Replacement of Vitamin E by an Extract from an Olive Oil by-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Liver Traits, Oxidation, Lipid Profile, and Transcriptome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Sample Collection
2.3. Hepatic Concentrations of TBARS, Total Lipids, Triglycerides, Cholesterol, α-Tocopherol
2.4. RNA Extraction
2.5. Microarray Analysis and Bioinformatic Analysis
2.6. Validation of Microarray Data Using qPCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Hepatic Traits and TBARS, Triglyceride, Cholesterol, and α-Tocopherol Concentrations
3.2. Liver Transcriptome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, R.U.; Rahman, Z.U.; Nikousefat, Z.; Javdani, M.; Tufarelli, V.; Dario, C.; Selvaggi, M.; Laudadio, V. Immuno-modulating effects of vitamin E in broilers. Worlds Poult. Sci. J. 2012, 68, 31–40. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Romanov, M.N.; Griffin, D.K. Nutritional modulation of the antioxidant capacities in poultry: The case of vitamin E. Poult. Sci. 2019, 98, 4030–4041. [Google Scholar] [CrossRef] [PubMed]
- Voljč, M.; Frankič, T.; Levart, A.; Nemec, M.; Salobir, J. Evaluation of different vitamin E recommendations and bioactivity of α-tocopherol isomers in broiler nutrition by measuring oxidative stress in vivo and the oxidative stability of meat. Poult. Sci. 2011, 90, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994.
- Stangl, G.; Schwarz, F.; Roth, F.; Südekum, K.; Eder, K. Tierernährung, 14th ed.; DLG-Verlag: Frankfurt am Main, Germany, 2014; pp. 592–594. [Google Scholar]
- Santomá, G.; Mateos, G.G. Necesidades Nutricionales Para Avicultura, 2nd ed.; Fundación Española Desarrollo Nutrición Animal (FEDNA): Madrid, Spain, 2018. [Google Scholar]
- Cobb-Vantress. Cobb 500 Broiler Performance & Nutrition Supplement. Available online: https://www.cobb-vantress.com/assets/5a88f2e793/Broiler-Performance-Nutrition-Supplement.pdf (accessed on 15 January 2022).
- Iqbal, Z.; Kamran, Z.; Sultan, J.I.; Ali, A.; Ahmad, S.; Shahzad, M.I.; Ahsan, U.; Ashraf, S.; Sohail, M.U. Replacement effect of vitamin E with grape polyphenols on antioxidant status, immune, and organs histopathological responses in broilers from 1-to 35-d age. J. Appl. Poult. Res. 2015, 24, 127–134. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef]
- Imperatore, R.; Pagliarulo, C.; Orso, G.; De Cristofaro, G.A.; Sateriale, D.; Paolucci, M. Olive Mill Wastewater Bioactive Molecules: Applications in Animal Farming. In Wastewater from Olive Oil Production: Environmental Impacts, Treatment and Valorisation, 1st ed.; Souabi, S., Anouzla, A., Eds.; Springer Water, Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Gerasopoulos, K.; Stagos, D.; Kokkas, S.; Petrotos, K.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens. Food Chem. Toxicol. 2015, 82, 42–49. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Ortenzi, R.; Roila, R.; Trabalza-Marinucci, M.; Servili, M.; Papa, P.; Galarini, R.; Valiani, A. Dietary administration of olive mill wastewater extract reduces Campylobacter spp. prevalence in broiler chickens. Sustainability 2016, 8, 837. [Google Scholar] [CrossRef]
- Debbou-Iouknane, N.; Nerín, C.; Amrane, M.; Ghemghar, M.; Madani, K.; Ayad, A. In vitro anticoccidial activity of olive pulp (Olea europaea L. var. chemlal) extract against Eimeria oocysts in broiler chickens. Acta Parasitol. 2019, 64, 887–897. [Google Scholar] [CrossRef]
- Herrero-Encinas, J.; Blanch, M.; Pastor, J.J.; Mereu, A.; Ipharraguerre, I.R.; Menoyo, D. Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult. Sci. 2020, 99, 2–10. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Petrotos, K.; Stagos, D.; Gerasopoulos, K.; Maimaris, A.; Makris, H.; Kafantaris, I.; Makri, S.; Kerasioti, E.; Halabalaki, M.; et al. Enhancement of antioxidant mechanisms and reduction of oxidative stress in chickens after the administration of drinking water enriched with polyphenolic powder from olive mill waste waters. Oxid. Med. Cell. Longev. 2017, 2017, 8273160. [Google Scholar] [CrossRef]
- Arangia, A.; Marino, Y.; Impellizzeri, D.; D’Amico, R.; Cuzzocrea, S.; Di Paola, R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int. J. Mol. Sci. 2023, 24, 3111. [Google Scholar] [CrossRef]
- Robles-Almazán, M.; Pulido-Moran, M.; Moreno-Fernández, J.; Ramírez-Tortosa, C.; Rodríguez-Garcia, C.; Quiles, J.L.; Ramírez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Emami, N.K.; Jung, U.; Voy, B.; Dridi, S. Radical response: Effects of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Antioxidants 2020, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Flees, J.; Rajaei-Sharifabadi, H.; Greene, E.; Beer, L.; Hargis, B.M.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottje, W.G.; Dridi, S. Effect of Morinda citrifolia (noni)-enriched diet on hepatic heat shock protein and lipid metabolism-related genes in heat stressed broiler chickens. Front. Physiol. 2017, 8, 919. [Google Scholar] [CrossRef] [PubMed]
- Skovorodin, E.; Bronnikova, G.; Bazekin, G.; Dyudbin, O.; Khokhlov, R. Antioxidant influence on poultry liver morphology and hepatocyte ultrastructure. Vet. World 2019, 12, 1716. [Google Scholar] [CrossRef]
- Salami, S.A.; Guinguina, A.; Agboola, J.O.; Omede, A.A.; Agbonlahor, E.M.; Tayyab, U. Review: In vivo and postmortem effects of feed antioxidants in livestock: A review of the implications on authorization of antioxidant feed additives. Animal 2016, 10, 1375–1390. [Google Scholar] [CrossRef]
- BOE. RD 53/2013, de 21 de octubre por la que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia, Spain. Boletín Of. Estado 2013, 252, 34367–34391. [Google Scholar]
- Cobb Broiler. Management Guide. Available online: https://www.cobb-vantress.com (accessed on 20 November 2022).
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative status and presence of bioactive compounds in meat from chickens fed polyphenols extracted from olive oil industry waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Rey, A.I.; Daza, A.; López-Carrasco, C.; López-Bote, C.J. Quantitative study of the α-and γ-tocopherols accumulation in muscle and backfat from Iberian pigs kept free-range as affected by time of free-range feeding or weight gain. Anim. Sci. 2006, 82, 901–908. [Google Scholar] [CrossRef]
- International Olive Council. Determinación de los Biofenoles de los Aceites de Oliva Mediante HPLC; COI/T.20/Doc.n°.29; International Olive Council: Madrid, Spain, 2009. [Google Scholar]
- Capannesi, C.; Palchetti, I.; Mascini, M.; Parenti, A. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem. 2000, 71, 553–562. [Google Scholar] [CrossRef]
- Wong, S.H.; Knight, J.A.; Hopfer, S.M.; Zaharia, O.; Leach, C.N., Jr.; Sunderman, F.W., Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin. Chem. 1987, 33, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kostner, K.; Banyai, S.; Jansen, M.; Khoschsorur, G.; Hörl, W.H.; Maurer, G.; Winklhofer-Roob, B.; Derfler, K. Low density lipoprotein immunoapheresis does not increase plasma lipid peroxidation products in vivo. Clin. Chim. Acta 1999, 288, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Segura, J.; Lopez-Bote, C.J. A laboratory efficient method for intramuscular fat analysis. Food. Chem. 2014, 145, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Eder, K.; Kirchgessner, M. Dietary fat influences the effect of zinc deficiency on liver lipids and fatty acids in rats force-fed equal quantities of diet. J. Nutr. 1994, 124, 1917–1926. [Google Scholar] [CrossRef]
- Olivares, A.; Rey, A.I.; Daza, A.; López-Bote, C.J. High dietary vitamin A interferes with tissue α-tocopherol concentrations in fattening pigs: A study that examines administration and withdrawal times. Animal 2009, 3, 1264–1270. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef]
- Gessner, D.K.; Schwarz, A.; Meyer, S.; Wen, G.; Most, E.; Zorn, H.; Ringseis, R.; Eder, K. Insect meal as alternative protein source exerts pro-nounced lipid-lowering effects in hyperlipidemic obese zucker rats. J. Nutr. 2019, 149, 566–577. [Google Scholar] [CrossRef]
- Korošec, T.; Tomažin, U.; Horvat, S.; Salobir, J. The diverse effects of α-and γ-tocopherol on chicken liver transcriptome. Poult. Sci. 2017, 96, 667–680. [Google Scholar] [CrossRef]
- Ringseis, R.; Zeitz, J.O.; Weber, A.; Koch, C.; Eder, K. Hepatic transcript profiling in early-lactation dairy cows fed rumen-protected niacin during the transition from late pregnancy to lactation. J. Dairy Sci. 2019, 102, 365–376. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Ringseis, R.; Koc, A.; Lukas, I.; Kluge, H.; Eder, K. Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal 2012, 6, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- SAS. SAS/STAT Users Guide: Statistics, 6th ed.; SAS Inc.: Cary, NC, USA, 1990. [Google Scholar]
- Righi, F.; Pitino, R.; Manuelian, C.L.; Simoni, M.; Quarantelli, A.; De Marchi, M.; Tsiplakou, E. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on poultry performances, health, and oxidative status: A review of the literature in the last 20 years. Antioxidants 2021, 10, 659. [Google Scholar] [CrossRef]
- Iqbal, Z.; Ali, R.; Sultan, J.I.; Ali, A.; Kamran, Z.; Khan, S.A.; Ahsan, U. Impact of replacing grape polyphenol with vitamin E on growth performance, relative organs weight and antioxidant status of broilers. J. Anim. Plant Sci. 2014, 13, 13–40. [Google Scholar]
- Sheehy, P.J.; Morrissey, P.A.; Flynn, A. Influence of dietary alpha-tocopherol on tocopherol concentrations in chick tissues. Br. Poult. Sci. 1991, 32, 391–397. [Google Scholar] [CrossRef]
- Makri, S.; Kafantaris, I.; Savva, S.; Ntanou, P.; Stagos, D.; Argyroulis, I.; Kotsampasi, B.; Christodoulou, V.; Gerasopoulos, K.; Petrotos, K.; et al. Novel feed including olive oil mill wastewater bioactive compounds enhanced the redox status of lambs. In Vivo 2018, 32, 291–302. [Google Scholar]
- Paiva-Martins, F.; Fernandes, J.; Rocha, S.; Nascimento, H.; Vitorino, R.; Amado, F.; Borges, F.; Belo, L.; Santos-Silva, A. Effects of olive oil polyphenols on erythrocyte oxidative damage. Mol. Nutr. Food Res. 2009, 53, 609–616. [Google Scholar] [CrossRef]
- Sahin, K.; Sahin, N.; Onderci, M.; Yaralioglu, S.; Kucuk, O. Protective role of supplemental vitamin E on lipid peroxidation, vitamins E, A and some mineral concentrations of broilers reared under heat stress. Vet. Med. 2001, 46, 140–144. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Zhou, Y.; Zhang, Z.; Xie, Z.; Zhang, J.; Wan, X. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem. 2013, 61, 8565–8572. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Arch. Anim. Breed. 2019, 62, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Power, R.F.; Mallonee, D.; Crowdus, C.; Brennan, K.M.; Ao, T.; Pierce, J.L.; Dawson, K.A. A comparative transcriptomic study of vitamin E and an algae-based antioxidant as antioxidative agents: Investigation of replacing vitamin E with the algae-based antioxidant in broiler diets. Poult. Sci. 2011, 90, 136–146. [Google Scholar] [CrossRef]
- Sabino, M.; Cappelli, K.; Capomaccio, S.; Pascucci, L.; Biasato, I.; Verini-Supplizi, A.; Valiani, A.; Trabalza-Marinucci, M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genom. 2018, 19, 576. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; Ianni, A.; Ramazzotti, S.; Grotta, L.; Marone, E.; Cichelli, A.; Martino, G. Whole blood transcriptome analysis reveals positive effects of dried olive pomace-supplemented diet on inflammation and cholesterol in laying hens. Animals 2019, 9, 427. [Google Scholar] [CrossRef]
- Köster, A.; Chao, Y.B.; Mosior, M.; Ford, A.; Gonzalez-DeWhitt, P.A.; Hale, J.E.; Li, D.; Qiu, Y.; Fraser, C.C.; Yang, D.D.; et al. Transgenic angiopoietin-like (angptl) 4 overexpression and targeted disruption of angptl4 and angptl3: Regulation of triglyceride metabolism. Endocrinology 2005, 146, 4943–4950. [Google Scholar] [CrossRef]
- D’Andre, H.C.; Paul, W.; Shen, X.; Jia, X.; Zhang, R.; Sun, L.; Zhang, X. Identification and characterization of genes that control fat deposition in chickens. J. Anim. Sci. Biotechnol. 2013, 4, 43. [Google Scholar] [CrossRef]
- Fulton, J.E.; McCarron, A.M.; Lund, A.R.; Pinegar, K.N.; Wolc, A.; Chazara, O.; Bed’Hom, B.; Berres, M.; Miller, M.M. A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genet. Sel. Evol. 2016, 48, 1. [Google Scholar] [CrossRef]
- Yasuda, Y.; Miyamoto, Y.; Yamashiro, T.; Asally, M.; Masui, A.; Wong, C.; Loveland, K.L.; Yoneda, Y. Nuclear retention of importin alpha coordinates cell fate through changes in gene expression. EMBO J. 2012, 31, 83–94. [Google Scholar] [CrossRef]
- Miyashita, M.; Oshiumi, H.; Matsumoto, M.; Seya, T. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell Biol. 2011, 31, 3802–3819. [Google Scholar] [CrossRef]
- Orzalli, M.H.; Kagan, J.C. Apoptosis and Necroptosis as Host Defense Strategies to Prevent Viral Infection. Trends Cell Biol. 2017, 27, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; He, Z.; Chen, Y.; Dai, L. Dual role of ANGPTL4 in inflammation. Inflamm. Res. 2023, 72, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Moser, A.; Shigenaga, J.K.; Grunfeld, C.; Feingold, K.R. The Acute Phase Response Stimulates the Expression of Angiopoietin like Protein 4. Biochem. Biophys. Res. Commun. 2010, 391, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Miretti, S.; Lecchi, C.; Ceciliani, F.; Baratta, M. MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock. Front. Vet. Sci. 2020, 7, 985. [Google Scholar] [CrossRef] [PubMed]
- Cannataro, R.; Fazio, A.; La Torre, C.; Caroleo, M.; Cione, E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants 2021, 10, 328. [Google Scholar] [CrossRef] [PubMed]
HT0 | HT7.5 | HT15 | HT22.5 | HT30 | |
---|---|---|---|---|---|
Ingredient | |||||
Corn | 58.7 | 58.7 | 58.7 | 58.7 | 58.7 |
Soybean meal, 47% CP | 36.4 | 36.4 | 36.4 | 36.4 | 36.4 |
Soy oil | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |
Calcium carbonate | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 |
Monocalcium phosphate | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 |
DL-methionine, 99% | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
L-Lysine HCL, 78% | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
L-Threonine | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
L-Valine | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Vitamin–mineral premix 1 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Sodium chloride | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
OLIVOX® 2 mg/kg | 0 | 824 | 1648 | 2473 | 3297 |
Vitamin E 3, mg/kg | 40.0 | 30.0 | 20.0 | 10.0 | 0.0 |
Calculated analysis | |||||
Moisture | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 |
AMEn, kcal/kg | 2920 | 2920 | 2920 | 2920 | 2920 |
Crude protein | 21.9 | 21.9 | 21.9 | 21.9 | 21.9 |
Ether extract | 3.93 | 3.93 | 3.93 | 3.93 | 3.93 |
Ash | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 |
Calcium | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
Digestible phosphorus | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Vitamin E, mg/kg | 53.7 | 43.7 | 33.7 | 23.7 | 13.7 |
Determined analysis | |||||
Moisture | 12.2 | 12.5 | 11.7 | 11.6 | 11.8 |
Gross energy, kcal/kg | 3938 | 3967 | 3981 | 3970 | 3962 |
Crude protein | 22.5 | 22.7 | 22.6 | 22.7 | 22.5 |
Ash | 5.07 | 4.70 | 5.09 | 4.92 | 5.08 |
Vitamin E 4, mg/kg | 44.7 | 37.5 | 26.8 | 18.2 | 9.31 |
HT0 | HT7.5 | HT15 | HT22.5 | HT30 | |
---|---|---|---|---|---|
Ingredients | |||||
Corn | 64.0 | 64.0 | 64.0 | 64.0 | 64.0 |
Soybean meal, 47% CP | 29.9 | 29.9 | 29.9 | 29.9 | 29.9 |
Soy oil | 3.05 | 3.05 | 3.05 | 3.05 | 3.05 |
Calcium carbonate | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
Monocalcium phosphate | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
DL-methionine, 99% | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
L-Lysine HCL, 78% | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
L-Threonine | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
L-Valine | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Vitamin–mineral premix 1 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Sodium chloride | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
OLIVOX® 2 mg/kg | 0 | 824 | 1648 | 2473 | 3297 |
Vitamin E 3, mg/kg | 40.0 | 30.0 | 20.0 | 10.0 | 0.0 |
Calculated analysis | |||||
Moisture | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 |
AMEn, kcal/kg | 3100 | 3100 | 3100 | 3100 | 3100 |
Crude protein | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 |
Ether extract | 5.87 | 5.87 | 5.87 | 5.87 | 5.87 |
Ash | 4.65 | 4.65 | 4.65 | 4.65 | 4.65 |
Calcium | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |
Digestible phosphorus | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Vitamin E, mg/kg | 54.5 | 44.5 | 34.5 | 24.5 | 14.5 |
Determined analysis | |||||
Moisture | 10.3 | 11.0 | 11.1 | 10.9 | 11.1 |
Gross energy, kcal/kg | 4136 | 4103 | 4088 | 4117 | 4093 |
Crude protein | 19.5 | 19.2 | 19.3 | 19.6 | 19.1 |
Ash | 4.53 | 4.45 | 4.42 | 4.34 | 4.24 |
Vitamin E 4, mg/kg | 48.9 | 35.7 | 26.0 | 19.0 | 11.3 |
Item 3 | RLW, %BW | Total Lipids, %DW | TBARS, nmol/g | Chol, µmol/g | TG, µmol/g | α-Tocopherol, µg/g |
---|---|---|---|---|---|---|
HT0 | 2.07 ± 2.09 | 18.0 ± 0.1 | 69.6 ± 18.6 | 9.95 ± 0.97 | 20.3 ± 9.31 | 14.5 a ± 2.44 |
HT7.5 | 2.22 ± 2.41 | 17.3 ± 0.31 | 61.2 ± 13.1 | 9.57 ± 0.69 | 19.0 ± 2.40 | 10.4 b ± 2.11 |
HT15 | 2.24 ± 1.96 | 16.8 ± 0.26 | 68.6 ± 14.1 | 9.78 ± 1.32 | 13.4 ± 5.19 | 7.72 bc ± 1.72 |
HT22.5 | 2.19 ± 3.72 | 19.3 ± 0.18 | 69.9 ± 18.0 | 9.98 ± 0.70 | 22.2 ± 15.3 | 6.27 cd ± 2.02 |
HT30 | 2.15 ± 2.71 | 17.9 ± 0.25 | 73.5 ± 7.46 | 9.96 ± 1.52 | 23.1 ± 15.5 | 4.33 d ± 1.23 |
p-value 4 | ||||||
Diet | 0.71 | 0.37 | 0.70 | 0.96 | 0.58 | <0.001 |
Linear | 0.66 | 0.51 | 0.40 | 0.76 | 0.53 | <0.001 |
Quadratic | 0.20 | 0.73 | 0.43 | 0.68 | 0.27 | 0.055 |
Fold Change | p-Value | ||
---|---|---|---|
Microarray | qPCR | qPCR | |
ANGPTL4 | −2.71 | −2.25 | 0.020 |
ACSBG2 | −1.84 | −2.32 | 0.012 |
HOOK1 | −1.67 | −1.86 | 0.040 |
NR0B1 | −1.68 | −1.64 | 0.370 |
TACC3 | 1.70 | 1.18 | 0.126 |
GLCC1 | 1.78 | 1.17 | 0.082 |
CCNB1 | 1.88 | 1.25 | 0.216 |
TOP2A | 2.07 | 1.26 | 0.050 |
CDK1 | 2.08 | 1.22 | 0.055 |
SMC2 | 2.23 | 1.32 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero-Encinas, J.; Corrales, N.L.; Sevillano, F.; Ringseis, R.; Eder, K.; Menoyo, D. Replacement of Vitamin E by an Extract from an Olive Oil by-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Liver Traits, Oxidation, Lipid Profile, and Transcriptome. Antioxidants 2023, 12, 1751. https://doi.org/10.3390/antiox12091751
Herrero-Encinas J, Corrales NL, Sevillano F, Ringseis R, Eder K, Menoyo D. Replacement of Vitamin E by an Extract from an Olive Oil by-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Liver Traits, Oxidation, Lipid Profile, and Transcriptome. Antioxidants. 2023; 12(9):1751. https://doi.org/10.3390/antiox12091751
Chicago/Turabian StyleHerrero-Encinas, Javier, Nereida L. Corrales, Fernando Sevillano, Robert Ringseis, Klaus Eder, and David Menoyo. 2023. "Replacement of Vitamin E by an Extract from an Olive Oil by-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Liver Traits, Oxidation, Lipid Profile, and Transcriptome" Antioxidants 12, no. 9: 1751. https://doi.org/10.3390/antiox12091751
APA StyleHerrero-Encinas, J., Corrales, N. L., Sevillano, F., Ringseis, R., Eder, K., & Menoyo, D. (2023). Replacement of Vitamin E by an Extract from an Olive Oil by-Product, Rich in Hydroxytyrosol, in Broiler Diets: Effects on Liver Traits, Oxidation, Lipid Profile, and Transcriptome. Antioxidants, 12(9), 1751. https://doi.org/10.3390/antiox12091751