Chilean Papaya (Vasconcellea pubescens): A Native Fruit with a High Health-Promoting Functional Potential
Abstract
:1. Introduction
2. Papaya Fruits Varieties
3. Chilean Papayas
3.1. Vasconcellea pubescens
3.2. Vasconcellea chilensis
4. Ripening and Shelf Life
5. Nutritional Components
6. Bioactive Compounds
Reference | [55] | [48] | [1] | [2] | [58] | |
---|---|---|---|---|---|---|
Extraction | Pulp with Skin | Pulp | Pulp with Skin | Seeds | Mucilage and Seeds | |
Fresh | Fresh | HHPE-UE | HHPE 15 min | ‡ PM | † PEA | |
Total phenolic content | 7.29 ± 0.40 mg GAE g−1 D.M. | 7.02 ± 0.42 mg GAE g−1 D.M. | 129.1 ± 3.8 mg GAE 100 g−1 | <7 mg AG g−1 seed | 4.902 ± 0.702 g GAE 100 g−1 of extract | 6.244 ± 0.342 g GAE 100 g−1 of extract |
Total flavonoid content | 2.51 ± 0.25 mg QE g−1 D.M. | 3.33 ± 0.26 mg QE g−1 D.M. | N/A | <2.5 mg quercetin g−1 seed | N/A | N/A |
Sulforaphane | N/A | N/A | N/A | 54.97 ± 0.90 mg g−1 seed | N/A | N/A |
DPPH 2 | 39.07 ± 5.68 μmol TE g−1 D.M. | 81.26 ± 1.23 µmol TE g−1 D.M. | 20.6 ± 0.2 mg TE g−1 | <110 μmol TE g−1 seed | 94.80 ± 2.69 μg mL−1 | 55.99 ± 3.55 μg mL−1 |
FRAP 3 | N/A | N/A | 97.2 ± 4.3 mg TE g−1 | <115 μmol TE g−1 seed | N/A | N/A |
ORAC 4 | 107.2 ± 5.17 μmol TE g−1 D.M. | 55.20 ± 0.58 µmol TE g−1 D.M. | N/A | N/A | N/A | N/A |
Voltammetry | N/A | N/A | 141.0 ± 13.8 mM TE 100 g−1 | N/A | N/A | N/A |
Phenolic | ||||||
Caffeic acid | N/A | N/A | 1.5 ± 0.1 mg 100 g−1 | N/A | N/A | N/A |
Trans-Ferulic acid | N/A | N/A | 0.86 ± 0.1 mg 100 g−1 | N/A | N/A | N/A |
Rutin | N/A | N/A | 2.8 ± 0.3 mg 100 g−1 | N/A | N/A | N/A |
Other | ||||||
Vitamin C | N/A | 7.27 ± 0.11 mg g−1 D.M | 74.1 mg 100 g−1 FW | N/A | N/A | N/A |
β-carotene | N/A | 2595 ± 65.0 µg 100 g−1 D.M. | N/A | N/A | N/A | N/A |
Gallic acid | N/A | 2.41 ± 0.30 mg 100 g−1 D.M. | N/A | N/A | N/A | N/A |
7. Papaya Latex
8. Antidiabetic Potential
9. Papaya Oil
10. Encapsulation of Chilean Papaya Compounds
11. Chilean Papaya Processing
12. Industrial and Craft Technologies
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uribe, E.; Delgadillo, A.; Giovagnoli-Vicuña, C.; Quispe-Fuentes, I.; Zura-Bravo, L. Extraction techniques for bioactive compounds and antioxidant capacity determination of Chilean papaya (Vasconcellea pubescens) fruit. J. Chem. 2015, 2015, 347532. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Plaza-Morales, M.; Giovagnoli-Vicuña, C.; Jamett, F. High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. LWT Food Sci. Technol. 2015, 60, 525–534. [Google Scholar] [CrossRef]
- Laily, A.N.; Daryono, B.S.; Purwantoro, A.; Purnomo. Plant segregation and pollen characteristics of highland papaya (Vasconcellea pubescens a.dc.) based on sex types. SABRAO J. Breed. Genet. 2023, 55, 1051–1064. [Google Scholar] [CrossRef]
- Torres Trujillo, A.E. Efecto de Vasconcellea pubescens “Papaya de Monte” Sobre la Calidad Espermática de Ratones Machos Tratados con Ciclofosfamida y el Efecto en el Desarrollo de Embriones Preimplantacionales. Bachelor’s Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2017. Available online: https://core.ac.uk/download/pdf/323343898.pdf (accessed on 21 October 2024).
- Markovic, S.; Milosevic, J.; Djuric, M.; Lolic, A.; Polovic, N. One-step purification and freeze stability of papain at acidic pH values. Arch. Biol. Sci. 2021, 73, 57–64. [Google Scholar] [CrossRef]
- Jon, N. Papain, a plant enzyme of biological importance: A review. Am. J. Biochem. Biotechnol. 2012, 8, 99–104. [Google Scholar] [CrossRef]
- Muñoz Murillo, J.P.; Zambrano Vélez, M.I.; Párraga Álava, R.C.; Verduga López, C.D. Use of papain and bromelain and its effect on the organoleptic and bromatological characteristics of smoked pork chops. RECUS Rev. Electrónica Coop. Univ. Soc. 2019, 4, 38–42. [Google Scholar]
- Carrasco, B.; Avila, P.; Perez-Diaz, J.; Muñoz, P.; García, R.; Lavandero, B.; Zurita-Silva, A.; Retamales, J.B.; Caligari PD, S. Genetic structure of highland papayas (Vasconcellea pubescens (Lenné et C. Koch) Badillo) cultivated along a geographic gradient in Chile as revealed by Inter Simple Sequence Repeats (ISSR). Genet. Resour. Crop Evol. 2009, 56, 331–337. [Google Scholar] [CrossRef]
- Carrasco, B.; Arévalo, B.; Perez-Diaz, R.; Rodríguez-Alvarez, Y.; Gebauer, M.; Maldonado, J.E.; García-Gonzáles, R.; Chong-Pérez, B.; Pico-Mendoza, J.; Meisel, L.A.; et al. Descriptive genomic analysis and sequence genotyping of the two papaya species (Vasconcellea pubescens and Vasconcellea chilensis) using GBS tools. Plants 2022, 11, 2151. [Google Scholar] [CrossRef] [PubMed]
- Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D.A. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods 2014, 7, 599–608. [Google Scholar] [CrossRef]
- Scheldeman, X.; Kyndt, T.; d’Eeckenbrugge, G.C.; Ming, R.; Drew, R.; Van Droogenbroeck, B.; Van Damme, P.; Moore, P.H. Vasconcellea. In Wild Crop Relatives: Genomic and Breeding Resources; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 213–249. [Google Scholar] [CrossRef]
- Macedwardsproduce. Papaya Hawaiian. Available online: https://macedwardsproduce.com/product/hawaiian-papaya/ (accessed on 4 November 2024).
- X. Wild Pawpaw. Available online: https://x.com/EAHerbarium_NMK/status/1299604091774140418/photo/2 (accessed on 4 November 2024).
- Istockphoto. Berg-Papaya (Vasconcellea pubescens). Available online: https://www.istockphoto.com/de/foto/berg-papaya-gm669377102-122320347 (accessed on 4 November 2024).
- Tradewindsfruit. Jacaratia mexicana—Mexican Mountain Papaya. Available online: https://www.tradewindsfruit.com/jacaratia-mexicana-mexican-mountain-papaya-seeds (accessed on 4 November 2024).
- Rarepalmseeds. Carica cnidoscoloides. Available online: https://www.rarepalmseeds.com/es/carica-cnidoscoloides-es (accessed on 4 November 2024).
- Tradewindsfruit. Carica cnidoscoloides—Stinging Papaya. Available online: https://www.tradewindsfruit.com/carica-cnidoscoloides-stinging-papaya-seeds (accessed on 4 November 2024).
- Rarepalmseeds. Jarilla chocola. Available online: https://www.rarepalmseeds.com/es/jarilla-chocola-es (accessed on 4 November 2024).
- Carrasco, B.; García-Gonzáles, R.; Díaz, C.; Ávila, P.; Cáceres, P.; Lobos, G.A.; Silva, H.; Caligari, P.D.S. Genetic and morphological characterization of the endangered Austral papaya Vasconcellea chilensis (Planch. ex A. DC.) Solms. Genet. Resour. Crop Evol. 2014, 61, 1423–1432. [Google Scholar] [CrossRef]
- Miller, A.J.; Gross, B.L. From forest to field: Perennial fruit crop domestication. Am. J. Bot. 2011, 98, 1389–1414. [Google Scholar] [CrossRef] [PubMed]
- Kyndt, T.; Romeijn-Peeters, E.; Van Droogenbroeck, B.; Romero-Motochi, J.P.; Gheysen, G.; Goetghebeur, P. Species relationships in the genus Vasconcellea (Caricaceae) based on molecular and morphological evidence. Am. J. Bot. 2005, 92, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Moya-León, M.A.; Moya, M.; Herrera, R. Ripening of mountain papaya (Vasconcellea pubescens) and ethylene dependence of some ripening events. Postharvest Biol. Technol. 2004, 34, 211–218. [Google Scholar] [CrossRef]
- Osores González, M.; Escobar Moreno, C.; Henríquez Armijo, G.; Beltrán Gómez, P.; Mendieta Pérez, B.; Peña Alburquenque, J.C.; Woywood Jeldrez, C.; Palomino Vásquez, M.; Avendaño Andrade, A.; Berrios Bascuñán, L.; et al. Catastro Frutícola, Principales Resultados. 2022. Available online: https://bibliotecadigital.odepa.gob.cl/bitstream/handle/20.500.12650/71978/Catastro_Frut_ARICA.pdf (accessed on 21 October 2024).
- Osores González, M.; Escobar Moreno, C.; Armijo, G.H.; Beltrán Gómez, P.; Mendieta Pérez, B.; Peña Alburquenque, J.C.; Woywood Jeldrez, C.; Palomino Vásquez, M.; Avendaño Andrade, A.; Berrios Bascuñán, L.; et al. Catastro Frutícola Principales Resultados. 2021. Available online: https://bibliotecadigital.odepa.gob.cl/bitstream/handle/20.500.12650/71117/Coquimbo202109.pdf (accessed on 21 October 2024).
- Chong-Pérez, B.; Carrasco, B.; Silva, H.; Herrera, F.; Quiroz, K.; Garcia-Gonzales, R. Regeneration of highland papaya (Vasconcellea pubescens) from another culture. Appl. Plant Sci. 2018, 6, e01182. [Google Scholar] [CrossRef]
- Muñoz, M. Nomenclatura del papayo cultivado en Chile. Agric. Técnica 1988, 48, 39–42. [Google Scholar]
- León, J. Botánica de los Cultivos Tropicales, 3rd ed.; Instituto Interamericano de Cooperación para la Agricultura (IICA): San José, Costa Rica, 2000; Available online: https://repositorio.iica.int/handle/11324/7228 (accessed on 11 October 2024).
- CABI. Vasconcellea pubescens; Compendio CABI: Wallingford, UK, 2022; Available online: https://doi.org/10.1079/cabicompendium.92836779 (accessed on 11 October 2024).
- Luza, J.; Lizana, A.; Fichet, T. Comparison of fruit and flowers from female and hermaphrodite papaya plants (Carica pubescens lenne et koch) grown commercially in Chile. Annu. Meet. Interam. Soc. Trop. Hortic. 1990, 36, 131–137. [Google Scholar]
- Vega, A.A.; Lemus, R.A. Modelado de la Cinética de Secado de la Papaya Chilena (Vasconcellea pubescens). Inf. Tecnológica 2006, 17, 23–31. [Google Scholar] [CrossRef]
- Latcham, R.E. La Agricultura Precolombina en Chile y los Países Vecinos; Ediciones de la Universidad de Chile, Ed.: Santiago, Chile, 1936. [Google Scholar]
- de Candolle, A.; de Candolle, A.P. Prodromus Systematis Naturalis Regni Vegetabilis, Sive, Enumeratio Contracta Ordinum Generum Specierumque Plantarum Huc Usque Cognitarium, Juxta Methodi Naturalis, Normas Digesta/Auctore Aug. Pyramo de Candolle; Sumptibus Sociorum Treuttel et Würtz: Paris, France, 1824. [Google Scholar] [CrossRef]
- Muñoz-Schick, M.; Serra, M.T. Ficha de Antecedentes de Especie 139. MNHN-CONAMA. 2006. Available online: https://clasificacionespecies.mma.gob.cl/wp-content/uploads/2019/10/Carica_chilensis_FINAL.pdf (accessed on 10 October 2024).
- Wikimedia. Mountain Papaya (Vasconcellea pubescens). Available online: https://commons.wikimedia.org/wiki/File:2011.09-385-158arp_Mountain_papaya(Vasconcellea_pubescens),fr(wh,TS)_Naivasha-Gilgil(Rift_Valley_Prov.),KE_tue13sep2011-1230h.jpg#globalusage (accessed on 21 October 2024).
- Chileflora. Image of Carica chilensis (Papayo Silvestre/Palo Gordo). Available online: https://www.chileflora.com/Florachilena/FloraSpanish/LowResPages/SL0457.htm (accessed on 21 October 2024).
- Inaturalist. Papayuela (Vasconcellea pubescens). Available online: https://inaturalist.mma.gob.cl/observations/93085227 (accessed on 21 October 2024).
- Chileflora. Image of Carica chilensis. Available online: https://www.chileflora.com/Florachilena/FloraEnglish/HighResPages/EH0457A.htm (accessed on 23 October 2024).
- Inaturalist. Papayuela (Vasconcellea pubescens). Available online: https://inaturalist.mma.gob.cl/observations/91908277 (accessed on 23 October 2024).
- Inaturalist. Papaya Chilena (Vasconcellea chilensis). Available online: https://inaturalist.mma.gob.cl/observations/105309033 (accessed on 23 October 2024).
- Flickr. Vasconcellea pubescens A.DC. (CARICACEAE)|Syn. Carica pubescens Lenné & K.Koch, Carica cundinamarcensis Linden ex Hook.f. Available online: https://www.flickr.com/photos/36517976@N06/3373968560 (accessed on 23 October 2024).
- Inaturalist. Papaya Chilena (Vasconcellea chilensis). Available online: https://inaturalist.mma.gob.cl/observations/89504716 (accessed on 23 October 2024).
- Elquimia. Aceite Semillas de Papaya Chilena—30 mL. Available online: https://elquimia.com/producto/aceite-semillas-de-papaya-30-ml/ (accessed on 23 October 2024).
- Tucker, G.A.; Grierson, D. Fruit Ripening. In The Biochemistry of Plants, Physiology of Metabolism; Academic Press: Cambridge, MA, USA, 1987; Volume 12, pp. 265–318. [Google Scholar]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E., Jr. Ethylene in Plant Biology, 2nd ed.; Academic Press: Cambridge, MA, USA, 1992; Available online: https://ci.nii.ac.jp/ncid/BA18297606 (accessed on 6 December 2024).
- Balbontín, C.; Gaete-Eastman, C.; Vergara, M.; Herrera, R.; Moya-León, M.A. Treatment with 1-MCP and the role of ethylene in aroma development of mountain papaya fruit. Postharvest Biol. Technol. 2007, 43, 67–77. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Paull, R.E. Ripening behavior of papaya genotypes. HortScience 1990, 25, 454–455. [Google Scholar] [CrossRef]
- Caicedo, M.; García, J. Evaluación de Parámetros Fisicoquímicos Durante el Crecimiento, Desarrollo y Postcosecha de las Especies Vasconcellea pubescens, Solanum quitoense var. septentrionale y Capsicum pubescens Ruiz & Pav, Cuantificación de Polifenoles Totales y Análisis Cualitativo de Metabolitos Secundarios Presentes en Estas y Otras Especies Priorizadas en el Proyecto “Biodiversidad Altoandina al Plato de Todos”; University of Distrital Francisco José de Caldas: Bogotá, Colombia, 2018. [Google Scholar]
- Vega-Gálvez, A.; Poblete, J.; Quispe-Fuentes, I.; Uribe, E.; Bilbao-Sainz, C.; Pastén, A. Chemical and bioactive characterization of papaya (Vasconcellea pubescens) under different drying technologies: Evaluation of antioxidant and antidiabetic potential. J. Food Meas. Charact. 2019, 13, 1980–1990. [Google Scholar] [CrossRef]
- Salvatierra, G.A.; Jana, A.C. Situación Actual del Cultivo de Papayos en las Principales Zonas de Producción; INIA: Santiago, Chile, 2014; Available online: https://biblioteca.inia.cl/server/api/core/bitstreams/d2cdda3c-0f08-438d-953e-f39cec3a275a/content#:~:text=El%20papayo%20que%20se%20cultiva,la%20llegada%20de%20los%20espa%C3%B1oles (accessed on 10 October 2024).
- Schmidt Hebbel, H.; Pennacchiotti Monti, I.; Masson Salaué, L.; Mella Rojas, M.A. Tabla de Composición Química de Alimentos Chilenos; University of Chile: Santiago, Chile, 1990; Available online: https://repositorio.uchile.cl/handle/2250/121427 (accessed on 21 October 2024).
- Nwofia, G.E.; Ojimelukwe, P.; Eji, C. Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L.) morphotypes. Int. J. Med. Arom. Plants 2012, 2, 200–206. [Google Scholar]
- Beta, T.; Duodu, K.G. Bioactives: Antioxidants. In Encyclopedia of Food Grains; Elsevier: Amsterdam, The Netherlands, 2016; pp. 277–282. [Google Scholar] [CrossRef]
- Crizel, R.L.; Zandoná, G.P.; Rossi, R.C.; Ferreira, C.D.; Hoffmann, J.F. Solid-phase extraction for determination of phenolic compounds in food and beverage. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Stucken, K.; Cantuarias, C.; Lamas, F.; García, V.; Pastén, A. Antimicrobial properties of papaya (Vasconcellea pubescens) subjected to low-temperature vacuum dehydration. Innov. Food Sci. Emerg. Technol. 2021, 67, 102563. [Google Scholar] [CrossRef]
- Halder, S.; Dutta, S.; Khaled, K.L. Evaluation of phytochemical content and in vitro antioxidant properties of methanol extract of Allium cepa, Carica papaya and Cucurbita maxima blossoms. Food Chem. Adv. 2022, 1, 100104. [Google Scholar] [CrossRef]
- Robles-Apodaca, S.M.; González-Vega, R.I.; Ruíz-Cruz, S.; Estrada-Alvarado, M.I.; Cira-Chávez, L.A.; Márquez-Ríos, E.; Del-Toro-Sánchez, C.L.; De Jesús Ornelas-Paz, J.; Suárez-Jiménez, G.M.; Ocaño-Higuera, V.M. Optimization of Extraction Process for Improving Polyphenols and Antioxidant Activity from Papaya Seeds (Carica papaya L.) Using Response Surface Methodology. Processes 2024, 12, 2729. [Google Scholar] [CrossRef]
- Pino-Ramos, L.L.; Farias, D.R.; Olivares-Caro, L.; Mitsi, C.; Mardones, C.; Echeverria, J.; Avila, F.; Gutierrez, M. Chilean papaya (Vasconcellea pubescens A. DC.) residues as a source of bioactive compounds: Chemical composition, antioxidant capacity, and antiglycation effects. Heliyon 2024, 10, e38837. [Google Scholar] [CrossRef]
- Chen, L.-C.; Chung, Y.-C.; Chang, C.-T. Characterisation of an acidic peroxidase from papaya (Carica papaya L. cv Tainung No. 2) latex and its application in the determination of micromolar hydrogen peroxide in milk. Food Chem. 2012, 135, 2529–2535. [Google Scholar] [CrossRef]
- Vidal, L.V.; Finot, V.L.; Mora, K.d.C.; Venegas, F.A. Características físico-químicas del látex de papayuelo (Vasconcellea cundinamarcensis Badillo, Caricaceae). Inf. Tecnológica 2009, 20, 93–103. [Google Scholar] [CrossRef]
- Salas, C.E.; Gomes, M.T.R.; Hernandez, M.; Lopes, M.T.P. Plant cysteine proteinases: Evaluation of the pharmacological activity. Phytochemistry 2008, 69, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Karnjanapratum, S.; Benjakul, S. Glycyl endopeptidase from papaya latex: Partial purification and use for production of fish gelatin hydrolysate. Food Chem. 2014, 165, 403–411. [Google Scholar] [CrossRef]
- Teixeira, R.D.; Ribeiro, H.A.L.; Gomes, M.-T.R.; Lopes, M.T.P.; Salas, C.E. The proteolytic activities in latex from Carica candamarcensis. Plant Physiol. Biochem. 2008, 46, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, V.; Violeta, L.; Benavente, A.; Renán, O. Influence of the Dehydration Method and Extraction Time on the Enzyme Activity of Papaya Latex Grown in Cobquecura VIII Region, Chile; University of Concepción: Concepción, Chile, 2023. [Google Scholar]
- Rivera-Botonares, R.S.; Oliva-Cruz, S.M.; Flores, D.T. Extracción y purificación de papaína obtenida a partir de tres especies nativas del género Vasconcellea. J. High Andean Res. 2023, 25, 109–116. [Google Scholar] [CrossRef]
- Babalola, B.A.; Akinwande, A.I.; Otunba, A.A.; Adebami, G.E.; Babalola, O.; Nwufo, C. Therapeutic benefits of Carica papaya: A review on its pharmacological activities and characterization of papain. Arab. J. Chem. 2023, 17, 105369. [Google Scholar] [CrossRef]
- Ghaffar, A.; Munir, B.; Jahangeer, M.; Ashiq, M.; Qamar, S.A.; Ahmad, B. Bioactivity prospection, antimicrobial, nutraceutical, and pharmacological potentialities of Carica papaya. In Antiviral and Antimicrobial Smart Coatings; Elsevier: Amsterdam, The Netherlands, 2023; pp. 587–606. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Somanah, J.; Bourdon, E.; Rondeau, P.; Bahorun, T. Diabetes as a risk factor to cancer: Functional role of fermented papaya preparation as phytonutraceutical adjunct in the treatment of diabetes and cancer. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2014, 768, 60–68. [Google Scholar] [CrossRef]
- Akmal, M.; Patel, P.; Wadhwa, R. Alpha Glucosidase Inhibitors. StatPearls: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557848/?report=printable (accessed on 6 December 2024).
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef]
- Tahir, T.; Shahzad, M.I.; Tabassum, R.; Rafiq, M.; Ashfaq, M.; Hassan, M.; Kotwica-Mojzych, K.; Mojzych, M. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: Synthesis, in vitro, kinetic and docking studies. J. Enzym. Inhib. Med. Chem. 2021, 36, 1508–1519. [Google Scholar] [CrossRef]
- Lu, H.; Xie, T.; Wu, Q.; Hu, Z.; Luo, Y.; Luo, F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023, 15, 4267. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.S.D.; Eswaran, S.V. Substituent effect of the methoxy group: A matter of give and take. Resonance 1997, 2, 73–75. [Google Scholar] [CrossRef]
- Rincon-Silva, N.G.; Rincon, J.D.; Acosta, J.S. Inhibition of α-glucosidase by naturally flavonoids as a control way in the development of diabetes mellitus. Universidad Libre Barranquilla. Biociencias 2019, 14, 129–148. [Google Scholar]
- Matus-Ortega, G.; Romero, A.L.; González, J.; Castillo, F.V. Capítulo 7. Metabolismo de los Carbohidratos. In Bioquímica para Ciencias de la Salud, 2nd ed.; BARKER & JULES™: Tijuana, Mexico, 2023; Volume 1, pp. 300–374. [Google Scholar]
- Chen, J.; Lan, M.; Zhang, X.; Jiao, W.; Chen, Z.; Li, L.; Li, B. Effects of Simulated In Vitro Digestion on the Structural Characteristics, Inhibitory Activity on α-Glucosidase, and Fermentation Behaviours of a Polysaccharide from Anemarrhena asphodeloides Bunge. Nutrients 2023, 15, 1965. [Google Scholar] [CrossRef] [PubMed]
- Dehghan-Kooshkghazi, M.; Mathers, J.C. Starch digestion, large-bowel fermentation and intestinal mucosal cell proliferation in rats treated with the α-glucosidase inhibitor acarbose. Br. J. Nutr. 2004, 91, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.B.; Gautam, S.; Chander, R.; Sharma, A. Characterization of nutritional, organoleptic and functional properties of intermediate moisture shelf stable ready-to-eat Carica papaya cubes. Food Biosci. 2015, 10, 69–79. [Google Scholar] [CrossRef]
- Mohamed, A.I.; Erukainure, O.L.; Salau, V.F.; Msomi, N.Z.; Beseni, B.K.; Olofinsan, K.A.; Aljoundi, A.; Islam, M.S. An in vitro and in silico study of the antioxidant and antidiabetic activities of Nauclea latifolia fruit. Sci. Afr. 2024, 26, e02340. [Google Scholar] [CrossRef]
- Manaf Yanty, N.A.; Nazrim Marikkar, J.M.; Nusantoro, B.P.; Long, K.; Ghazali, H.M. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki Variety. J. Oleo Sci. 2014, 63, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pan, Y.; Huang, W.; Chen, H.; Yang, H. Optimized ultrasonic-assisted extraction of papaya seed oil from Hainan/Eksotika variety. Food Sci. Nutr. 2019, 7, 2692–2701. [Google Scholar] [CrossRef] [PubMed]
- Krist, S. Vegetable Fats and Oils; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Cañas-Sarazúa, R.; Briones-Labarca, V.; Giovagnoli-Vicuña, C. Encapsulation of papaya seed oil in casein-alginate-based shell materials. Future Foods 2024, 9, 100301. [Google Scholar] [CrossRef]
- Uribe, E.; Vega-Gálvez, A.; Pasten, A.; Cantuarias, C.; Stucken, K.; García, V.; Rodríguez, A.; Valenzuela-Barra, G.; Delporte, C. Effect of high- and low-temperature drying methods on fatty acid profile and antimicrobial and anti-inflammatory traits of papaya (Vasconcellea pubescens). ACS Food Sci. Technol. 2023, 3, 77–84. [Google Scholar] [CrossRef]
- Malacrida, C.R.; Kimura, M.; Jorge, N. Characterization of a high oleic oil extracted from papaya (Carica papaya L.) seeds. Food Sci. Technol. 2011, 31, 929–934. [Google Scholar] [CrossRef]
- Barba, L.; Arrighetti, G.; Calligaris, S. Crystallization and melting properties of extra virgin olive oil studied by synchrotron XRD and DSC. Eur. J. Lipid Sci. Technol. 2013, 115, 322–329. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Karlovits, G.; Dianoczki, C.; Recseg, K.; Szłyk, E. Comparison of two analytical methods for assessing antioxidant capacity of rapeseed and olive oils. J. Am. Oil Chem. Soc. 2008, 85, 141–149. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.; Ghazali, H. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: Yield, fatty acid composition and triacylglycerol profile. Molecules 2013, 18, 12474–12487. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Fuentes, Y.; Giovagnoli-Vicuña, C.; Faúndez, M.; Giordano, A. Microencapsulation of Chilean papaya waste extract and its impact on physicochemical and bioactive properties. Antioxidants 2023, 12, 1900. [Google Scholar] [CrossRef] [PubMed]
- Zura, L.; Uribe, E.; Lemus-Mondaca, R.; Saavedra-Torrico, J.; Vega-Gálvez, A.; Di Scala, K. Rehydration capacity of Chilean papaya (Vasconcellea pubescens): Effect of process temperature on kinetic parameters and functional properties. Food Bioprocess Technol. 2013, 6, 844–850. [Google Scholar] [CrossRef]
- Moreno, J.; Bugueño, G.; Velasco, V.; Petzold, G.; Tabilo-Munizaga, G. Osmotic dehydration and vacuum impregnation on physicochemical properties of Chilean papaya (Carica candamarcensis). J. Food Sci. 2004, 69, FEP102–FEP106. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Miranda, M.; Grau, A.A.; Briones, V.; Villalobos, R.; Vega-Gálvez, A. Effect of osmotic pretreatment on hot air drying kinetics and quality of Chilean papaya (Carica pubescens). Dry. Technol. 2009, 27, 1105–1115. [Google Scholar] [CrossRef]
- Montecino, S.; Alvear, A. Patrimonio Alimentario de Chile Productos y Preparaciones de la Región de Coquimbo. 2018. Available online: https://www.fia.cl/download/patrimonio-alimentario/Inventario-Patrimonio-Coquimbo.pdf (accessed on 13 October 2024).
- Kuncar Oneto, D. Investigación, Producción y Procesamiento de la Papaya en Cobquecura, VIII Región. 1994. Available online: https://bibliotecadigital.fia.cl/server/api/core/bitstreams/189b15f5-d774-4fd3-a134-2f53b056e071/content (accessed on 10 October 2024).
- OMPI. PATENTSCOPE Búsqueda Simple. Available online: https://patentscope.wipo.int/search/es/search.jsf (accessed on 6 December 2024).
Genera | Species | Origin | Image | References |
---|---|---|---|---|
Carica | C. papaya | Guatemala Ecuador | C. papaya | [12] |
Cylicomorpha | C. parviflora C. solmsii | Tanzania Cameroon | C. parviflora | [13] |
Vasconcellea | V. candicans V. cauliflora V. crassipetala V. glandulosa V. goudotiana V. horovitziana V. longiflora V. microcarpa V. monoica V. omnilingua V. palandensis V. parviflora V. pubescens V. pulchra V. quercifolia V. sphaerocarpa V. sprucei V. stipulata V. weberbaueri V. chilensis V. x heilbornii (hybrid) | Peru Guatemala Ecuador Argentina Colombia Bolivia Chile | V. pubescens | [14] |
Jacaratia | J. digitata J, spinosa J. chocoensis J. corumbensis J. dolichaula J. mexicana J. heptaphylla | Ecuador Peru Paraguay Mexico Brazil | J. mexicana | [15] |
Horovitzia | H. cnidoscoloides | Mexico | H. cnidoscoloides | [16,17] |
Jarilla | J. chocola J. caudata J. heterophylla | Guatemala | J. chocola | [18] |
Sections | Vasconcellea pubescens | Vasconcellea chilensis | References |
---|---|---|---|
Fruit | [34,35] | ||
Leaves | [36,37] | ||
Flowers | [38,39] | ||
Tree (bush/plant) | [40,41] | ||
Seed | No photo | [42] |
Reference | [50] | [1] | [51] |
---|---|---|---|
Component | Vasconcellea pubescens | Carica papaya | |
Energy (kcal) | 18 | N/A | N/A |
Protein (g) | 1.0 | 0.9 | 1.17 |
Total lipid (g) | 0.3 | 0.3 | 0.49 |
Carbohydrate (g) | N/A | 4.9 | 9.51 |
Total dietary fiber (g) | 1.4 | 1.1 | 0.83 |
Moisture | 93.2 | 91.6 | 87.47 |
Ash | 0.8 | 0.6 | 0.53 |
pH | N/A | 4.1 | N/A |
Acidity (%) | N/A | 0.1 | N/A |
Calcium (mg) | 36 | N/A | 30.73 |
Iron (mg) | 1.3 | N/A | 2.31 |
Magnesium (mg) | N/A | N/A | 12.80 |
Phosphorus (mg) | 28 | N/A | 29.80 |
Reference | [59] | [60] | [64] | [65] |
---|---|---|---|---|
Component | Processes | |||
Crude Extract | Freeze-Drying | Hot-Air Drying (70 °C) | pH 6.0 | |
Solid matter (%) | 15 | 20.7 | N/A | 15.93 |
Enzyme (%) | 40 | N/A | N/A | 34.20 |
Enzyme activity | N/A | 24.13 U mg−1 enzyme | 29.9 U mg−1 enzyme | 195.80 Upe |
After processes | 15 | 20.7 | N/A | 15.93 |
Reference | [48] | [78] | [10] | [79] |
---|---|---|---|---|
Extraction | Pulp | Pulp | Fruit | |
Vasconcellea pubescens | Carica papaya L. | Nauclea latifolia | ||
TPC 2 | 7.02 ± 0.42 mg GAE g−1 D.M | 30.7 ± 2.7 mg GAE g−1 D.M. | N/A | 44.56 ± 0.78 mg GAE g−1 |
TFC 3 | 3.33 ± 0.26 mg QE g−1 D.M. | 19.1 ± 1.5 mg CE g−1 D.M. | N/A | N/A |
DPPH 4 | 81.26 ± 1.23 µmol TE g−1 D.M. | N/A | 4.41 ± 0.28 mmol TE 100 g−1 | N/A |
IC50 | 312 mg mL−1 | N/A | 1.58 ± 0.26 mg mL−1 | 6.94 µg mL−1 |
Method | Material Condition | Treatment Condition | Bioactive Compounds Results | Reference |
---|---|---|---|---|
Agitation Extraction | Fruit with skin, 5 g homogenized | Aqueous methanol: 80% Solid/liquid: 1:4 Agitation: 200 rpm Time: 30 min | Fraction free 1 TPC: 23.8 mg GAE g−1 D.M. 3 DPPH: 17.6 mM TE 100 g−1 5 FRAP: 100 mM TE 100 g−1 Voltammetry: 15.2 mM TE 100 g−1 Rutin: 2.0 mg 100 g Fraction bound 5 FRAP: 28.1 mM TE 100 g−1 Voltammetry: 2.1 mM TE 100 g−1 p-Coumaric acid: 0.1 mg 100 g−1 | [1] |
Convective Drying | Slices 9.0 × 1.5 × 0.4 cm (length × width × thickness) | Temperature: 70 °C Time: 270 min Air velocity: 1.5 m s−1 | 1 TPC: 7.07 mg GAE g−1 D.M. 2 TFC: 1.25 mg QE g−1 D.M. 3 DPPH: 27.78 μmol TE g−1 D.M. 4 ORAC: 75.47 μmol TE g−1 D.M. β-Carotene: 1762 µg 100 g−1 D.M Vitamin C: 4.07 mg g−1 D.M Gallic acid: 5.66 mg 100 g−1 D.M Chlorogenic acid: 3.66 mg 100 g−1 D.M Tyrosol: 20.16 mg 100 g−1 D.M Naringin: 2.01 mg 100 g−1 D.M. p-Coumaric acid: 2.52 mg 100 g−1 D.M. Trans-ferulic acid: 1.98 mg 100 g−1 D.M. | [48] |
Convective Drying | Papaya pulp with a peel Initial moisture: 92.72 g 100 g−1 | Temperature: 60 °C Time: 5.5 h Air velocity: 60% Relative humidity: 65–73% | 1 TPC: 5.19 mg GAE g−1 D.M. 2 TFC: 2.00 mg QE g−1 D.M. 3 DPPH: 15.13 μmol TE g−1 D.M. 4 ORAC: 49.31 μmol TE g−1 D.M. | [55] |
Freeze-drying | Papaya pulp with a peel Initial moisture: 92.72 g 100 g−1 | Freezing: −80 °C Vacuum: 0.027 kPa. Time: 73 h. | 1 TPC: 4.82 mg GAE g−1 D.M. 2 TFC: 2.37 mg QE g−1 D.M. 3 DPPH: 21.16 μmol TE g−1 D.M. 4 ORAC: 35.24 μmol TE g−1 D.M. | [55] |
Freeze-drying | Slices 9.0 × 1.5 × 0.4 cm (length × width × thickness) Freezing: −80 °C. Time: 24 h | Ramps temperature: − 40 to 15 °C Vacuum: 0.027 kPa Time: 73 h | 1 TPC: 6.76 mg GAE g−1 D.M. 2 TFC: 1.17 mg QE g−1 D.M. 3 DPPH: 29.12 μmol TE g−1 D.M. 4 ORAC: 45.92 μmol TE g−1 D.M. β-Carotene: 1471 µg 100 g−1 D.M. Vitamin C: 4.95 mg g−1 D.M. Gallic acid: 5.01 mg 100 g−1 D.M. Chlorogenic acid: 2.90 mg 100 g−1 D.M. Tyrosol: 8.55 mg 100 g−1 D.M. Naringin: 3.05 mg 100 g−1 D.M. p-Coumaric acid: 1.67 mg 100 g−1 D.M. Trans-ferulic acid: 1.21 mg 100 g−1 D.M. | [48] |
HHP Extraction | Fruit with skin, 5 g homogenized | Pressure: 500 MPa Time: 10 min | Fraction free 1 TPC: 28.6 mg GAE g−1 D.M. 3 DPPH: 16.2 mM TE 100 g−1 5 FRAP: 101.9 mM TE 100 g−1 Voltammetry: 16.9 mM TE 100 g−1 Rutin: 1.9 mg 100 g−1 Fraction bound 5 FRAP: 32.3 mM TE 100 g−1 Voltammetry: 1.6 mM TE 100 g−1 p-Coumaric acid: 0.2 mg 100 g−1 trans-Ferulic acid: 0.2 mg 100 g−1 | [1] |
HHP Extraction | Seeds washed Air dried in the dark and stored at 18 °C | Pressure: 500 MPa Time: 5, 10 and 15 min Pulses: 1 min | Efficiency extraction methods 1 TPC: 70.0% × 5 min, 92.1% ×10 min, 111.7% × 15 min 2 TFC: 89.70% × 5 min, 166.1% × 10 min, 277.0% × 15 min 3 DPPH: 129.3% × 5 min, 242.7% × 10 min, 272.8% × 15 min 5 FRAP: 176.7% × 5 min, 193.1% × 10 min, 269.3% × 15 min Sulforaphane content: 41.44 (5 min), 57.48 (10 min), 54.97 (15 min) mg g−1 seed | [2] |
HHP Agitation Extraction | Fruit with skin, 5 g homogenized | Pressure: 500 MPa Time: 5 min Agitation: 200 rpm Time: 15 min | Fraction free 1 TPC: 126.9 mg GAE g−1 D.M. 3 DPPH: 20.5 mM TE 100 g−1 5 FRAP: 101.1 mM TE 100 g−1 Voltammetry: 140.5 mM TE 100 g−1 Caffeic acid: 1.6 mg 100 g−1 trans-Ferulic acid: 0.82 mg 100 g−1 Rutin: 2.8 mg 100 g−1 Fraction bound 1 TPC: 0.9 mg GAE g−1 D.M. 3 DPPH: 2.1 mM TE 100 g−1 5 FRAP: 83.4 mM TE 100 g−1 Voltammetry: 59.4 mM TE 100 g−1 p-Coumaric acid: 0.6 mg 100 g−1 trans-Ferulic acid: 0.5 mg 100 g−1 | [1] |
HHP-Ultrasound Extraction | Fruit with skin, 5 g homogenized | Pressure: 500 MPa Time: 5 min Ultrasound: 60 Hz Time: 15 min | Fraction free 1 TPC: 129.1 mg GAE g−1 D.M. 3 DPPH: 20.6 mM TE 100 g−1 5 FRAP: 97.2 mM TE 100 g−1 Voltammetry: 141.0 mM TE 100 g−1 Caffeic acid: 1.5 mg 100 g−1 trans-Ferulic acid: 0.86 mg 100 g−1 Rutin: 2.8 mg 100 g−1 Fraction bound 1 TPC: 1.2 mg GAE g−1 D.M. 3 DPPH: 1.8 mM TE 100 g−1 5 FRAP: 85.7 mM TE 100 g−1 Voltammetry: 27.7 mM TE 100 g−1 p-Coumaric acid: 0.4 mg 100 g−1 trans-Ferulic acid: 0.3 mg 100 g−1 | [1] |
Hot Air Drying and Osmotic Pretreatment | Slabs of 10.0 mm | Temperature (°C) Sucrose solutions (%w/w) Treatments (Tn = 1–6) T1: 40 °C T2: 60 °C T3: 80 °C T4: 60 °C-40% w/w T5: 60 °C-50% w/w T6: 60 °C-60% w/w | Percentage of Vitamin C decrease T1: 77.21% T2: 74.41% T3: 81.75% T4: 83.05% T5: 81.60% T6: 82.58% | [93] |
Infrared Drying | Slices 9.0 × 1.5 × 0.4 cm (length × width × thickness) | Temperature: 70 °C Time: 390 min Lamp IR: 175 W | 1 TPC: 7.11 mg GAE g−1 D.M. 2 TFC: 1.93 mg QE g−1 D.M. 3 DPPH: 25.64 μmol TE g−1 D.M. 4 ORAC: 96.26 μmol TE g−1 D.M. β-Carotene: 1544 µg 100 g−1 D.M. Vitamin C: 3.48 mg g−1 D.M. Gallic acid: 8.65 mg 100 g−1 D.M. Chlorogenic acid: 4.21 mg 100 g−1 D.M. Tyrosol: 16.10 mg 100 g−1 D.M. Naringin: 1.49 mg 100 g−1 D.M. p-Coumaric acid: 7.84 mg 100 g−1 D.M. Trans-ferulic acid: 5.56 mg 100 g−1 D.M. | [48] |
Infrared Drying | Papaya pulp with peel Initial moisture: 92.72 g 100 g−1 | Temperature: 60 °C Time: 7 h Lamp IR: 175 W | 1 TPC: 4.29 mg GAE g−1 D.M. 2 TFC: 2.29 mg QE g−1 D.M. 3 DPPH: 11.45 μmol TE g−1 D.M. 4 ORAC: 66.83 μmol TE g−1 D.M. | [55] |
Low Temperature Vacuum Drying | Papaya pulp Initial moisture: 92% | Temperature: 20 °C Time: 38 h Vacuum: 1 kPa | 1 TPC: 4.66 mg GAE g−1 D.M. 2 TFC: 1.53 mg QE g−1 D.M. 3 DPPH: 20.80 μmol TE g−1 D.M. 4 ORAC: 46.69 μmol TE g−1 D.M. | [55] |
Solar Drying | Slices 9.0 × 1.5 × 0.4 cm (length × width × thickness) | Temperature: 31.0–49.9 °C Relative humidity: 20–45% Time: 870 min | 1 TPC: 6.45 mg GAE g−1 D.M. 2 TFC: 1.36 mg QE g−1 D.M. 3 DPPH: 25.89 μmol TE g−1 D.M. 4 ORAC: 86.56 μmol TE g−1 D.M. β-Carotene: 700 µg 100 g−1 D.M. Vitamin C: 2.14 mg g−1 D.M. Gallic acid: 2.93 mg 100 g−1 D.M. Chlorogenic acid: 1.97 mg 100 g−1 D.M. Tyrosol: 9.40 mg 100 g−1 D.M. Naringin: 0.76 mg 100 g−1 D.M. p-Coumaric acid: 1.67 mg 100 g−1 D.M. Trans-ferulic acid: 2.12 mg 100 g−1 D.M. | [48] |
Ultrasound Extraction | Fruit with skin, 5 g homogenized | Aqueous methanol: 80% Solid/liquid: 1:4 Ultrasound: 60 Hz Time: 30 min | Fraction free 1 TPC: 26.3 (mg GAE g−1 D.M. 3 DPPH: 15.7 mM TE 100 g−1 5 FRAP: 99.9 mM TE 100 g−1 Voltammetry: 12.9 mM TE 100 g−1 Rutin: 2.0 mg 100 g−1 Fraction bound 5 FRAP: 22.9 mM TE 100 g−1 Voltammetry: 3.3 mM TE 100 g−1 p-Coumaric acid: 2.0 mg 100 g−1 | [1] |
Ultrasound-Assisted Extraction | Seeds washed Air dried in the dark and stored at 18 °C | Solid/liquid Ratio: 1:2 Time: 5, 10 and 15 min | Efficiency extraction methods 1 TPC: 3.9% × 5 min, 13.1% × 10 min, 19.2% × 15 min 2 TFC: 10.5% × 5 min, 26.28% × 10 min, 51.0% × 15 min 3 DPPH: 9.3% × 5 min, 40.4% × 10 min, 66.8% × 15 min 5 FRAP: 5.0% × 5 min, 22.4% × 10 min, 45.5% × 15 min Sulforaphane content: 32.32 (5 min) mg g−1 seed, 38.81 (10 min) mg g−1 seed, 47.82 (15 min) mg g−1 seed | [2] |
Vacuum drying | Fruit pulp with peel | Vacuum: 15 kPa. Temperature: 60 °C Time: 8 h | 1 TPC: 5.83 mg GAE g−1 D.M. 2 TFC: 2.50 mg QE g−1 D.M. 3 DPPH: 18.26 μmol TE g−1 D.M. 4 ORAC: 54.38 μmol TE g−1 D.M. | [55] |
Vacuum drying | Slices 9.0 × 1.5 × 0.4 cm (length × width × thickness) | Temperature: 70 °C Pressure: 15 kPa Time: 480 min | 1 TPC: 8.89 mg GAE g−1 D.M. 2 TFC: 1.31 mg QE g−1 D.M. 3 DPPH: 34.51 μmol TE g−1 D.M. 4 ORAC: 107.1 μmol TE g−1 D.M. β-Carotene: 1469 µg 100 g−1 D.M. Vitamin C: 5.39 mg g−1 D.M. Gallic acid: 9.76 mg 100 g−1 D.M. Chlorogenic acid: 4.38 mg 100 g−1 D.M. Tyrosol: 21.01 mg 100 g−1 D.M. Naringin: 3.34 mg 100 g−1 D.M. p-Coumaric acid: 3.97 mg 100 g−1 D.M. Trans-ferulic acid: 2.56 mg 100 g−1 D.M. | [48] |
Title | Code | Product | Classification |
---|---|---|---|
Procedure for the preparation of a vegetable rennet based on the lyophilized papain enzyme extracted from native species of the genus Vasconcellea | PE2024-0644 | Freeze-dried papain enzyme | Food vegetal production |
Use of pharmaceutical composition in the preparation of medicines for the treatment of ocular wounds | BR102018015770 | Protein fraction P1G10 | Pharmaceutical formulation |
Stabilized proteases for use in skin care | ES2596402 | Stabilized papain enzyme | Topical skin applications |
Antimicrobial formulation comprising metal nanoparticles or metal oxides synthesized from plant extracts | WO2022168070 | Plant extracts (leaves, stems, seeds, flowers, fruits, latex, roots or peels) | Biocidal from plant extracts |
In-vitro culture method of plant tissues by direct organogenesis of the babaco hybrid [Vasconcellea à Heilbornii (Badillo) Badillo] | ECSP21088416 | Improved genetically fruit | Genetic modification in fruits and vegetables |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemus-Mondaca, R.; Puente-Díaz, L.; Cifuentes, A.; Lizama, K.; González, P. Chilean Papaya (Vasconcellea pubescens): A Native Fruit with a High Health-Promoting Functional Potential. Antioxidants 2024, 13, 1521. https://doi.org/10.3390/antiox13121521
Lemus-Mondaca R, Puente-Díaz L, Cifuentes A, Lizama K, González P. Chilean Papaya (Vasconcellea pubescens): A Native Fruit with a High Health-Promoting Functional Potential. Antioxidants. 2024; 13(12):1521. https://doi.org/10.3390/antiox13121521
Chicago/Turabian StyleLemus-Mondaca, Roberto, Luis Puente-Díaz, Angélica Cifuentes, Katherine Lizama, and Paula González. 2024. "Chilean Papaya (Vasconcellea pubescens): A Native Fruit with a High Health-Promoting Functional Potential" Antioxidants 13, no. 12: 1521. https://doi.org/10.3390/antiox13121521
APA StyleLemus-Mondaca, R., Puente-Díaz, L., Cifuentes, A., Lizama, K., & González, P. (2024). Chilean Papaya (Vasconcellea pubescens): A Native Fruit with a High Health-Promoting Functional Potential. Antioxidants, 13(12), 1521. https://doi.org/10.3390/antiox13121521