn. P. nigra var. banatica Georgescu & Ionescu) [74] (α-pinene—50.83%, germacrene D—23.69%, β-caryophyllene—7.31%, β-pinene—3.10%) | 25.08 mg/mL/0.093 mg/mL | 269.68 | 481.38 |
Leaf and twig | |||
Abies alba Mill. [85] Bornyl acetate (30.31%), camphene (19.81%), 3-carene (13.85%), tricyclene (12.90%), limonene (7.50%) | 27,000 μg/mL/3.7 μg/mL | 7297.30 | 13,025.68 |
Taxon (Main Chemical Constituents of the EO) | IC50 Sample/ IC50 BHT | RP (BHT) | RP (Ascorbic Acid) |
---|---|---|---|
Leaf | |||
Abies balsamea (L.) Mill. [44] (β-pinene—31.1%, α-pinene—14.4%, δ-3-carene—13.6%, bornyl acetate—9.1%, limonene—8.5%, β-phellandrene—6.8%, camphene—5.5%) | The IC50 value could not be determined due to the observed low activity | Very weak | Very weak |
Abies numidica de Lannoy ex Carrière [54] (Caryophyllene—17.31%, α-pinene—10.59%, 2,2,6,10-tetramethylbicyclo [5.4.0] undeca-9,11-diene—8.65%, 2,6-octadiene, 2,6-dimethyl—7.63%, linalylacetate—7.42%, β-selinene—7.28%, sabinene—6.88%, β-pinene—5.45%, camphene—3.72%) * | 0.288 mg/mL/0.143 mg/mL | 2.01 | 0.78 |
Abies numidica de Lannoy ex Carrière [45] (Caryophyllene—17.31%, α-pinene—10.59%, 2,2,6,10-tetramethylbicyclo [5.4.0] undeca-9,11-diene—8.65%, 2,6-octadiene, 2,6-dimethyl—7.63%, linalylacetate—7.42%, β-selinene—7.28%, sabinene—6.88%, β-pinene—5.45%, camphene—3.72%) | IC50 could not be estimated because of the very low effect | Weak/inactive | Weak/inactive |
Larix laricina (Du Roi) K. Koch [44] (Bornyl acetate—16.4%, α-pinene—16.1%, camphene—13.4%, limonene—13.2%, β-pinene—12.2%, camphor—5.7%, δ-3-carene—5.4%, myrcene—4.0%) | The IC50 value could not be determined due to the observed low activity | Very weak | Very weak |
Picea glauca (Moench) Voss [44] (β-pinene—15.1%, bornyl acetate—14.6%, camphor—14.5%, α-pinene—13.7%, limonene—12.7%, camphene—12.6%) | The IC50 value could not be determined due to the observed low activity | Very weak | Very weak |
Picea mariana Britton, Sterns, & Poggenb. [44] (Bornyl acetate—29.2%, α-pinene—15.3%, camphene—17.8%, δ-3-carene—8.5%, limonene—4.9%, β-pinene—4.7%) | 80.3 mg/mL/0.02 mg/mL | 4015 | 1565.85 |
Pinus halepensis Mill. [81] (Caryophyllene—28.57–48.77%, phenethyl isovalerate—3.59–22.22%, α-humulene—5.34–9.24%, α-pinene—4.63–16.1%, β-myrcene—3.70–15.55%, sabinene—0.7–5.14%, α-terpinolene—1.22–5.61%, 3(Z)-cembrene A—n.d.–12.64%) | 73,030 μg/mL/34.23 μg/mL to 270,860 μg/mL/34.23 μg/mL | 2133.5 to 7912.94 | 832.06 to 3086.05 |
Pinus banksiana Lamb. [44] (α-pinene—38.2%, β-pinene—17.8%, δ-3-carene—8.2%, limonene 8.1%, myrcene—6.4%, camphene—3.1%, camphor—2.8%, bornyl acetate—2.6%) | 7 mg/mL/0.02 mg/mL | 350 | 136.5 |
Pinus densiflora Siebold & Zucc. [76] (Camphene—22.38%, α-pinene—20.58%, α-limonene—20.16%, bornyl acetate—9.79%, β-pinene—6.73%, δ-3-carene—4.36%, 2,3-dimethylbicyclo[2.2.1]hept-2-ene—4.35%, 1,1,7-trimethyltricyclo[2.2.1.0(2.6)]heptane—4.01%) | 120 μg/mL/14.3 μg/mL | 8.39 | 3.27 |
Pinus halepensis Mill. [124] (Caryophyllene—15.87%, β-pinene—13.74%, α-pinene—12.5%, cembrene—9.84%, α-humulene—9.19%, β-phenylethyl isovalerate—7.89%, trans-β-ocimene—6.65%, 1R-α-pinene—3.68%) | 0.41 mg/mL/0.12 mg/mL | 3.42 | 1.33 |
Pinus halepensis Mill. [67] (Myrcene—17.5–21.6%, (z)-β-caryophyllene—17.3–21.2%, α-pinene—8.5–12.9%, p-cymene 7.9–11.9%, caryophyllene oxide—5.4–12.6%) | 201.28 μg/mL/31.41 μg/mL to 236.18 μg/mL/31.41 μg/mL | 6.41 to 7.52 | 2.50 to 2.93 |
Pinus thunbergii Parl. [76] (α-terpinolene—19.3%, δ-3-carene —16.77%, β-phellandrene —13.36%), α-pinene—10.91%, γ-terpinene—6.25%, 4-terpineol—5.35%, sabinene—5.15%, α-terpinene—4.22%, β-pinene—3.96%) | 30 μg/mL/14.3 μg/mL | 2.10 | 0.819 |
Leaf and twig | |||
Abies alba Mill. [85] (Bornyl acetate—30.31%, camphene—19.81%, 3-carene—13.85%, tricyclene—12.90%, dl-limonene—7.50%) | 27,000 μg/mL/39.3 μg/mL | 687.02 | 267.94 |
Wood/sawdust | |||
Pinus pinaster Aiton [100] (EOs obtained through five methods) (β-caryophyllene—21.2–30.1%, longifolene—8.9–14.4%, α-caryophyllene—3.7–5.2%, α-muurolen—1.6–3.7%, nerolidol—1.4–4.7%, patchouli alcohol—n.d.–6.3%, limonene—0.1–6.9%, α-terpineol—2.5–12.4%, anethol—n.d.–4.7%) | 123.0 μg/mL/24.0 μg/mL 115.2 μg/mL/24.0 μg/mL 59.8 μg/mL/24.0 μg/mL 15.0 μg/mL/24.0 μg/mL 15.4 μg/mL/24 μg/mL | 5.125 4.8 2.49 0.625 0.64 | 2.00 1.87 0.97 0.24 0.25 |
Cone | |||
Pinus armandii Franch. [58] (α-pinene—20.92%, D-limonene—15.78%, β-pinene—4.91%, trans-pinocarveol—4.76%) | 378.51 μg/mL/23.71 μg/mL | 15.96 | 6.22 |
Pinus koraiensis Siebold & Zucc. [59] (α-pinene—35.2%, limonene—18.4%, β-pinene—8.7%, β-caryophyllene—3.5%, myrcene—3.0%) | 242.39 μg/mL/21.51 μg/mL | 11.27 | 4.39 |
Pinus sylvestris L. [59] (Aromadendrene—20.2%, α-pinene—18.5%, α-longipinene—10.5%, α-terpineol—5.5%, caryophyllene oxide—3.6%, limonene—3.3%, trans-pinocarveol—3.0%) | 365.61 μg/mL/21.51 μg/mL | 17.00 | 6.63 |
Bark | |||
Abies nordmanniana ssp. equi-trojani (Asch. & Sint. ex Boiss.) Coode & Cullen [42] (α-terpineol—5.4%, abietadien—4.2%, manoyl oxide—4.0%, dehydroabietal—3.9%, 4-terpineol—3.8%, octadecadienoic acid—3.2%) | 5480 μg/mL/9.8 μg/mL | 559.18 | 218.08 |
Cedrus libani A. Rich [42] (Manool—11.0%, isolongifolene—9.7%, abietate 3.1%, dehydro-p-cymene—2.5%, camphene 2.4%, berbenone—2.3%, borneol—2.0%) | 440 μg/mL/9.8 μg/mL | 44.90 | 17.51 |
Pinus nigra J. F. Arnold [42] (Docosane—8.0%, octadec-9-en-18-olide—4.7%, p-xylene—3.6%, hexacosane 3.1%) | 1970 μg/mL/9.8 μg/mL | 201.02 | 78.40 |
Taxon [Reference] | RP (Ascorbic_Acid) | Plant Part |
---|---|---|
Pinus pinaster Aiton [100] (microwave hydrodiffusion and gravity) (β-caryophyllene—21.2%, longifolene—9.8%, α-caryophyllene—3.8%, α-muurolen—1.6%, nerolidol—1.4%, patchouli alcohol—1.4%, limonene—0.1%, α-terpineol—10.0%, anethol—4.7%) | 0.24 | Wood (sawdust) |
Pinus pinaster Aiton [100] (solvent-free microwave extraction) (β-caryophyllene—22.2%, longifolene—10.0%, α-caryophyllene—3.7%, α-muurolen—1.6%, nerolidol—1.4%, patchouli alcohol—0.9%, limonene—0.3%, α-terpineol—8.8%, anethol—3.3%) | 0.25 | Wood (sawdust) |
Cedrus deodara (Roxb. ex D.Don) G.Don [70] (α-terpineol—30.2%, linalool—24.47%, limonene—17.01%, anethole—14.57%, caryophyllene—3.14%, and eugenol—2.14%) | 0.3 | Leaf |
Abies numidica de Lannoy ex Carrière [54] (Caryophyllene—17.31%, α-pinene—10.59%, 2,2,6,10-tetramethylbicyclo [5.4.0] undeca-9,11-diene—8.65%, 2,6-octadiene, 2,6-dimethyl—7.63%, linalylacetate—7.42%, β-selinene—7.28%, sabinene—6.88%, β-pinene—5.45%, camphene—3.72%) * | 0.78 | Leaf |
Pinus thunbergii Parl. [76] (α-terpinolene—19.3%, δ-3-carene—16.77%, β-phellandrene—13.36%, α-pinene—10.91%, γ-terpinene—6.25%, 4-terpineol—5.35%, sabinene—5.15%, α-terpinene—4.22%, β-pinene—3.96%) | 0.819 | Leaf |
Pinus pinaster Aiton [100] (ultrasound-assisted extraction HD) (β-caryophyllene—24.0%, longifolene—8.9%, α-caryophyllene—4.4%, α-muurolen—1.9%, nerolidol—3.1%, patchouli alcohol—0.4%, limonene—6.9%, α-terpineol—10.7%, anethol—2.5%) | 0.97 | Wood (sawdust) |
Cedrus atlantica (Endl.) Manetti ex Carriere [52] (β-himachalene—28.99%, α-himachalene—14.43%, longifolene—12.2%, α-bisabolene—7.71%, (Z)-α-atlantone—4.81%, deodarone—4.18%, δ-cadinene—3.65%) | 1.14 | Wood |
Cedrus atlantica (Endl.) Manetti ex Carriere [52] | 1.245 | Wood |
Pinus halepensis Mill. [124] (Caryophyllene—15.87%, β-pinene—13.74%, α-pinene—12.5%, cembrene—9.84%, α-humulene—9.19%, β-phenylethyl isovalerate—7.89%, trans-β-ocimene—6.65%, 1R-α-pinene—3.68%) | 1.33 | Leaf |
Cedrus atlantica (Endl.) G.Manetti ex Carrière (from Itzer forest) [99] (β-himachalene—24.05%, α-himachalene—13.76%, methyl-1,4 cyclohexadiene—9.06%, trans-cadina-1 (6), 4 diene—7.65%, 6-camphenol—8.76%) | 1.5 | Wood tar |
Cedrus atlantica (Endl.) G.Manetti ex Carrière (from Senoual Forest) [99] (β-himachalene—24.25%, α-himachalene—1.15%, trans-cadina-1 (6), 4 diene—7.37%, 6-camphenol—8.76%, cis-sabinene hydrate—5.92%) | 1.7 | Wood tar |
Pinus pinaster Aiton [100] (turbohydrodistillation) (β-caryophyllene—28.0%, longifolene—12.6%, α-caryophyllene—5.2%, α-muurolen—2.9%, nerolidol—4.7%, patchouli alcohol—n.d., limonene—0.8%, α-terpineol—12.4%, anethol—n.d.) | 1.87 | Wood (sawdust) |
Pinus pinaster Aiton [100] (hydrodistillation) (β-caryophyllene—30.1%, longifolene—14.4%, α-caryophyllene—5.2%, α-muurolen—3.7%, nerolidol—3.4%, patchouli alcohol—6.3%, limonene—0.3%, α-terpineol—2.5%, anethol—n.d.) | 2 | Wood (sawdust) |
Abies pindrow (Royle ex. D.Don) Royle [47] (Limonene—38.9%, α-pinene—36.5%, β-pinene—6.9%, and α-selinene 4.4%) | 2.47 | Leaf |
Pinus wallichiana A.B.Jacks. [72] (β-pinene—46.8%, α-pinene—25.2%, myrecene—2.5%, α-terpineol—2.3%, caryophyllene oxide—2.1%) | 2.5 | Leaf |
Pinus gerardiana Wall. ex D.Don [69] (α-pinene—46.8%, 3-carene—24%, caryophyllene—9.1%, α-phennaldrene—3.9%) | 2.88 | Leaf |
Pinus wallichiana A.B.Jacks. [69] (3-carene—43.2%, α-pinene—30.2%, cadinol—3.5%, D-limonene—3.2%) | 3.07 | Bark |
Pinus densiflora Siebold & Zucc. [76] (Camphene—22.38%, α-pinene—20.58%, α-limonene—20.16%, bornyl acetate—9.79%, β-pinene—6.73%, δ-3-carene—4.36%) | 3.27 | Leaf |
Pinus roxburghii Sarg. [69] (α-terpinene—50.9%, α-ocimene—25.4%, caryophyllene—19.5%, 3-carene—17.8%, α-pinene—12.7%, humulene—3.1%, thujopsene—3.1%) | 3.54 | Leaf |
Pinus wallichiana A.B.Jacks. [69] | 3.67 | Leaf |
Pinus gerardiana Wall. ex D.Don [69] (α-pinene—36.0%, sesquisabinene hydrate—10.4%, cadinol—2.2%, D-limonene—2.1%) | 3.75 | Bark |
Pinus koraiensis Siebold & Zucc. [59] (α-pinene—35.2%, limonene—18.4%, β-pinene—8.7%, β-caryophyllene—3.5%, myrcene—3.0%) | 4.39 | Cone |
Pinus koraiensis Siebold & Zucc. [59] | 4.55 | Cone |
Pinus halepensis Mill. [97] (β-caryophyllene—28.04%, myrcene—23.81%, and α-pinene—12.02%) | 5 | Leaf |
Pinus thunbergii Parl. [76] (α-terpinolene—19.3%, δ-3-carene—16.77%, β-phellandrene—13.36%, α-pinene—10.91%, γ-terpinene—6.25%, 4-terpineol—5.35%, sabinene—5.15%, α-terpinene—4.22%, β-pinene—3.96%) | 5.49 | Leaf |
Pinus armandii Franch. [58] (α-pinene—20.92%, D-limonene—15.78%, β-pinene—4.91%, trans-pinocarveol—4.76%) | 6 | Cone |
Pinus armandii Franch. [58] | 6.22 | Cone |
Pinus sylvestris L. [59] (Aromadendrene—20.2%, α-pinene—18.5%, α-longipinene—10.5%, α-terpineol—5.5%, caryophyllene oxide—3.6%, limonene—3.3%, trans-pinocarveol—3.0%) | 6.63 | Cone |
Pinus sylvestris L. [59] | 6.87 | Cone |
Pinus pinea L. [101] (Limonene—32.56%, α-pinene—6.78%, β-pinene—4.66%, caryophyllene oxide—3.73%) | 8.1 | Cone |
Pinus pinea L. [101] (α-pinene—0.51%, β-pinene—0.36%, limonene—11.42%, β-caryophyllene—7.61%, germacrene-D—5.52%, δ-selinene—4.14%, guaiol—12.70%, α-eudesmol—5.19%, manoyl oxide—3.61%) | 9.02 | Leaf |
Pinus pinea L. [101] (β-caryophyllene—16.51%, limonene—14.83%, caryophyllene oxide—11.83%, longifolene—7.51%, guaiol—3.13%) | 9.68 | Bark |
Pinus pinaster Aiton [71] (α-pinene—32.57%, β-pinene—27.39%, ju-nipene—9.45%, δ-3-carene—7.32%, limonene—3.54%, β-myrcene—3.20%) | 13.73 | Cone |
Cedrus libani A. Rich [42] (Manool—11.0%, isolongifolene—9.7%, abietate 3.1%, dehydro-p-cymene—2.5%, camphene 2.4%, berbenone—2.3%, borneol L—2.0%) | 17.51 | Bark |
Pinus pinaster Aiton [71] (α-pinene—58.44%, junipene—6.10%, α-terpineol—5.32%, limonene—4.09%) | 18.15 | Wood (sawdust) |
Pinus densiflora Siebold & Zucc. [76] (Camphene—22.38%, α-pinene—20.58%, α-limonene—20.16%, bornyl acetate—9.79%, β-pinene—6.73%, δ-3-carene—4.36%) | 21.94 | Leaf |
Pinus pinaster Aiton [71] (α-pinene—27.0%, β-pinene—28.0%, β-myrcene—11.0%, δ-3-carene—6.6%, germacrene-D—6.3%, β-caryophyllene—4.5%, limonene—4.5%) | 23.33 | Leaf |
Pinus nigra J. F. Arnold [42] (Docosane—8.0%, octadec-9-en-18-olide—4.7%, 12-(cyanomethyl) indolo [1,2] quinazoline—3.7%, p-xylene—3.6%, hexacosane 3.1%) | 78.4 | Bark |
Pinus banksiana Lamb. [44] (α-pinene—38.2%, β-pinene—17.8%, δ-3-carene—8.2%, limonene 8.1%, myrcene—6.4%, camphene—3.1%, camphor—2.8%, bornyl acetate—2.6%) | 136.5 | Leaf |
Cedrus atlantica (Endl.) G.Manetti ex Carrière (Itzer forest) [99] (β-himachalene—27.67%, α-himachalene—12%, 11αH-himachal-4-en-1β-ol—9.42%, trans-cadina-1 (6), 4 diene—8.45%, 6-camphenol—3.16%) | 194.49 | Wood (sawdust) |
Cedrus atlantica (Endl.) G.Manetti ex Carrière (Senoual Forest) [99] (β-himachalene—44.23%, α-himachalene—16.69%, trans-cadina-1 (6), 4 diene—11.27%, 6-camphenol—4.54%, 11αH-himachal-4-en-1β-ol—1.31%) | 203.3 | Wood (sawdust) |
Abies nordmanniana ssp. equi-trojani (Asch. & Sint. ex Boiss.) Coode & Cullen [42] (α-terpineol—5.4%, abietadien—4.2%, manoyl oxide—4.0%, dehydroabietal—3.9%, 4-terpineol—3.8%, octadecadienoic acid—3.2%) | 218.08 | Bark |
Abies alba Mill. [85] (Bornyl acetate—30.31%, camphene—19.81%, 3-carene—13.85%, tricyclene—12.90%, dl-limonene—7.50%) | 267.94 | Leaf and twig |
Pinus pumila (Pall.) Regel (hydrodistillation with screw extrusion treatment—E-HD) [77] (α-pinene—24.88%, longifolene 11.64%, limonene—10.13%, camphene—9.60%, (+)-δ-cadinene—4.52%, β-pinene—3.22%) | 337.2 | Bark |
Pinus pumila (Pall.) Regel (microwave-assisted hydrodistillation with screw extrusion treatment—E-MHD) [77] (α-pinene—32.53%, camphene—13.40%, longifolene 5.85%, limonene—12.67%, β-pinene—4.58%, bornyl acetate—4.52%, (+)-δ-cadinene—2.47%) | 343.2 | Bark |
Pinus pumila (Pall.) Regel (microwave-assisted hydrodistillation with pulverization treatment—P-MHD) [77] (α-pinene—23.61%, longifolene 13.23%, limonene—9.21%, camphene—9.12%, (+)-δ-cadinene—4.62%, β-pinene—2.92%) | 351.7 | Bark |
Pinus pumila (Pall.) Regel [77] (P-MHD method) | 365.75 | Bark |
Pinus pumila (Pall.) Regel [77] (E-MHD method) | 372.25 | Bark |
Pinus pumila (Pall.) Regel [77] (E-HD method) | 381.5 | Bark |
Pinus nigra ssp. nigra (syn. P. nigra var. banatica Georgescu & Ionescu) [74] (α-pinene—50.83%, germacrene D—23.69%, (E)-caryophyllene—7.31%, β-pinene—3.10%, germacrene D-4-ol—0.01%)) | 464.4 | Leaf |
Pinus nigra ssp. nigra [74] (α-pinene—45.93%, Germacrene D—27.50%, (E)-caryophyllene—8.13%, β-pinene—6.90%, germacrene D-4-ol—0.57%) | 474 | Leaf |
Pinus nigra ssp. nigra (syn. P. nigra var. banatica Georgescu & Ionescu) [74] | 481.38 | Leaf |
Pinus nigra ssp. nigra [74] | 491.29 | Leaf |
Pinus nigra ssp. pallasiana (Lamb.) Holmboe [74] (α-pinene—42.33%, germacrene D—30.59%, (E)-caryophyllene—7.43%, β-pinene—5.15%, germacrene D-4-ol—1.93%)) | 531.06 | Leaf |
Pinus nigra ssp. pallasiana (Lamb.) Holmboe [74] | 550.4 | Leaf |
Pinus pinaster Aiton [73] (α-pinene—27.0%, β-pinene—28.0%, β-myrcene—11.0%, δ-3-carene—6.6%, germacrene-D—6.3%, β-caryophyllene—4.5%, limonene—4.5%) | 1380 | Leaf |
Pinus nigra J. F. Arnold ssp. mauritanica (Mair. & Pay) [64] (α-pinene—55.7%, kaur-16-ene—12.4%, β-pinene—2.3%, cembrene—2.3%) | 1521.3 | Twig |
Picea mariana Britton, Sterns & Poggenb. [44] (Bornyl acetate—29.2%, α-pinene—15.3%, camphene—17.8%, δ-3-carene—8.5%, Limonene—4.9%, β-pinene—4.7%) | 1565.85 | Leaf |
Pinus nigra J. F. Arnold ssp. mauritanica (Mair. & Pay) [64] (β-caryophyllene—26.2%, germacrene D—17,2%, α-pinene—9.4%, kaur-16-ene—7.1%, δ-cadinene—6.9%, α-humulene—4.1%) | 4234.285 | Leaf |
Pinus pinea L. [73] (Limonene (72.8%) α-pinene (7.6%)) | 4892.5 | Leaf |
Pinus cembra L. [79] (α-pinene—69.14%, limonene + β-phellandrene—4.64%, α-cadinene—3.71%) | 10,779.61 | Leaf |
Abies alba Mill. [85] (3-carene—13.85%, camphene—19.81%, tricyclene—12.90%, dl-limonene—7.50%, bornyl acetate—30.31%) | 13,025.68 | Leaf and twig |
Abies alba Mill. [85] | 13,500 | Leaf and twig |
Pinus halepensis Mill. [67] (Myrcene 17.5–21.6%, (Z)-β-caryophyllene 17.3–21.2%, p-cymene 7.9–11.9%, α-pinene 8.5–12.9%, caryophyllene oxide 5.4–12.6%) | 15.24–17.89 | Leaf |
Pinus halepensis Mill. [67] | 2.50 to 2.93 | Leaf |
Pinus halepensis Mill. [81] (Caryophyllene—28.57–48.77%, phenethyl isovalerate—3.59–22.22%, α-humulene—5.34–9.24%, α-pinene—4.63–16.1%, β-myrcene—3.70–15.55%, sabinene—0.7–5.14%, α-terpinolene—1.22–5.61%, cembrene A—n.d.–12.64%) | 832.06 to 3086.05 | Leaf |
Pinus pinaster Aiton (two producers) [73] (α-pinene—44.6% and 36.5%, β-pinene—23.0% and 18.8%, β-caryophyllene—5.0% and 8.7%, β-myrcene—5.0% and 5.9%, germacrene-D—1.7% and 5.6%, limonene—3.9% and 3.3%, δ-3-carene—2.1% and 1.8%) | No activity | Leaf |
Abies balsamea (L.) Mill. [44] (β-pinene—31.1%, α-pinene—14.4%, δ-3-carene—13.6%, bornyl acetate—9.1%, limonene—8.5%, β-phellandrene—6.8%, camphene—5.5%) | Very weak | Leaf |
Larix laricina (Du Roi) K. Koch [44] (Bornyl acetate—16.4%, α-pinene—16.1%, camphene—13.4%, limonene—13.2%, β-pinene—12.2%, camphor—5.7%, δ-3-carene—5.4%, myrcene—4.0%) | Very weak | Leaf |
Picea glauca (Moench) Voss [44] (β-pinene—15.1%, bornyl acetate—14.6%, camphor—14.5%, α-pinene—13.7%, limonene—12.7%, camphene—12.6%) | Very weak | Leaf |
Pinus nigra J. F. Arnold ssp. dalmatica (Vis.) [80] (α-pinene—24%, β-pinene—16.0%, germacrene D—14.6%, β-caryophyllene, bornyl acetate—3.3%, limonene—3.3%) | Very weak | Leaf |
Abies numidica de Lannoy ex Carrière [45] (Caryophyllene—17.31%, α-pinene—10.59%, 2,2,6,10-tetramethylbicyclo [5.4.0] undeca-9,11-diene—8.65%, 2,6-octadiene, 2,6-dimethyl—7.63%, linalylacetate—7.42%, β-selinene—7.28%, sabinene—6.88%, β-pinene—5.45%, camphene—3.72%) * | Very weak | Leaf |
Reference | Plant Part | Increasing Order of Antioxidant Effects |
---|---|---|
Sharma et al. (2020) [69] | Bark | Pinus gerardiana < Pinus wallichiana < Pinus roxburghii |
Ulukanli et al. (2014) [75] | Bark oleoresin | Pinus pinea < Pinus brutia var. brutia |
Efremov et al. (2021) [125] | Branch | Abies sibirica < Pinus sibirica |
Kurti et al. (2019) [92] | Branch and leaf | Pinus peuce < Pinus heldreichii < Pinus sylvestris < Pinus mugo < Pinus nigra |
Yang et al. (2010) [59] | Cone | Pinus sylvestris L. < Pinus koraiensis |
Wajs-Bonikowska et al. (2015) [56] | Cone | Abies koreana E.H. Wilson < Abies alba |
Ruas et al. (2022) [73] | Leaf | Pinus pinaster < Pinus pinea < Pinus pinaster * |
Sharma et al. (2020) [69] | Leaf | Pinus wallichiana < Pinus roxburghii < Pinus gerardiana |
Sarac et al. (2014) [74] | Leaf | Pinus nigra ssp. pallasiana < P. nigra ssp. nigra < P. nigra var. banatica |
Poaty et al. (2015) [44] | Leaf | Abies balsamea < Picea mariana < Picea glauca < Pinus banksiana |
Yener et al. (2014) [78] | Leaf | Pinus pinea ≈ Pinus halepensis < Pinus brutia < Pinus nigra ** |
Aloui et al. (2021) [83] | Leaf | Pinus pinaster < −Pinus halepensis < −Pinus pinea |
Fkiri et al. (2019) [65] | Leaf | Pinus pinaster ssp. escarena (Risso) K.Richt. (syn. Pinus pinaster var. maghrebiana) < Pinus pinaster ssp. renoui (Villar) Maire |
Garzoli et al. (2021) [39] | Leaf | Picea abies L. ≈ Pinus cembra < Abies alba < Pinus mugo |
Liu et al. (2022) [48] | Leaf | Pinus armandii < Pinus strobus L. < Pinus bungeana Zucc. ex. Endl. < Pinus sylvestris var. mongholica Litv. < Pinus yunnanensis Franch. < Pinus koraiensis < Pinus massoniana Lamb. < Pinus tabuliformis var. mukdensis (Uyeki ex. Nakai) Uyeki < Pinus tabuliformis Carrière < Pinus densata |
Xie et al. (2015) [40] | Leaf | Pinus massoniana < Pinus henryi Mast. < Pinus tabuliformis < Pinus tabuliformis var. umbraculifera Liou & Z.Wang < Pinus tabuliformis f. shekanensis < Pinus tabuliformis var. mukdensis |
Kačániová et al. (2014) [87] | NA (probably leaves) | Pinus mugo (syn. P. montana) < Abies alba < Pinus sylvestris |
Wajs-Bonikowska et al. (2015) [56] | Seed | Abies alba < Abies koreana |
Kolayli et al. (2009) [42] | Trunk bark | Abies nordmanniana ssp. equi-trojani < −Pinus nigra < −Cedrus libani |
Venditti et al. (2022) [51] | Wood | Pinus pinea < −Cedrus libani |
Reference | Plant Part | Increasing Order of Antioxidant Effects |
---|---|---|
Jo et al. (2018) [94] | Branch | Abies holophylla Maxim. < (Abies koreana ≈ Pinus densiflora for. multicaulis) |
Garzoli et al. (2021) [39] | Leaf | Picea abies ≈ Pinus cembra < Abies alba < Pinus mugo |
Xie et al. (2015) [40] | Leaf | Pinus massoniana < Pinus henryi < Pinus tabuliformis f. shekanensis < Pinus tabuliformis < Pinus tabuliformis var. umbraculifera < Pinus tabuliformis var. mukdensis |
Liu et al. (2022) [48] | Leaf | Pinus armandii < Pinus bungeana < Pinus strobus < Pinus sylvestris var. mongholica < P. tabuliformis var. mukdensis < Pinus massoniana < Pinus yunnanensis < Pinus koraiensis < Pinus densata < Pinus tabuliformis. |
Sarac et al. (2014) [74] | Leaf | Pinus nigra ssp. pallasiana < P. nigra ssp. nigra < P. nigra ssp. nigra (syn. P. nigra var. banatica) |
Jo et al. (2018) [94] | Leaf | (Picea abies & Abies nephrolepis Maxim. & Picea koraiensis Nakai) < Pinus densiflora |
Venditti et al. (2022) [51] | Wood | Pinus pinea < Cedrus libani |
Reference | Plant Part | Increasing Order of Antioxidant Effects |
---|---|---|
Ulukanli et al. (2014) [75] | Bark oleoresin | Pinus pinea < Pinus brutia var. brutia |
Xie et al. (2015) [40] | Leaf | Pinus massoniana < Pinus henryi < Pinus tabuliformis var. umbraculifera < Pinus tabuliformis f. shekanensis < Pinus tabuliformis < Pinus tabuliformis var. mukdensis |
Liu et al. (2022) [48] | Leaf | Pinus armandii < Pinus strobus < P. tabulaeformis var. mukdensis < Pinus bungeana < Pinus massoniana < Pinus sylvestris var. mongholica < Pinus koraiensis < Pinus yunnanensis < Pinus tabulaeformis < Pinus densata |
Ustun et al. (2012) [98] | Leaf | Pinus brutia < Pinus sylvestris < Pinus pinea ≈ Pinus nigra < Pinus halepensis * |
Yener et al. (2014) [78] | Leaf | Pinus pinea < Pinus halepensis < Pinus brutia < Pinus nigra |
Ustun et al. (2012) [98] | Twigs | Pinus brutia < Pinus sylvestris ≈ Pinus nigra < Pinus pinea < Pinus halepensis * |
Venditti et al. (2022) [51] | Wood | Pinus pinea < Cedrus libani |
Species | IC50 | RP (Beta-Carotene) | Section (Subsection) |
---|---|---|---|
Pinus canariensis C. Sm. (Germacrene D—44.0%, α-pinene—14.6%, β-caryophyllene—8.7%, limonene—7.9%, myrcene—6.4%, δ-cadinene—4.1%) | 1.00 ± 0.08 | 4.35 | Pinus (Pinaster) |
Pinus attenuata Lemmon (α-pinene −38.1%, germacrene D—29.0%, β-caryophyllene—7.9%, δ-cadinene—5.4%) | 1.30 ± 0.02 | 5.65 | Trifoliae (Australes) |
Pinus muricata D.Don (Germacrene D—41.5%, α-pinene—17.3%, β-ocimene—5.4%, δ-3-carene—5.3%, β-pinene—4.8%, α-cadinol—4.0%) | 1.60 ± 0.09 | 6.96 | Trifoliae (Australes) |
Pinus sylvestris var. sylvestris (syn. Pinus sylvestris ssp. scotica (Beissn.) E.F.Warb.) (Isoabienol—25.9%, δ-3-carene—10.7%, germacrene D-4-ol—10%, α-pinene—9.5%, β-pinene—5.7%, germacrene D—5.1%, α-cadinol—4.1%, bicyclogermacrene—3.2%, δ-cadinene—3.5%) | 1.67 ± 0.05 | 7.26 | Pinus (Pinus) |
Pinus halepensis Mill. (β-caryophyllene—19.0%, myrcene—15.1%, α-pinene—8.0%, cembrene 6.5%, phenyl ethyl 3-methyl butanoate—5.1%, α-humulene 3.8%) | 1.78 ± 0.17 | 7.74 | Pinus (Pinaster) |
Pinus mugo var. prostrata (Bornyl acetate—14.1%, α-pinene—12.9%, camphene—6.5%, δ-3-carene—6.4%, germacrene D-4-ol—6.0%, bicyclogermacrene—5.7%, β-elemene—3.7%, α-cadinol—3.5%, β-caryophyllene—3.4%) | 1.79 ± 0.21 | 7.78 | Pinus (Pinus) |
Pinus mugo Turra (α-pinene—13.7%, germacrene D—12.1%, δ-3-carene—9.9%, myrcene—6.9%, germacrene D-4-ol—6.1%, β-caryophyllene—5.3%, bicyclogermacrene—4.2%, bornyl acetate—3.8%, terpinolene—3.8%) | 1.89 ± 0.16 | 8.22 | Pinus (Pinus) |
Pinus monticola Douglas ex. D.Don (β-elemene—15.0%, α-pinene—14.9%, β-pinene—14.2%, germacrende D-4-ol—7.2%, germacrene D—6.8%, β-phellandrene—6.0%, α-cadinol—4.2%) | 1.94 ± 0.09 | 8.43 | Quinquefoliae (Strobus) |
Pinus nigra ssp. nigra (Germacrene D—32.1%, α-pinene—19.5%, β-caryophyllene—16.1%, β-pinene—12.1%, α-humulene—3.2%, limonene—3.1%) | 2.05 ± 0.20 | 8.91 | Pinus (Pinus) |
Pinus rigida Mill. (β-pinene—16.7%, germacrene D—15.5%, bicyclogermacrene—14.1%, β-phellandrene—13.6%, α-pinene—4.7%, α-cadinol—4.7%, germacrene D-4-ol—4.4%, β-caryophyllene—4.3%, myrcene—3.7%,) | 2.09 ± 0.12 | 9.09 | Trifoliae (Australes) |
Pinus wallichiana A.B.Jacks. (β-pinene—18.1%, α-pinene—13.8%, germacrene D—10.3%, β-caryophyllene—7.2%, germacrene D-4-ol—6.7%, unidentified compound—6.1%, δ-cadinene—4.6%, α-cadinol—4.3%) | 2.23 ± 0.12 | 9.70 | Quinquefoliae (Strobus) |
Pinus cembra L. (Germacrene D—21.2%, α-pinene—21.1%, β-phellandrene—13.5%, bicyclogermacrene—4.7%, β-pinene—4.6%, δ-cadinene—4.3%, methyl daniellate—4.1%) | 2.36 ± 0.05 | 10.26 | Quinquefoliae (Strobus) |
Pinus cembroides Zucc. (α-pinene—30.9%, β-caryophyllene—19.2%, germacrene D—9.4%, β-pinene—5.6%, myrcene—5.0%, β-phellandrene—3.7%, camphene—3.5%, α-humulene—3.2%, α-cadinol—3.0%) | 2.38 ± 0.16 | 10.35 | Parrya (Cembroides) |
Pinus coulteri D. Don. (4-epi-isocembrol—17.7%, unidentified compound—16.9%, α-pinene—13.6%, germacrene D—8.8%, β-phellandrene—6.2%, α-cadinol—4.7%, δ-cadinene 3.6%) | 2.64 ± 0.08 | 11.48 | Trifoliae (Ponderosae) |
Pinus thunbergii Parl. (Germacrene D—18.7%, β-phellandrene—14.5%, β-pinene 13.2%, β-caryophyllene—9.4%, α-pinene—8.7%, myrcene—5.4%, δ-cadinene—4.0%) | 2.68 ± 0.12 | 11.65 | Pinus (Pinus) |
Pinus strobiformis Engelm. (Germacrene D—25.5%, β-pinene—12.5%, α-cadinol—8.1%, α-pinene—8.0%, δ-cadinene—6.4%, bicyclogermacrene—4.1%, α-muurolol—3.2%) | 2.68 ± 0.15 | 11.65 | Quinquefoliae (Strobus) |
Pinus koraiensis Siebold & Zucc. (Germacrene D—18.7%, α-pinene—14.3%, β-caryophyllene—8.4%, bornyl acetate—8.3%, terpinolene—6.6%, camphene—6.1%, limonene—5.4%, δ-cadinene—4.8%) | 2.73 ± 0.07 | 11.87 | Quinquefoliae (Strobus) |
Pinus ponderosa Douglas ex. C.Lawson (β-pinene—45.0%, α-pinene—22.5%, δ-3-carene—12.0%, β-phellandrene—4.4%) | 2.86 ± 0.09 | 12.43 | Trifoliae (Ponderosae) |
Pinus nigra subsp. pallasiana (Lamb.) Holmboe (syn. P nigra ssp. caramanica (Loudon) Rehder) (β-pinene—20.7%, germacrene D—20.0%, α-pinene—18.0%, β-caryophyllene—7.8%, limonene—3.1%) | 3.28 ± 0.27 | 14.26 | Pinus (Pinus) |
Pinus mugo Turra (syn. Pinus mugo var. pumilio (Haenke) Zenari) (α-pinene—14.1%, germacrene D—8.0%, bornyl acetate—7.6%, β-caryophyllene—6.8%, camphene—6.3%, δ-cadinene—4.6%, α-cadinol—4.4%, sabinene 4.3%, germacrene D-4-ol—4.1%, myrcene—3.2%, limonene—3.0, sylvestrene—3.0%) | 3.42 ± 0.06 | 14.87 | Pinus (Pinus) |
Pinus contorta var. murrayana (Balf.) S.Watson (β-phellandrene—47.0%, α-pinene—4.8%, (Z)-β-ocimene—4.6%, bicyclogermacrene—3.8%, α-cadinol—3.3%, β-pinene—3.0%) | 3.51 ± 0.16 | 15.26 | Trifoliae (Contorte) |
Pinus banksiana Lamb. (Bornyl acetate—15.7%, germacrene D—14.7%, α-pinene—8.2%, β-pinene—7.8%, myrcene—6.3%, δ-3-carene—3.2%) | 3.60 ± 0.14 | 15.65 | Trifoliae (Contorte) |
Pinus flexilis E. James (α-pinene—24.5%, germacrene D—12.2%, camphene—9.0%, β-pinene—8.6%, unidentified compound—6.2%, bornyl acetate—3.8%, α-cadinol—3.4%, δ-cadinene—3.3%) | 3.62 ± 0.57 | 15.74 | Quinquefoliae (Strobus) |
Pinus jeffreyi A.Murray bis (α-pinene—29.8%, unidentified compound—18.3%, germacrene D—11.5%, β-pinene—4.7%, δ-cadinene—4.0%, β-phellandrene—3.4%, α-cadinol—3.4%) | 3.72 ± 0.39 | 16.17 | Trifoliae (Ponderosae) |
Pinus elliottii Engelm. (Germacrene D—24.5%, β-pinene—12.9%, α-pinene—10.6%, β-caryophyllene—6.6%, δ-cadinene—3.8%, α-cadinol—3.7%, α-terpineol—3.2%) | 3.97 ± 0.35 | 17.26 | Trifoliae (Australes) |
Pinus tabuliformis Carrière (β-caryophyllene—15.9%, germacrene D—14.5%, α-pinene—9.7%, β-pinene—6.2%, bornyl acetate 4.7%, δ-cadinene—4.5%, bicyclogermacrene—4.3%, myrcene—4.1%, α-cadinol—4.0%, α-humulene—3.4%, 4-isocembrol—3.1%) | 3.97 ± 0.62 | 17.26 | Pinus (Pinus) |
Pinus peuce Griseb. (α-pinene—30.1%, germacrene D—17.0%, camphene—5.9%, β-pinene—10.8%, β-caryophyllene—9.8%, bornyl acetate—6.5%, sylvestrene—4.7%) | 4.04 ± 0.26 | 17.57 | Quinquefoliae (Strobus) |
Pinus nigra ssp. salzmannii (Dunal) Franco (Germacrene D—18.5%, β-caryophyllene—17.8%, α-pinene—12.2%, limonene—12.5%, β-pinene—4.1%, myrcene—4.0%, α-humulene 3.9%) | 4.05 ± 0.12 | 17.61 | Pinus (Pinus) |
Pinus pumila (Pall.) Regel (δ-3-carene—20.8%, α-pinene—17.0%, terpinolene—6.0%, limonene—4.6%, germacrene D-4-ol—4.4%, 3-α-hydroxy-manool—4.1%, camphene—3.5%, β-phellandrene—3.0%, β-caryophyllene—3.0%) | 4.24 ± 0.27 | 18.43 | Quinquefoliae (Strobus) |
Pinus pinea L. (Limonene—31.7%, abienol—12.3%, sylvestrene—7.9%, α-pinene—5.8%, germacrene D—4.6%, guaiol—4.0%, methyl levopimarate 3.2%) | 4.40 ± 0.37 | 19.13 | Pinus (Pinaster) |
Pinus densiflora Siebold & Zucc. (Cadina-1(6),4-diene—12.7%, α-pinene—9.9%, β-ocimene—8.9%, β-caryophyllene—8.7%, isocembrol—8.5%, β-pinene—7.1%, bornyl acetate—3.7%) | 4.45 ± 0.40 | 19.35 | Pinus (Pinus) |
Pinus brutia Ten. (α-pinene—20.3%, β-pinene—31.2%, germacrene D—12.8%, β-caryophyllene—11.7%) | 4.67 ± 0.14 | 20.30 | Pinus (Pinaster) |
Pinus sylvestris L. (α-pinene—34.4%, δ-cadinene—7.1%, β-pinene—6.8%, bicyclogermacrene—6.0%, β-caryophyllene—4.7%, γ-cadinene—3.8%, germacrene D—3.7%, α-cadinol—3.5%) | 4.86 ± 0.48 | 21.13 | Pinus (Pinus) |
Pinus armandii Franch (α-pinene—48.0%, germacrene D—19.0%, β-caryophyllene—14.3%) | 4.95 ± 0.17 | 21.52 | Quinquefoliae (Strobus) |
Pinus bungeana Zucc. ex. Endl. (α-pinene—21.1%, germacrene D—11.2%, β-caryophyllene—11.0%, γ-muurolene—10.0%, camphene—8.3%, β-pinene—5.6%, δ-cadinene—4.7%, limonene—4.6%) | 4.99 ± 0.14 | 21.70 | Quinquefoliae (Gerardianae) |
Pinus contorta var. contorta (β-phellandrene—19.9%, pimarinal—8.9%, α-cadinol—8.9%, δ-3-carene—7.4%, manool—7.4%, α-pinene—5.9%, terpinen-4-ol—5.2%, β-pinene—4.7%, methyl dehydroabietate—4.7%, α-muurolol—4.4%, γ-terpinene—3.7%, α-cadinol—3.4%, manool oxide—3.0%) | 5.11 ± 0.40 | 22.22 | Trifoliae (Contorte) |
Pinus nigra ssp. laricio (α-pinene—18.0%, δ-3-carene—16.1%, β-caryophyllene—13.9%, germacrene D—12.7%, limonene—9.7%, terpinolene—3.3%) | 5.25 ± 0.19 | 22.83 | Pinus (Pinus) |
Pinus teocote Schied. ex. Schltdl. & Cham. (α-pinene—33.3%, germacrene D—27.6%, β-caryophyllene—9.8%, β-pinene—7.8%, δ-3-carene—4.4%, sylvestrene—3.6%, limonene—3.0%) | 5.36 ± 1.23 | 23.30 | Trifoliae (Australes) |
Pinus patula Schiede ex. Schltdl. & Cham. (Germacrene D—21.3%, α-pinene—18.5%, β-phellandrene—14.7%, β-caryophyllene—11.8%, β-pinene—3.7%, δ-cadinene—3.0%) | 5.63 ± 0.02 | 24.48 | Trifoliae (Australes) |
Pinus radiata D. Don. (β-pinene—38.7%, α-pinene—18.9%, germacrene D—6.4%, β-phellandrene—5.0%, bicyclogermacrene—4.7%, β-ocimene—3.8%, δ-cadinene—3.6%) | 5.65 ± 0.10 | 24.57 | Trifoliae (Australes) |
Pinus pinaster Aiton (Isoabienol—19.1%, sclarene—18.0%, germacrene D—11.2%, α-pinene—5.2%, abienol—4.7%, β-elemene 4.5%, abietatriene—4.0%) | 7.03 ± 1.12 | 30.57 | Pinus (Pinaster) |
Pinus parviflora Siebold & Zucc. (β-phellandrene—31.9%, α-pinene—21.1%, germacrene D—12.8%, β-pinene—12.5%, camphene—4.5%, methyl daniellate—4.1%, bornyl acetate—3.0%) | 7.04 ± 0.44 | 30.61 | Quinquefoliae (Strobus) |
Pinus heldreichii Christ. (Limonene—23.7%, germacrene D—21.3%, δ-3-carene—18.6%, α-pinene—11.1%, β-caryophyllene—8.6%, β-pinene—3.6%) | 7.26 ± 0.54 | 31.57 | Pinus (Pinaster) |
Pinus massoniana Lamb. (α-pinene—26.9%, germacrene D—20.7%, β-pinene—16.3%, β-caryophyllene—11.6%, β-phellandrene—6.8%) | 8.29 ± 0.41 | 36.04 | Pinus (Pinus) |
Pinus sabiniana Douglas (α-pinene—61.6%, unidentified compound—12.1%, β-ocimene—5.2%, β-pinene—4.5%) | 9.05 ±1.25 | 39.35 | Trifoliae (Ponderosae) |
Pinus taiwanensis Hayata (β-phellandrene—15.6%, β-caryophyllene—14.9%, α-pinene—12.1%, β-pinene—11.5%, myrcene—7.4%, terpinolene—5.6%, germacrene D—5.2%, bornyl acetate—4.3%) | 9.31 ± 0.29 | 40.48 | Pinus (Pinus) |
Pinus contorta var. latifolia Engelm. (β-pinene—32.8%, β-phellandrene—26.0%, α-pinene—5.6%, β-ocimene—4.9%, δ-cadinene—8.4%) | 9.57 ± 0.64 | 41.61 | Trifoliae (Contorte) |
Pinus torreyana Parry ex. Carrière (Isocembrol—55.7%, cembrene—12.7%, limonene—8.6%, thunbergol—7.7%) | 9.58 ± 0.40 | 41.65 | Trifoliae (Ponderosae) |
Pinus gerardiana Wall. ex D.Don (β-pinene—39.1%, α-pinene—26.4%, myrcene—5.7%, β-phellandrene—5.3%) | 11.35 ± 2.03 | 49.35 | Quinquefoliae (Gerardianae) |
Pinus strobus L. (α-pinene—14.7%, germacrene D—11.1%, unidentified compound—8.4%, β-pinene—5.8%, α-cadinol—5.5%, β-phellandrene—5.2%, δ-cadinene—3.5%, bicyclogermacrene—3.2%, unidentified compound—3.2%) | 11.54 ± 3.27 | 50.17 | Quinquefoliae (Strobus) |
Pinus culminicola Andresen & Beaman (α-pinene—33.6%, β-pinene—20.2%, β-phellandrene 16.9%, germacrene D—7.9%) | 11.71 ± 2.17 | 50.91 | Parrya (Cembroides) |
Pinus roxburghii Sarg. (β-caryophyllene—20.5%, δ3-carene—15.9%, terpinolene—10.5%, α-pinene—8.4%, sabinene 6.2%, cembrene—4.9%, α-humulene—4.2%, terpinene-4-ol—3.5%) | 15.96 ± 1.45 | 69.39 | Pinus (Pinaster) |
Pinus aristata Engelm. (δ-3-carene—38.4%, β-phellandrene—12.7%, thymol methyl ether—11.4%, terpinolene—8.6%, α-pinene—6.6%, β-pinene—6.4%, sabinene—3.1%) | 16.39 ± 1.52 | 71.26 | Parrya (Balfourianae) |
Pinus monophyla Torr. & Frém. (β-pinene—27.2%, α-pinene—18.7%, δ-cadinene—7.2%, limonene—6.8%, germacrene D—4.9%, myrcene—4.6%, β-phellandrene—4.6%, γ-cadinene—3.5%) | 20.03 ± 2.77 | 87.09 | Parrya (Cembroides) |
Species (Reference) | Antioxidant Test | Increasing Order of Antioxidant Effects of EOs |
---|---|---|
Abies alba Mill. [56] | DPPH | seed < cone |
Abies koreana E.H. Wilson [56] | DPPH | cone < seed |
Cedrus atlantica (Endl.) G.Manetti ex Carrière [99] | FRAP | wood tar < saw dust |
Pinus halepensis Mill. [91] | ABTS | twigs < bark < male inflorescences < mature cone < immature cone < adult leaf < juvenile leaf |
Pinus halepensis Mill. [91] | Chelating activity | mature cone < twigs < juvenile leaf < immature cone < bark < adult leaf < male inflorescences |
Pinus halepensis Mill. [91] | DPPH | juvenile leaf < twigs < cone < bark < male inflorescence < mature cone < adult leaf |
Pinus brutia Ten. [98] | FRAP | twig < leaf |
Pinus cembra L. [79] | DPPH | leaf < twigs * |
Pinus brutia var. eldarica (Medw.) Silba (syn. Pinus eldarica Medw.) [127] | DPPH | leaf < pollen < bark |
Pinus gerardiana Wall. ex D.Don [69] | DPPH | bark < leaf |
Pinus gerardiana Wall. ex D.Don [69] | Nitric oxide radical scavenging | bark < leaf |
Pinus halepensis Mill. [98] | FRAP | leaf < twig |
Pinus nigra J. F. Arnold [98] | FRAP | twig < leaf |
Pinus nigra Arn. ssp. mauritanica (Mair. & Pay) [64] | Beta-carotene bleaching | leaf < twigs * |
Pinus nigra Arn. ssp. mauritanica (Mair. & Pay) [64] | DPPH | leaf < twigs |
Pinus nigra Arn. ssp. mauritanica (Mair. & Pay) [64] | Total antioxidant activity (phosphomolybdenum method) | At lower concentrations, leaf EO exhibited slightly higher activity than twigs, whereas at higher concentrations, twigs’ EO was more active than that of leaves. |
Pinus pinaster Aiton [71] | ABTS | wood < leaf < cone * |
Pinus pinaster Aiton [71] | DPPH | leaf < wood < cone |
Pinus pinaster Aiton [71] | FRAP | leaf < wood < cone |
Pinus pinea L. [101] | Beta-carotene bleaching | bark < cone < leaf |
Pinus pinea L. [101] | Chelating activity | bark < leaf < cone * |
Pinus pinea L. [101] | DPPH | bark < leaf < cone * |
Pinus pinea L. [101] | Nitric oxide radical scavenging | bark < cone < leaf |
Pinus pinea L. [98] | FRAP | twig < leaf |
Pinus roxburghii Sarg. [69] | Nitric oxide radical scavenging | leaf < bark |
Pinus roxburghii Sarg. [69] | DPPH | leaf < bark |
Pinus roxburghii Sarg. [82] | DPPH | leaf < wood < bark |
Pinus sylvestris L. [98] | FRAP | twig < leaf |
Pinus wallichiana A.B.Jacks. [69] | DPPH | leaf < bark |
Pinus wallichiana A.B.Jacks. [69] | Nitric oxide radical scavenging | leaf < bark |
Species (Reference) | Plant Part | Antioxidant Test | Increasing Order of Antioxidant Effects of EOs Depending on the Extraction Method |
---|---|---|---|
Abies sachalinensis (F.Schmidt) Mast. [43] | Leaf | DPPH | Steam distillation < SW3 * < SW10 * < SW7 * |
Abies sachalinensis (F.Schmidt) Mast. [43] | Leaf | Folin–Ciocalteu | Steam distillation < SW3 * < SW10 * < SW7 * |
Pinus pinaster Aiton [100] | Sawdust (stem and branches) | DPPH | HD (hydrodistillation) < THD (turbo hydrodistillation) < UAE-HD (ultrasound-assisted extraction hydrodistillation) < SFME (solvent-free microwave extraction) ≈ MHG (microwave hydrodiffusion and gravity) |
Pinus pinaster Aiton [100] | Sawdust (stem and branches) | FRAP | HD < THD < UAE-HD < SFME ≈ MHG |
Pinus pumila (Pall.) Regel [77] | Bark | DPPH | E-HD (hydrodistillation with screw extrusion treatment) < E-MHD (microwave-assisted hydrodistillation with screw extrusion treatment) < P-MHD (microwave-assisted hydrodistillation with pulverization treatment) |
Pinus pumila (Pall.) Regel [77] | Bark | FRAP | E-HD < P-MHD < E-MHD |
Pinus pumila (Pall.) Regel [77] | Bark | Reducing power | E-HD < P-MHD < E-MHD |
Pinus pumila (Pall.) Regel [77] | Bark | β-carotene bleaching inhibition | P-MHD ≈ E-HD < E-MHD |
Pinus roxburghii Sarg. [61] | Resin | DPPH | Supercritical fluid extraction, 40 °C, 80 bar < superheated steam (120 °C) < superheated steam (140 °C) < steam distillation < superheated steam (160 °C) ** |
Pinus roxburghii Sarg. [61] | Resin | FRAP | Steam distillation < supercritical fluid extraction, 40 °C, 80 bar < superheated steam (120 °C) < superheated steam (140 °C) < superheated steam (160 °C) ** |
Pinus roxburghii Sarg. [61] | Resin | Hydrogen peroxide scavenging activity | Superheated steam (140 °C) < supercritical fluid extraction, 40 °C, 80 bar) < superheated steam (120 °C) < steam distillation < superheated steam (160 °C) ** |
Assays Evaluated | Species | Reference | Sample Size (Number of Paired Observations) | Correlation Coefficient (r) |
---|---|---|---|---|
ABTS vs. ferrous ion-chelating activity | Pinus halepensis Mill. | [91] | 7 | −0.07 |
ABTS vs. FRAP | Pinus pinaster Aiton | [71] | 3 | −0.81 |
ABTS vs. FRAP | Six Pinus taxa | [40] | 6 | 0.63 |
ABTS vs. FRAP | Ten Pinus taxa | [48] | 10 | 0.82 |
ABTS vs. •OH radical inhibition | Pinus pinaster Aiton | [71] | 3 | 0.77 |
ABTS vs. reducing power | Pinus halepensis Mill. | [81] | 11 | −0.23 |
Beta-carotene bleaching vs. ferrous ion-chelating activity | Pinus halepensis Mill. | [68] | 10 | 0.52 |
Beta-carotene bleaching vs. nitric oxide radical scavenging | Pinus pinea L. | [101] | 3 | 0.97 |
DPPH vs. ABTS | Pinus halepensis Mill. | [91] | 7 | −0.10 |
DPPH vs. ABTS | Pinus halepensis Mill. | [95] | 3 | 0.99 |
DPPH vs. ABTS | Pinus halepensis Mill. | [81] | 11 | 0.45 |
DPPH vs. ABTS | Pinus pinaster Aiton | [71] | 3 | 0.57 |
DPPH vs. ABTS | Six Pinus taxa | [40] | 6 | 0.84 |
DPPH vs. ABTS | Ten Pinus taxa | [48] | 10 | 0.66 |
DPPH vs. ABTS (IC50) | Pinus cembra L., Pinus mugo Turra, Picea abies L., and Abies alba Mill. | [39] | 4 | 0.989 |
DPPH vs. ABTS (TEAC) | Pinus cembra L., Pinus mugo Turra, Picea abies L., and Abies alba Mill. | [39] | 4 | 0.953 |
DPPH vs. beta-carotene bleaching | Pinus halepensis Mill. | [68] | 10 | 0.98 |
DPPH vs. beta-carotene bleaching assay | Pinus pinea L. | [101] | 3 | 0.71 |
DPPH vs. ferrous ion-chelating activity | Pinus halepensis Mill. | [91] | 7 | 0.45 |
DPPH vs. ferrous ion-chelating activity | Pinus halepensis Mill. | [68] | 10 | 0.51 |
DPPH vs. ferrous ion-chelating activity | Pinus pinea L. | [101] | 3 | 0.99 |
DPPH vs. Folin–Ciocâlteu (TEAC vs. GAE) | Abies sachalinensis | [43] | 4 | 0.986 |
DPPH vs. FRAP | Cedrus atlantica (Endl.) G.Manetti ex Carrière | [99] | 4 | 0.97 |
DPPH vs. FRAP | Pinus pinaster Aiton | [71] | 3 | −0.95 |
DPPH vs. FRAP | Pinus pinaster Aiton | [100] | 5 | −0.97 ** |
DPPH vs. FRAP | Pinus roxburghii Sarg. | [61] | 5 | 0.17 *** |
DPPH vs. FRAP | Six Pinus taxa | [40] | 6 | 0.90 |
DPPH vs. FRAP | Ten Pinus taxa | [48] | 10 | 0.60 |
DPPH vs. hydrogen peroxide scavenging | Pinus roxburghii Sarg. | [61] | 5 | 0.49 *** (0.70 Spearman) |
DPPH vs. linoleic acid system | Pinus roxburghii Sarg. | [61] | 5 | 0.05 *** |
DPPH vs. nitric oxide radical scavenging | Pinus pinea L. | [101] | 3 | 0.53 |
DPPH vs. •OH radical inhibition | Pinus pinaster Aiton | [71] | 3 | 0.96 |
DPPH vs. reducing power | Pinus halepensis Mill. | [68] | 10 | 0.99 |
DPPH vs. reducing power | Pinus halepensis Mill. | [81] | 11 | 0.43 |
DPPH vs. TBARS | Pinus mugo Turro | [46] | 4 | 0.99 |
Ferrous ion-chelating vs. beta-carotene bleaching assay | Pinus pinea L. | [101] | 3 | 0.81 |
Ferrous ion-chelating vs. nitric oxide radical scavenging | Pinus pinea L. | [101] | 3 | 0.66 |
FRAP vs. •OH | Pinus pinaster Aiton | [71] | 3 | −0.99 |
Hydrogen peroxide scavenging vs. FRAP | Pinus roxburghii Sarg. | [61] | 5 | 0.11 *** |
Linoleic acid system vs. FRAP | Pinus roxburghii Sarg. | [61] | 5 | 0.96 *** |
Linoleic acid system vs. hydrogen peroxide scavenging | Pinus roxburghii Sarg. | [61] | 5 | 0.16 *** |
Reducing power vs. beta-carotene bleaching | Pinus halepensis Mill. | [68] | 10 | 0.98 |
Reducing power vs. ferrous ion-chelating activity | Pinus halepensis Mill. | [68] | 10 | 0.48 |
TPC * vs. ABTS | Ten Pinus taxa | [48] | 10 | 0.92 |
TPC * vs. DPPH | Ten Pinus taxa | [48] | 10 | 0.68 |
TPC * vs. FRAP | Ten Pinus taxa | [48] | 10 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ancuceanu, R.; Anghel, A.I.; Hovaneț, M.V.; Ciobanu, A.-M.; Lascu, B.E.; Dinu, M. Antioxidant Activity of Essential Oils from Pinaceae Species. Antioxidants 2024, 13, 286. https://doi.org/10.3390/antiox13030286
Ancuceanu R, Anghel AI, Hovaneț MV, Ciobanu A-M, Lascu BE, Dinu M. Antioxidant Activity of Essential Oils from Pinaceae Species. Antioxidants. 2024; 13(3):286. https://doi.org/10.3390/antiox13030286
Chicago/Turabian StyleAncuceanu, Robert, Adriana Iuliana Anghel, Marilena Viorica Hovaneț, Anne-Marie Ciobanu, Beatrice Elena Lascu, and Mihaela Dinu. 2024. "Antioxidant Activity of Essential Oils from Pinaceae Species" Antioxidants 13, no. 3: 286. https://doi.org/10.3390/antiox13030286
APA StyleAncuceanu, R., Anghel, A. I., Hovaneț, M. V., Ciobanu, A.-M., Lascu, B. E., & Dinu, M. (2024). Antioxidant Activity of Essential Oils from Pinaceae Species. Antioxidants, 13(3), 286. https://doi.org/10.3390/antiox13030286