Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Dietary Intervention with Fish Oils and Characterization of the Diet-Induced Prediabetes Animal Model
2.2. Fatty Acid Profile Analysis
2.3. Lipid Peroxidation Product Analysis
2.4. Total and Individual Protein Carbonylation Analysis
2.5. Identification of the Carbonylated Proteome and Functional Enrichment Analysis
2.6. Densitometric Image Analysis
2.7. Statistical Analysis
2.8. Materials and Reagents
3. Results and Discussion
3.1. Effects of the High-Fat and High-Sucrose Diet and Fish Oils on Lipid and Protein Oxidation in the Cerebellum
3.2. Characterization of the Carbonylated Proteome in the Cerebellum: Protein Identification and Functional Enrichment Analysis
3.3. Effects of Long-Term Feeding of High-Fat and High-Sucrose Diet on Protein Carbonylation Patterns in the Cerebellum
3.4. Effects of Fish Oil Supplementation on Protein Carbonylation Patterns in the Cerebellum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Taboada, I.; González-Pardo, H.; Conejo, N.M. Western Diet: Implications for Brain Function and Behavior. Front. Psychol. 2020, 11, 564413. [Google Scholar] [CrossRef] [PubMed]
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Salas-Venegas, V.; Flores-Torres, R.P.; Rodríguez-Cortés, Y.M.; Rodríguez-Retana, D.; Ramírez-Carreto, R.J.; Concepción-Carrillo, L.E.; Pérez-Flores, L.J.; Alarcón-Aguilar, A.; López-Díazguerrero, N.E.; Gómez-González, B.; et al. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front. Integr. Neurosci. 2022, 16, 798995. [Google Scholar] [CrossRef] [PubMed]
- Kaizer, R.R.; Spanevello, R.M.; Costa, E.; Morsch, V.M.; Schetinger, M.R.C. Effect of High Fat Diets on the NTPDase, 5′-nucleotidase and Acetylcholinesterase Activities in the Central Nervous System. Int. J. Dev. Neurosci. 2018, 64, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.L.; Norhaizan, M.E. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019, 11, 2579. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 Reasons Why the Brain Is Susceptible to Oxidative Stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef]
- Wang, X.; Michaelis, E.K. Selective Neuronal Vulnerability to Oxidative Stress in the Brain. Front. Aging Neurosci. 2010, 2, 12. [Google Scholar] [CrossRef]
- Liang, K.J.; Carlson, E.S. Resistance, Vulnerability and Resilience: A Review of the Cognitive Cerebellum in Aging and Neurodegenerative Diseases. Neurobiol. Learn. Mem. 2020, 170, 106981. [Google Scholar] [CrossRef]
- Lazarus, R.C.; Buonora, J.E.; Jacobowitz, D.M.; Mueller, G.P. Protein Carbonylation after Traumatic Brain Injury: Cell Specificity, Regional Susceptibility, and Gender Differences. Free Radic. Biol. Med. 2015, 78, 89–100. [Google Scholar] [CrossRef]
- Fedorova, M.; Bollineni, R.C.; Hoffmann, R. Protein Carbonylation as a Major Hallmark of Oxidative Damage: Update of Analytical Strategies. Mass Spectrom. Rev. 2014, 33, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein Carbonylation in Human Diseases. Trends Mol. Med. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Gonos, E.S.; Kapetanou, M.; Sereikaite, J.; Bartosz, G.; Naparło, K.; Grzesik, M.; Sadowska-Bartosz, I.; Naparlo, K.; Grzesik, M.; Sadowska-Bartosz, I. Origin and Pathophysiology of Protein Carbonylation, Nitration and Chlorination in Age-Related Brain Diseases and Aging. Aging 2018, 10, 868–901. [Google Scholar] [CrossRef]
- Uchidan, K. Redox-Derived Damage-Associated Molecular Patterns: Ligand Function of Lipid Peroxidation Adducts. Redox Biol. 2013, 1, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.M.; Hahn, W.S.; Long, E.K.; Burrill, J.S.; Arriaga, E.A.; Bernlohr, D.A. Protein Carbonylation and Metabolic Control Systems. Trends Endocrinol. Metab. 2012, 23, 399–406. [Google Scholar] [CrossRef]
- Muñoz, S.; Méndez, L.; Dasilva, G.; Torres, J.L.; Ramos-Romero, S.; Romeu, M.; Nogués, M.R.; Medina, I. Targeting Hepatic Protein Carbonylation and Oxidative Stress Occurring on Diet-Induced Metabolic Diseases through the Supplementation with Fish Oils. Mar. Drugs 2018, 16, 353. [Google Scholar] [CrossRef]
- Méndez, L.; Muñoz, S.; Barros, L.; Miralles-Pérez, B.; Romeu, M.; Ramos-Romero, S.; Torres, J.L.; Medina, I. Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney. Antioxidants 2023, 12, 751. [Google Scholar] [CrossRef]
- Moreno, F.; Méndez, L.; Raner, A.; Miralles-Pérez, B.; Romeu, M.; Ramos-Romero, S.; Torres, J.L.; Medina, I. Fish Oil Supplementation Counteracts the Effect of High-Fat and High-Sucrose Diets on the Carbonylated Proteome in the Rat Cerebral Cortex. Biomed. Pharmacother. 2023, 168, 115708. [Google Scholar] [CrossRef]
- Ebrahim, H.A.; El-Gamal, R.; Sherif, R.N. Intermittent Fasting Attenuates High-Fat Diet-Induced Cerebellar Changes in Rats: Involvement of TNF-α, Autophagy, and Oxidative Stress. Cells Tissues Organs 2021, 210, 351–367. [Google Scholar] [CrossRef]
- Xu, C.J.; Li, M.Q.; Zhao, L.; Chen, W.G.; Wang, J.L. Short-Term High-Fat Diet Favors the Appearances of Apoptosis and Gliosis by Activation of ERK1/2/P38MAPK Pathways in Brain. Aging 2021, 13, 23133–23148. [Google Scholar] [CrossRef] [PubMed]
- Mora, I.; Arola, L.; Caimari, A.; Escoté, X.; Puiggròs, F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int. J. Mol. Sci. 2022, 23, 3472. [Google Scholar] [CrossRef] [PubMed]
- Pitozzi, V.; Jacomelli, M.; Catelan, D.; Servili, M.; Taticchi, A.; Biggeri, A.; Dolara, P.; Giovannelli, L. Long-Term Dietary Extra-Virgin Olive Oil Rich in Polyphenols Reverses Age-Related Dysfunctions in Motor Coordination and Contextual Memory in Mice: Role of Oxidative Stress. Rejuvenation Res. 2012, 15, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Alrafiah, A. Thymoquinone Protects Neurons in the Cerebellum of Rats through Mitigating Oxidative Stress and Inflammation Following High-Fat Diet Supplementation. Biomolecules 2021, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Esparza, J.L.; Gómez, M.; Rosa Nogués, M.; Paternain, J.L.; Mallol, J.; Domingo, J.L. Melatonin Reduces Oxidative Stress and Increases Gene Expression in the Cerebral Cortex and Cerebellum of Aluminum-Exposed Rats. J. Pineal Res. 2005, 39, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Franco-Robles, E.; López, M. Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice. Molecules 2016, 21, 998. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.K.; Mu, Z.H.; Miao, Y.H.; Liu, Y.D.; Zhou, L.; Huang, Y.J.; Zhang, F.; Wang, Y.Y.; Yang, Z.H.; Qian, Z.Y.; et al. Gastrodin Ameliorates Motor Learning Deficits through Preserving Cerebellar Long-Term Depression Pathways in Diabetic Rats. Front. Neurosci. 2019, 13, 1239. [Google Scholar] [CrossRef]
- Pifferi, F.; Laurent, B.; Plourde, M. Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front. Physiol. 2021, 12, 645646. [Google Scholar] [CrossRef]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Dasilva, G.; Medina, I. Lipidomic Methodologies for Biomarkers of Chronic Inflammation in Nutritional Research: ω-3 and ω-6 Lipid Mediators. Free Radic. Biol. Med. 2019, 144, 90–109. [Google Scholar] [CrossRef]
- Avramovic, N.; Dragutinovic, V.; Krstic, D.; Colovic, M.B.; Trbovic, A.; de Luka, S.; Milovanovic, I.; Popovic, T. The Effecects of Omega 3 Fatty Acid Supplementation on Brain Tissue Oxidative Status in Aged Wistar Rats. Hippokratia 2012, 16, 241–245. [Google Scholar] [PubMed]
- de Mello, A.H.; de Bona Schraiber, R.; de Souza Goldim, M.P.; Garcez, M.L.; Gomes, M.L.; de Bem Silveira, G.; Zaccaron, R.P.; Schuck, P.F.; Budni, J.; Silveira, P.C.L.; et al. Omega-3 Fatty Acids Attenuate Brain Alterations in High-Fat Diet-Induced Obesity Model. Mol. Neurobiol. 2019, 56, 513–524. [Google Scholar] [CrossRef]
- Park, Y.H.; Shin, S.J.; Kim, H.S.; Hong, S.B.; Kim, S.; Nam, Y.; Kim, J.-J.; Lim, K.; Kim, J.-S.; Kim, J.; et al. Omega-3 Fatty Acid-Type Docosahexaenoic Acid Protects against Aβ-Mediated Mitochondrial Deficits and Pathomechanisms in Alzheimer’s Disease-Related Animal Model. Int. J. Mol. Sci. 2020, 21, 3879. [Google Scholar] [CrossRef]
- Zugno, A.I.; Chipindo, H.L.; Volpato, A.M.; Budni, J.; Steckert, A.V.; de Oliveira, M.B.; Heylmann, A.S.; da Rosa Silveira, F.; Mastella, G.A.; Maravai, S.G.; et al. Omega-3 Prevents Behavior Response and Brain Oxidative Damage in the Ketamine Model of Schizophrenia. Neuroscience 2014, 259, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Dasilva, G.; Lois, S.; Méndez, L.; Miralles-Pérez, B.; Romeu, M.; Ramos-Romero, S.; Torres, J.L.; Medina, I. Fish Oil Improves Pathway-Oriented Profiling of Lipid Mediators for Maintaining Metabolic Homeostasis in Adipose Tissue of Prediabetic Rats. Front. Immunol. 2021, 12, 608875. [Google Scholar] [CrossRef]
- Miralles-Pérez, B.; Nogués, M.R.; Sánchez-Martos, V.; Taltavull, N.; Méndez, L.; Medina, I.; Ramos-Romero, S.; Torres, J.L.; Romeu, M. The Effects of the Combination of Buckwheat D-Fagomine and Fish Omega-3 Fatty Acids on Oxidative Stress and Related Risk Factors in Pre-Obese Rats. Foods 2021, 10, 332. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Lepage, G.; Roy, C.C. Direct Transesterification of All Classes of Lipids in a One-Step Reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- AOCS. Official and Tentative Methods of the American Oil Chemists’ Society. In American Oil Chemist’s Society; East Wacker Drive: Chicago, IL, USA, 1964; Volume 35. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. Correction to ‘The STRING Database in 2021: Customizable Protein–Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets’. Nucleic Acids Res. 2021, 49, 10800. [Google Scholar] [CrossRef] [PubMed]
- Oskolkova, O.V.; Birukova, A.A.; Birukov, K.G.; Bochkov, V.N. Oxidized Phospholipids Are Biomarkers, Drug Targets, and Drug Leads. Front. Drug Discov. 2022, 2, 1043708. [Google Scholar] [CrossRef]
- Wang, X.; Zaidi, A.; Pal, R.; Garrett, A.S.; Braceras, R.; Chen, X.; Michaelis, M.L.; Michaelis, E.K. Genomic and Biochemical Approaches in the Discovery of Mechanisms for Selective Neuronal Vulnerability to Oxidative Stress. BMC Neurosci. 2009, 10, 12. [Google Scholar] [CrossRef]
- Woodruff-Pak, D.S.; Foy, M.R.; Akopian, G.G.; Lee, K.H.; Zach, J.; Nguyen, K.P.T.; Comalli, D.M.; Kennard, J.A.; Agelan, A.; Thompson, R.F. Differential Effects and Rates of Normal Aging in Cerebellum and Hippocampus. Proc. Natl. Acad. Sci. USA 2010, 107, 1624–1629. [Google Scholar] [CrossRef]
- Donald, S.; Humby, T.; Fyfe, I.; Segonds-Pichon, A.; Walker, S.A.; Andrews, S.R.; Coadwell, W.J.; Emson, P.; Wilkinson, L.S.; Welch, H.C.E. P-Rex2 Regulates Purkinje Cell Dendrite Morphology and Motor Coordination. Proc. Natl. Acad. Sci. USA 2008, 105, 4483–4488. [Google Scholar] [CrossRef] [PubMed]
- Renovell, A.; Giner, J.; Portoles, M. Loss of Granule Neurons in the Aging Human Cerebellar Cortex. Int. J. Dev. Biol. 1996, 40, S193–S194. [Google Scholar]
- Zhang, C.; Zhu, Q.; Hua, T. Aging of Cerebellar Purkinje Cells. Cell Tissue Res. 2010, 341, 341–347. [Google Scholar] [CrossRef]
- Andersen, B.B.; Gundersen, H.J.G.; Pakkenberg, B. Aging of the Human Cerebellum: A Stereological Study. J. Comp. Neurol. 2003, 466, 356–365. [Google Scholar] [CrossRef]
- Liu, F.; Li, S.; Zhao, X.; Xue, S.; Li, H.; Yang, G.; Li, Y.; Wu, Y.; Zhu, L.; Chen, L.; et al. O-GlcNAcylation Is Required for the Survival of Cerebellar Purkinje Cells by Inhibiting ROS Generation. Antioxidants 2023, 12, 806. [Google Scholar] [CrossRef]
- López-Otín, C.; Galluzzi, L.; Freije, J.M.P.; Madeo, F.; Kroemer, G. Metabolic Control of Longevity. Cell 2016, 166, 802–821. [Google Scholar] [CrossRef]
- Razi, E.M.; Ghafari, S.; Golalipour, M.J. Effect of Gestational Diabetes on Purkinje and Granule Cells Distribution of the Rat Cerebellum in 21 and 28 Days of Postnatal Life. Basic Clin. Neurosci. 2015, 6, 6–13. [Google Scholar] [PubMed]
- Kleinridders, A.; Ferris, H.A.; Cai, W.; Kahn, C.R. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function. Diabetes 2014, 63, 2232–2243. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, C.; Sun, H.; Wang, H.; Peng, W.; Zhou, Z.; Wang, H.; Pi, C.; Shi, Y.; He, X. Metabolism: A Novel Shared Link between Diabetes Mellitus and Alzheimer’s Disease. J. Diabetes Res. 2020, 2020, 4981814. [Google Scholar] [CrossRef]
- Bak, D.H.; Zhang, E.; Yi, M.-H.; Kim, D.-K.; Lim, K.; Kim, J.-J.; Kim, D.W. High Ω3-Polyunsaturated Fatty Acids in Fat-1 Mice Prevent Streptozotocin-Induced Purkinje Cell Degeneration through BDNF-Mediated Autophagy. Sci. Rep. 2015, 5, 15465. [Google Scholar] [CrossRef]
- Miralles-Pérez, B.; Méndez, L.; Nogués, M.R.; Sánchez-Martos, V.; Fortuño-Mar, À.; Ramos-Romero, S.; Hereu, M.; Medina, I.; Romeu, M. Effects of a Fish Oil Rich in Docosahexaenoic Acid on Cardiometabolic Risk Factors and Oxidative Stress in Healthy Rats. Mar. Drugs 2021, 19, 555. [Google Scholar] [CrossRef] [PubMed]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.F.; Hennessey, T.; Yang, L.; Starkova, N.N.; Beal, M.F.; Starkov, A.A. Impaired Brain Creatine Kinase Activity in Huntington’s Disease. Neurodegener. Dis. 2011, 8, 194–201. [Google Scholar] [CrossRef]
- Aksenov, M.; Aksenova, M.; Butterfield, D.A.; Markesbery, W.R. Oxidative Modification of Creatine Kinase BB in Alzheimer’s Disease Brain. J. Neurochem. 2000, 74, 2520–2527. [Google Scholar] [CrossRef]
- Koike, S.; Toriumi, K.; Kasahara, S.; Kibune, Y.; Ishida, Y.I.; Dan, T.; Miyata, T.; Arai, M.; Ogasawara, Y. Accumulation of Carbonyl Proteins in the Brain of Mouse Model for Methylglyoxal Detoxification Deficits. Antioxidants 2021, 10, 574. [Google Scholar] [CrossRef]
- Kaldis, P.; Hemmer, W.; Zanolla, E.; Holtzman, D.; Wallimann, T. “Hot Spots” of Creatine Kinase Localization in Brain: Cerebellum, Hippocampus and Choroid Plexus. Dev. Neurosci. 1996, 18, 542–554. [Google Scholar] [CrossRef]
- Fukumitsu, K.; Fujishima, K.; Yoshimura, A.; Wu, Y.K.; Heuser, J.; Kengaku, M. Synergistic Action of Dendritic Mitochondria and Creatine Kinase Maintains ATP Homeostasis and Actin Dynamics in Growing Neuronal Dendrites. J. Neurosci. 2015, 35, 5707–5723. [Google Scholar] [CrossRef]
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef]
- Kim, K. Glutathione in the Nervous System as a Potential Therapeutic Target to Control the Development and Progression of Amyotrophic Lateral Sclerosis. Antioxidants 2021, 10, 1011. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.C.; Sirisoma, N.S.; Kuppusamy, P.; Zweier, J.L.; Woster, P.M.; Casero, R.A. The Natural Polyamine Spermine Functions Directly as a Free Radical Scavenger. Proc. Natl. Acad. Sci. USA 1998, 95, 11140–11145. [Google Scholar] [CrossRef] [PubMed]
- Patin, F.; Corcia, P.; Vourc’h, P.; Nadal-Desbarats, L.; Baranek, T.; Goossens, J.-F.; Marouillat, S.; Dessein, A.-F.; Descat, A.; Madji Hounoum, B.; et al. Omics to Explore Amyotrophic Lateral Sclerosis Evolution: The Central Role of Arginine and Proline Metabolism. Mol. Neurobiol. 2017, 54, 5361–5374. [Google Scholar] [CrossRef] [PubMed]
- Chipika, R.; Mulkerrin, G.; Pradat, P.-F.; Murad, A.; Ango, F.; Raoul, C.; Bede, P. Cerebellar Pathology in Motor Neuron Disease: Neuroplasticity and Neurodegeneration. Neural Regen. Res. 2022, 17, 2335. [Google Scholar] [CrossRef]
- Miskin, D.P.; Chalkias, S.G.; Dang, X.; Bord, E.; Batson, S.; Koralnik, I.J. Interleukin-7 Treatment of PML in a Patient with Idiopathic Lymphocytopenia. Neurol.-Neuroimmunol. Neuroinflamm. 2016, 3, e213. [Google Scholar] [CrossRef] [PubMed]
- Michaelson, M.D.; Mehler, M.F.; Xu, H.; Gross, R.E.; Kessler, J.A. Interleukin-7 Is Trophic for Embryonic Neurons and Is Expressed in Developing Brain. Dev. Biol. 1996, 179, 251–263. [Google Scholar] [CrossRef]
- Chen, F.; Yi, W.; Wang, S.; Yuan, M.; Wen, J.; Li, H.-Y.; Zou, Q.; Liu, S.; Cai, Z. A Long-Term High-Fat Diet Influences Brain Damage and Is Linked to the Activation of HIF-1α/AMPK/MTOR/P70S6K Signalling. Front. Neurosci. 2022, 16, 978431. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Carini, M.; Vistoli, G.; Gamberoni, L.; Giustarini, D.; Colombo, R.; Maffei Facino, R.; Rossi, R.; Milzani, A.; Aldini, G. Actin Cys374 as a Nucleophilic Target of α,β-Unsaturated Aldehydes. Free Radic. Biol. Med. 2007, 42, 583–598. [Google Scholar] [CrossRef]
STD-C | STD-ω3 | HFHS-C | HFHS-ω3 | |
---|---|---|---|---|
Conjugated dienes (mmoles hydroperoxide/kg lipid) | 6.30 a (1.37) | 5.64 a (1.77) | 6.79 a (0.32) | 6.54 a (1.21) |
HNE (a.u./μg lipid) | 643.56 a (141.17) | 627.00 a (61.32) | 750.11 ab (69.12) | 764.89 b (85.04) |
MDA (a.u./μg lipid) | 573.00 a (88.71) | 556.00 a (79.65) | 661.56 b (34.00) | 641.22 b (15.68) |
OxPC (a.u./μg lipid) | 140.19 a (10.80) | 171.88 ab (16.81) | 199.48 b (10.01) | 170.23 ab (6.45) |
HNE-protein adducts (a.u./μg protein) | 22.97 b (1.00) | 24.08 ab (3.20) | 25.40 a (1.35) | 20.53 c (0.78) |
MDA-protein adducts (a.u./μg protein) | 20.45 ab (1.55) | 21.35 ab (2.14) | 22.781 a (3.01) | 18.05 b (1.35) |
OxPC-protein adducts (a.u./μg protein) | 76.11 a (5.82) | 72.31 a (0.57) | 78.33 a (8.21) | 77.85 a (1.26) |
Total protein carbonylation (a.u./μg protein) *# | 68.70.1 b (7.32) | 80.62 ab (12.63) | 100.01 a (9.16) | 84.01 ab (11.50) |
Protein carbonylation of cytosolic proteins (a.u./μg protein) *# | 67.3 b (2.1) | 81.9 ab (14.4) | 104.7 a (24.4) | 79.40 b (20.6) |
Protein carbonylation of myofibrillar proteins (a.u./μg protein) * | 70.1 b (12.5) | 79.3 ab (23.6) | 95.3 a (8.45) | 88.6 ab (5.60) |
% ω6-PUFAs (% total fatty acids) *$ | 11.47 a (0.43) | 10.90 a (0.38) | 10.80 a (0.67) | 9.62 b (0.46) |
% ω3-PUFAs (% total fatty acids) | 12.80 b (1.23) | 14.04 a (0.79) | 14.34 ab (1.47) | 14.21 ab (1.56) |
ω3/ω6 *$ | 1.12 c (0.09) | 1.29 b (0.06) | 1.33 ab (0.09) | 1.48 a (0.10) |
Total PUFAs (% total fatty acids) | 24.27 a (1.50) | 24.93 a (1.06) | 25.14 a (2.05) | 23.83 a (1.99) |
Specific Protein Carbonylation (a.u./μg Protein) | |||||||
---|---|---|---|---|---|---|---|
Spot Nº | Figure | Protein Abbreviation | Protein Description | STD-C | STD-ω3 | HFHS-C | HFHS-ω3 |
2 | S2 | ACTB | Actin cytoplasmic 1 $ | 0.14 ab (0.06) | 0.22 ab (0.06) | 0.14 b (0.08) | 0.28 a (0.05) |
23 | S1 | AKR1A1 | Aldo-keto reductase family 1 member A1 $# | 0.30 a (0.09) | 0.09 b (0.03) | 0.16 ab (0.02) | 0.13 b (0.07) |
33 | S1 | ALDOC | Fructose-bisphosphate aldolase C * | 0.16 a (0.06) | 0.15 a (0.04) | 0.26 a (0.08) | 0.21 a (0.01) |
4 | S2 | ATP5F1B | ATP synthase subunit beta mitochondrial * | 0.05 a (0.02) | 0.07 a (0.01) | 0.11 a (0.04) | 0.17 a (0.09) |
15 | S2 | ATP5F1B | ATP synthase subunit beta mitochondrial $ | 0.17 ab (0.04) | 0.14 ab (0.05) | 0.24 a (0.06) | 0.12 b (0.02) |
33 | S1 | CA2 | Carbonic anhydrase 2 * | 0.16 a (0.06) | 0.15 a (0.04) | 0.26 a (0.08) | 0.21 a (0.01) |
3 | S1 | CKB | Creatine kinase B-type * | 0.05 a (0.02) | 0.07 a (0.01) | 0.12 a (0.08) | 0.11 a (0.04) |
7 | S2 | CKB | Creatine kinase B-type $ | 0.30 ab (0.13) | 0.22 ab (0.04) | 0.43 a (0.09) | 0.21 b (0.04) |
30 | S2 | CKMT1 | Creatine kinase U-type mitochondrial *$# | 0.08 b (0.02) | 0.06 b (0.01) | 0.14 a (0.02) | 0.05 b (0.02) |
8 | S1 | ENO1 | Alpha-enolase *$ | 0.02 b (0.00) | 0.04 ab (0.02) | 0.04 ab (0.01) | 0.05 a (0.01) |
24 | S1 | GAPDH | Glyceraldehyde-3-phosphate dehydrogenase $ | 0.31 a (0.01) | 0.15 b (0.07) | 0.30 a (0.05) | 0.13 b (0.04) |
9 | S2 | GAPDH | Glyceraldehyde-3-phosphate dehydrogenase $ | 0.21 a (0.06) | 0.12 a (0.07) | 0.25 a (0.05) | 0.15 a (0.03) |
10 | S2 | GAPDH | Glyceraldehyde-3-phosphate dehydrogenase $ | 0.19 a (0.03) | 0.05 b (0.01) | 0.13 a (0.01) | 0.11 ab (0.05) |
6 | S2 | GLUD1 | Glutamate dehydrogenase 1 mitochondrial $ | 0.45 a (0.13) | 0.29 a (0.08) | 0.45 a (0.09) | 0.29 a (0.07) |
17 | S2 | GLUD1 | Glutamate dehydrogenase 1 mitochondrial $ | 0.24 a (0.12) | 0.13 a (0.02) | 0.19 a (0.03) | 0.13 a (0.03) |
7 | S2 | GLUL | Glutamine synthetase $ | 0.30 ab (0.13) | 0.22 ab (0.04) | 0.43 a (0.09) | 0.21 b (0.04) |
23 | S2 | GLUL | Glutamine synthetase $ | 0.16 a (0.04) | 0.14 a (0.04) | 0.21 a (0.07) | 0.11 a (0.03) |
5 | S2 | NEFL | Neurofilament light polypeptide # | 0.20 b (0.07) | 0.49 a (0.13) | 0.31 ab (0.12) | 0.25 ab (0.04) |
5 | S2 | PACSIN1 | Protein kinase C and casein kinase substrate in neurons protein 1 # | 0.20 b (0.07) | 0.49 a (0.13) | 0.31 ab (0.12) | 0.25 ab (0.04) |
7 | S2 | PDHA1 | Pyruvate dehydrogenase E1 component subunit alpha somatic form mitochondrial $ | 0.30 ab (0.13) | 0.22 ab (0.04) | 0.43 a (0.09) | 0.21 b (0.07) |
23 | S2 | PDHA1 | Pyruvate dehydrogenase E1 component subunit alpha somatic form mitochondrial $ | 0.16 a (0.04) | 0.14 a (0.04) | 0.21 a (0.07) | 0.11 a (0.03) |
33 | S1 | PGAM1 | Phosphoglycerate mutase 1 * | 0.16 a (0.06) | 0.15 a (0.04) | 0.26 a (0.08) | 0.21 a (0.01) |
15 | S2 | SEPTIN11 | Septin-11 $ | 0.17 ab (0.04) | 0.14 ab (0.05) | 0.24 a (0.06) | 0.12 b (0.02) |
23 | S1 | SYN1 | Synapsin-1 $ | 0.30 a (0.09) | 0.09 b (0.03) | 0.16 ab (0.02) | 0.13 b (0.07) |
9 | S2 | SYN1 | Synapsin-1 $ | 0.21 a (0.06) | 0.12 a (0.07) | 0.25 a (0.05) | 0.15 a (0.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, F.; Méndez, L.; Raner, A.; Miralles-Pérez, B.; Romeu, M.; Ramos-Romero, S.; Torres, J.L.; Medina, I. Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum. Antioxidants 2024, 13, 103. https://doi.org/10.3390/antiox13010103
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum. Antioxidants. 2024; 13(1):103. https://doi.org/10.3390/antiox13010103
Chicago/Turabian StyleMoreno, Francisco, Lucía Méndez, Ana Raner, Bernat Miralles-Pérez, Marta Romeu, Sara Ramos-Romero, Josep Lluís Torres, and Isabel Medina. 2024. "Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum" Antioxidants 13, no. 1: 103. https://doi.org/10.3390/antiox13010103
APA StyleMoreno, F., Méndez, L., Raner, A., Miralles-Pérez, B., Romeu, M., Ramos-Romero, S., Torres, J. L., & Medina, I. (2024). Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum. Antioxidants, 13(1), 103. https://doi.org/10.3390/antiox13010103