Phytochemical Profile and Biological Activities of Different Extracts of Three Parts of Paliurus spina-christi: A Linkage between Structure and Ability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Extraction
2.2. Chemical Reagents
2.3. Total Phenolic and Flavonoid Content
2.4. UPLC-ESI-QTOF-MS Conditions
2.5. Antioxidant Assays
2.6. Enzyme Inhibitory Assays
2.7. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.2. Characterization of Bioactive Compounds from Paliurus spina-christi Water and Methanolic Extracts from Twigs, Flowers and Leaves by UPLC—ESI-QTOF-MS
3.3. Antioxidant Activity
3.4. Enzyme Inhibitory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suthari, S.; Kota, S.; Kanneboyena, O.; Gul, M.Z.; Abbagani, S. Ethnobotanical perspectives in the treatment of communica-ble and noncommunicable diseases. In Phytomedicine; Bhat, R.A., Hakeem, K.R., Dervash, M.A., Eds.; Academic Press: Cam-bridge, MA, USA, 2021; Chapter 9; pp. 251–289. [Google Scholar]
- Koch, W. Dietary polyphenols—Important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, R.A.; Harpel, M.R.; Tummino, P.J. Targeting enzyme inhibitors in drug discovery. Expert Opin. Ther. Targets 2007, 11, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Akalın, E.; Gürdal, B.; Olcay, B. General overview on the conservation of medicinal plants in Turkey. Turk. J. Biodivers. 2020, 3, 86–94. [Google Scholar] [CrossRef]
- Cakilcioglu, U.; Khatun, S.; Turkoglu, I.; Hayta, S. Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J. Ethnopharmacol. 2011, 137, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Brantner, A.H.; Males, Z. Quality assessment of Paliurus spina-christi extracts. J. Ethnopharmacol. 1999, 66, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Takım, K. Bioactive component analysis and investigation of antidiabetic effect of Jerusalem thorn (Paliurus spina-christi) fruits in diabetic rats induced by streptozotocin. J. Ethnopharmacol. 2021, 264, 113263. [Google Scholar] [CrossRef]
- Arslan, L.; Elife, K. Investigation of Antimicrobial and Antioxidant Activities of Paliurus spina-christi Mill. in Kahramanma-ras, Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Doğa Derg. 2021, 24, 1161–1169. [Google Scholar]
- Şen, A. Antioxidant and anti-inflammatory activity of fruit, leaf and branch extracts of Paliurus spina-christi P. Mill. Marmara Pharm. J. 2018, 22, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Takım, K.; Işık, M. Phytochemical analysis of Paliurus spina-christi fruit and its effects on oxidative stress and antioxidant en-zymes in streptozotocin-induced diabetic rats. Appl. Biochem. Biotechnol. 2020, 191, 1353–1368. [Google Scholar] [CrossRef]
- Ahmed, L.T.; Al-Ani, N.K.; Smariee, K.W. Chemical analysis and antifungal activity of Paliurus spina-christii. Egypt. J. Exp. Biol. 2015, 8, 99. [Google Scholar]
- Zor, M.; Aydin, S.; Güner, N.D.; Başaran, N.; Başaran, A.A. Antigenotoxic properties of Paliurus spina-christi Mill. fruits and their active compounds. BMC Complement. Altern. Med. 2017, 17, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdi, O.; Pulat, Ç.Ç.; İlhan, S.; Atmaca, H. GC-MS analysis and potential apoptotic effect of Paliurus spina-christi mill. leaf and flower extracts against breast cancer cells. Sak. Univ. J. Sci. 2022, 26, 357–364. [Google Scholar]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cyto-toxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical compo-sition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyz-ing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.; Liew, W. Sulaiman Rahman. H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Ye, Y.; Pan, J.; Lin, Z.; Qiu, J.; Peng, C.; Guo, X.; Lu, Y. Comparative analysis of phytochemical profiles and anti-oxidant activities between sweet and sour wampee (Clausena lansium) Fruits. Foods 2022, 11, 1230. [Google Scholar] [CrossRef]
- Chen, P.; Ran, H.; Li, J.; Zong, J.; Luo, Q.; Zhao, T.; Liao, Z.; Tang, Y.; Fu, Y. Antioxidant activity of phenolic extraction from different sweetpotato (Ipomoea batatas (L.) Lam.) blades and comparative transcriptome analysis reveals differentially ex-pressed genes of phenolic metabolism in two genotypes. Genes 2022, 13, 1078. [Google Scholar] [CrossRef]
- Li, C.; Shi, B.; Li, X.; Zhang, W.E.; Pan, X. Changes of phenolics contents, antioxidant activities, and enzyme activities in pel-licles of Juglans sigillata Dode during fruits development. Int. J. Food Prop. 2022, 25, 2133–2145. [Google Scholar] [CrossRef]
- Mehfooz, H.; Saeed, A.; Sharma, A.; Albericio, F.; Larik, F.A.; Jabeen, F.; Channar, P.A.; Flörke, U. Dual Inhibition of AChE and BChE with the C-5 substituted derivative of Meldrum’s acid: Synthesis, structure elucidation, and molecular docking studies. Crystals 2017, 7, 211. [Google Scholar] [CrossRef] [Green Version]
- Mahomoodally, M.F.; Zengin, G.; Aumeeruddy, M.Z.; Sezgin, M.; Aktumsek, A. Phytochemical profile and antioxidant properties of two Brassicaceae species: Cardaria draba subsp. draba and Descurainia sophia. Biocatal. Agric. Biotechnol. 2018, 16, 453–458. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef] [PubMed]
- Ha, P.T.T.; Tran, N.T.B.; Tram, N.T.N.; Kha, V.H. Total phenolic, total flavonoid contents and antioxidant potential of Common Bean (Phaseolus vulgaris L.) in Vietnam. AIMS Agric. Food 2020, 5, 635–648. [Google Scholar]
- Song, Y.; Chen, S.; Li, L.; Zeng, Y.; Hu, X. The hypopigmentation mechanism of tyrosinase inhibitory peptides derived from food proteins: An overview. Molecules 2022, 27, 2710. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Li, N.; Wu, L.; Huang, Z.; Hu, Z.; Li, X.; Qu, Z. Phytochemicals and anti-tyrosinase activities of Paeonia ostii leaves and roots. Plant Physiol. Biochem. 2022, 181, 50–60. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Hidayathulla, S.; Rehman, M.T.; ElGamal, A.A.; Al-Massarani, S.; Razmovski-Naumovski, V.; Alqahtani, M.S.; El Dib, R.A.; AlAjmi, M.F. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules 2019, 10, 61. [Google Scholar] [CrossRef]
m/z | RT | Proposed Compound | Molecular Formula | Stem MeOH | Stem Water | Fruits MeOH | Fruits Water | Leaves MeOH | Leaves Water |
---|---|---|---|---|---|---|---|---|---|
341.1088 | 0.66 | Sucrose | C12H22O11 | + | + | + | + | + | + |
195.0511 | 0.67 | Gluconic acid | C6H12O7 | - | - | - | + | - | - |
503.1616 | 0.67 | Raffinose | C18H32O16 | - | - | + | + | - | - |
609.1234 | 0.69 | (Epi)gallocatechin-(epi)gallocatechin isomer | C30H26O14 | + | - | - | - | - | - |
593.1291 | 0.70 | (Epi)gallocatechin-(epi)catechin isomer | C30H26O13 | + | - | - | - | - | - |
165.0408 | 0.71 | Ribonic acid | C5H10O6 | - | + | - | - | + | + |
191.0563 | 0.72 | Quinic acid | C7H12O6 | + | + | + | + | + | + |
305.0662 | 0.72 | (Epi)gallocatechin isomer | C15H14O7 | + | - | - | - | + | - |
267.0721 | 0.77 | Glucuronosylglycerol | C9H16O9 | - | - | - | - | + | + |
341.1083 | 0.83 | Sucrose | C12H22O11 | + | - | - | - | - | - |
337.0768 | 0.89 | Ascorbyl glucoside | C12H18O11 | - | - | - | - | + | - |
331.1034 | 1.57 | Leonuriside | C14H20O9 | - | + | - | - | - | - |
563.1608 | 1.84 | Pinocembrin rhamnosylglucoside | C23H32O16 | - | + | - | - | - | - |
401.1065 | 1.89 | Apodanthoside | C17H22O11 | - | - | - | - | - | + |
315.0724 | 2.83 | Protocatechuoylglucose | C13H16O9 | - | + | - | - | - | + |
609.1242 | 2.98 | (Epi)gallocatechin-(epi)gallocatechin isomer | C30H26O14 | - | + | - | - | - | - |
401.1087 | 3.09 | Apodanthoside | C17H22O11 | - | - | - | - | - | + |
467.1187 | 3.25 | Catechin-ol galactopyranoside | C21H24O12 | - | + | - | - | - | - |
315.0718 | 3.69 | Protocatechuoylglucose | C13H16O9 | - | + | - | - | - | - |
167.0350 | 3.72 | Homogentisic acid | C8H8O4 | - | + | - | - | - | - |
303.0513 | 3.79 | Taxifolin | C15H12O7 | - | + | - | - | - | - |
305.0670 | 3.80 | (Epi)gallocatechin isomer | C15H14O7 | - | + | - | - | + | + |
331.0670 | 3.87 | Glucogallin | C13H16O10 | - | + | - | - | - | - |
423.0718 | 4.06 | Aurintricarboxylic acid | C22H16O9 | - | + | - | - | - | - |
305.0668 | 4.07 | (Epi)gallocatechin isomer | C15H14O7 | - | + | - | - | - | - |
609.1242 | 4.08 | (Epi)gallocatechin-(epi)gallocatechin isomer | C30H26O14 | - | + | - | - | - | - |
441.0821 | 4.09 | (Epi)catechingallate | C22H18O10 | + | + | - | - | - | - |
423.0721 | 4.43 | Aurintricarboxylic acid | C22H16O9 | - | + | - | - | - | - |
609.1249 | 4.44 | (Epi)gallocatechin-(epi)gallocatechin isomer | C30H26O14 | - | + | - | - | - | - |
913.1809 | 4.49 | (Epi)gallocatechin trimer isomer | C45H38O21 | + | + | - | - | - | - |
359.0984 | 4.62 | Glucosyringic acid | C15H20O10 | - | + | - | - | - | - |
197.0459 | 4.62 | Syringic acid | C9H10O5 | - | + | - | - | - | - |
319.0830 | 4.68 | Methyl(epi)gallocatechin | C16H16O7 | - | + | - | - | - | - |
481.1355 | 4.68 | Quercetin di-benzyl ether | C29H22O7 | - | + | - | - | - | - |
163.0407 | 4.96 | Coumarinic acid | C9H8O3 | - | - | - | - | - | + |
401.1087 | 5.12 | Apodanthoside | C17H22O11 | - | + | - | - | - | + |
913.1821 | 5.14 | (Epi)gallocatechin trimer | C45H38O21 | - | + | - | - | - | - |
467.1177 | 5.17 | Catechin-ol galactopyranoside | C21H24O12 | - | + | - | - | - | - |
593.1301 | 5.21 | (Epi)gallocatechin-(epi)catechin isomer | C30H26O13 | - | + | - | - | - | - |
403.1970 | 5.25 | Gynostemmoside A | C19H32O9 | - | - | - | - | - | + |
305.0669 | 5.33 | (Epi)gallocatechin isomer | C15H14O7 | + | + | - | - | + | - |
565.2493 | 5.34 | Euphorbioside A | C25H42O14 | - | - | - | - | - | + |
609.1244 | 5.46 | (Epi)gallocatechin-(epi)gallocatechin isomer | C30H26O14 | + | + | - | - | - | - |
289.0719 | 5.63 | (Epi)catechin | C15H14O6 | - | + | + | - | + | + |
913.1812 | 5.68 | (Epi)gallocatechin trimer isomer | C45H38O21 | + | + | - | - | - | - |
535.2395 | 5.72 | Octoacetylsaccharose | C24H40O13 | - | - | - | - | + | + |
549.2552 | 5.90 | Nicoblumin | C25H42O13 | - | - | - | - | + | + |
425.0867 | 6.08 | Sucrose Tricarboxylate Trimethyl Ester | C15H22O14 | - | + | - | - | - | - |
593.1285 | 6.10 | (Epi)gallocatechin-(epi)catechin isomer | C30H26O13 | - | + | - | - | - | - |
441.0820 | 6.14 | (Epi)catechingallate | C22H18O10 | + | - | - | - | - | - |
351.0722 | 6.15 | Chlorogenoquinone | C16H16O9 | - | - | - | - | + | + |
595.1653 | 6.21 | Eriodictyol neohesperidoside | C27H32O15 | + | + | - | + | + | + |
577.1346 | 6.21 | Procyanidin B isomer | C30H26O12 | + | + | + | - | - | - |
897.1852 | 6.53 | (Epi)gallocatechin (epi)catechin | C45H38O20 | + | + | - | - | - | - |
771.1968 | 6.53 | Kaempferol sophorotrioside isomer | C33H40O21 | - | - | - | - | - | + |
405.2127 | 6.62 | Euphorbioside B | C19H34O9 | - | - | - | - | + | + |
289.0716 | 6.63 | (Epi)catechin | C15H14O6 | - | + | - | - | - | - |
449.1083 | 6.72 | Astilbin | C21H22O11 | + | + | - | - | + | + |
287.0563 | 6.74 | Dihydrokaempferol | C15H12O6 | - | + | - | - | - | - |
249.0619 | 6.85 | Pyruvylmannose | C9H14O8 | - | - | - | - | + | + |
371.0982 | 6.86 | Syringoylquinic acid | C16H20O10 | - | + | - | - | + | + |
577.1348 | 6.90 | Procyanidin B isomer | C30H26O12 | + | + | - | - | - | - |
337.0929 | 7.04 | Coumaroylquinic acid | C16H18O8 | - | - | - | - | - | + |
593.1499 | 7.20 | Kaempferol rutinoside | C27H30O15 | + | + | - | + | + | + |
385.1135 | 7.25 | Sinapoylglucose | C17H22O10 | - | + | - | - | - | + |
549.2543 | 7.33 | Nicoblumin | C25H42O13 | - | - | - | - | + | + |
337.0925 | 7.45 | Coumaroylquinic acid | C16H18O8 | - | - | - | - | - | + |
771.1966 | 7.54 | Kaempferol sophorotrioside isomer | C33H40O21 | - | - | - | - | - | + |
887.2440 | 7.56 | Quercetin xylosylrutinoside glucoside | C38H48O24 | + | + | - | + | + | + |
533.2596 | 7.57 | Staphylionoside G | C25H42O12 | - | - | - | - | - | + |
337.0923 | 7.61 | Coumaroylquinic acid | C16H18O8 | - | - | - | - | + | + |
741.1863 | 7.71 | Quercetin xylopyranosylrutinoside | C32H38O20 | + | + | + | + | + | + |
771.1956 | 7.93 | Kaempferol sophorotrioside isomer | C33H40O21 | - | - | - | - | - | + |
917.2553 | 7.97 | Kaempferol rutinoside sophoroside isomer | C39H50O25 | + | + | - | - | + | + |
533.2594 | 8.01 | Staphylionoside G | C25H42O12 | - | - | - | - | + | + |
609.1445 | 8.07 | Quercetin glucoside | C27H30O16 | - | - | - | - | - | + |
581.2224 | 8.08 | Manglieside E | C28H38O13 | - | - | - | - | - | + |
757.1808 | 8.12 | Quercetin sambubioside glucoside isomer | C32H38O21 | + | + | - | - | - | + |
757.2068 | 8.14 | Quercetin sambubioside glucoside isomer | C32H38O21 | - | - | - | - | - | + |
581.2224 | 8.18 | Manglieside E | C28H38O13 | - | + | - | - | - | + |
607.1288 | 8.20 | (Epi)catechin methyl(epi)gallocatechin | C31H28O13 | - | - | - | - | - | + |
755.2010 | 8.23 | Quercetin rhamninoside | C33H40O20 | + | + | + | + | - | + |
609.1444 | 8.24 | Quercetin glucoside isomer | C27H30O16 | + | + | - | - | + | - |
583.2298 | 8.28 | Iryantherin C | C35H36O8 | - | + | - | - | - | - |
551.2123 | 8.30 | Lyoniside isomer | C27H36O12 | - | + | - | - | - | - |
609.1435 | 8.32 | Quercetin glucoside isomer | C27H30O16 | - | + | - | - | - | + |
243.1604 | 8.34 | Tridecanedioic acid | C13H24O4 | - | - | - | - | + | + |
447.2226 | 8.36 | Atractyloside A | C21H36O10 | - | - | - | - | - | + |
611.1239 | 8.40 | Myricetin sambubioside | C26H28O17 | + | + | - | - | + | + |
609.1426 | 8.41 | Quercetin glucoside isomer | C27H30O16 | + | - | + | - | - | - |
551.2126 | 8.62 | Lyoniside isomer | C27H36O12 | - | + | - | - | - | - |
739.2066 | 8.69 | Robinin | C33H40O19 | - | - | - | - | + | + |
607.1655 | 8.69 | Diosmin | C28H32O15 | - | - | - | + | - | - |
593.1501 | 8.72 | Kaempferol glucorhamnoside | C27H30O15 | - | - | - | - | + | + |
625.1397 | 8.74 | Quercetin glucoside derivative | C27H30O17 | - | - | - | - | + | + |
583.2390 | 8.83 | Yuanhuagine | C32H40O10 | + | + | - | - | - | - |
257.1183 | 8.90 | Unknown | C16H18O3 | + | + | - | - | + | + |
449.2019 | 8.92 | Hexaethylene glycol bis(acetoacetate) | C20H34O11 | - | + | - | - | - | - |
743.1909 | 8.95 | Quercetin Xylopyranosyl Rutinoside | C32H40O20 | - | - | - | - | + | + |
739.2054 | 8.97 | Robinin | C33H40O19 | - | - | - | - | + | + |
593.1488 | 9.00 | Kaempferol rutinoside | C27H30O15 | - | - | - | - | - | + |
741.1862 | 9.01 | Quercetin xylopyranosylrutinoside | C32H38O20 | + | + | + | + | + | + |
607.1657 | 9.23 | Diosmin | C28H32O15 | - | - | + | + | - | - |
593.1135 | 9.36 | (Epi)gallocatechin-(epi)catechin isomer | C30H26O13 | - | - | - | + | + | + |
301.0347 | 9.40 | Quercetin | C15H10O7 | - | - | + | - | - | - |
595.1290 | 9.43 | Quercetin vicianoside | C26H28O16 | + | + | + | + | + | + |
593.1135 | 9.52 | (Epi)gallocatechin-(epi)catechin isomer | C30H26O13 | - | - | + | - | - | - |
641.1702 | 9.55 | Haemocorin | C32H34O14 | - | + | - | - | - | - |
609.1442 | 9.61 | Quercetin glucoside isomer | C27H30O16 | - | - | - | + | - | + |
607.1283 | 9.65 | (Epi)catechin methyl(epi)gallocatechin isomer | C31H28O13 | - | - | - | - | - | + |
609.1442 | 9.75 | Quercetin glucoside isomer | C27H30O16 | + | + | + | + | - | + |
607.1279 | 9.84 | (Epi)catechin methyl(epi)gallocatechin isomer | C31H28O13 | - | - | + | - | - | + |
609.1439 | 9.91 | Quercetin glucoside isomer | C27H30O16 | + | + | + | - | - | - |
463.0870 | 9.94 | Isoquercitrin isomer | C21H20O12 | - | - | - | + | + | + |
461.0719 | 9.95 | Luteolin glucuronide isomer | C21H18O12 | - | - | - | - | + | + |
461.0716 | 10.07 | Luteolin glucuronide isomer | C21H18O12 | - | - | + | - | + | + |
463.0870 | 10.08 | Isoquercitrin isomer | C21H20O12 | + | + | + | + | + | + |
299.0191 | 10.12 | Dihydroxybutanedioic acid | C8H12O12 | - | - | + | - | - | - |
593.1498 | 10.19 | Kaempferol rutinoside | C27H30O15 | - | - | - | - | - | + |
519.2798 | 10.21 | Sedumoside G | C25H44O11 | - | - | - | - | + | + |
579.1343 | 10.23 | Gambiriin A1 | C30H28O12 | - | - | - | - | + | + |
225.1504 | 10.48 | Methyl dihydrojasmonate | C13H22O3 | - | - | - | - | - | + |
243.1605 | 10.48 | Tridecanedioic acid | C13H24O4 | - | - | - | - | - | + |
285.1712 | 10.48 | Dimethyl epoxytridecanedioate | C15H26O5 | - | - | - | - | - | + |
917.2316 | 10.54 | Kaempferol rutinoside sophoroside isomer | C39H50O25 | - | - | - | - | + | + |
593.1501 | 10.57 | Kaempferol glucorhamnoside | C27H30O15 | - | - | - | - | + | + |
753.2008 | 11.25 | Spinosin C | C37H38O17 | - | - | - | + | - | - |
901.2376 | 11.28 | Kaempferol neohesperidoside coumarylglucoside isomer | C42H46O22 | - | - | - | - | + | + |
931.2485 | 11.37 | Kaempferol neohesperidoside ferulylglucoside isomer | C43H48O23 | - | - | - | - | + | + |
885.2425 | 12.00 | Kaempferol coumarylrobinobioside rhamnoside | C42H46O21 | - | - | - | - | + | - |
447.0930 | 12.25 | Kaempferol glucoside | C21H20O11 | - | - | + | - | - | - |
901.2387 | 12.37 | Kaempferol neohesperidoside coumarylglucoside isomer | C42H46O22 | - | - | - | - | + | + |
931.2490 | 12.42 | Kaempferol neohesperidoside ferulylglucoside isomer | C43H48O23 | - | - | - | - | + | + |
755.1811 | 12.49 | Scoparin Heptaacetate isomer | C36H36O18 | - | - | - | - | + | - |
755.1810 | 13.65 | Scoparin Heptaacetate isomer | C36H36O18 | - | - | - | - | + | - |
301.0344 | 13.77 | Flavonoid isomer | C15H10O7 | - | - | + | - | - | - |
327.2176 | 13.80 | Malyngic acid | C18H32O5 | + | + | - | - | + | + |
183.1399 | 13.96 | Undecanedial | C11H20O2 | - | - | - | - | + | + |
329.2340 | 14.40 | Pinelli acid isomer | C18H34O5 | - | - | - | + | - | - |
329.2338 | 14.56 | Pinelli acid isomer | C18H34O5 | + | + | + | - | - | - |
503.3369 | 15.25 | Madecassic acid | C30H48O6 | + | - | - | - | - | - |
329.2338 | 15.53 | Pinelli acid | C18H34O5 | + | + | + | - | - | - |
647.3803 | 15.71 | Tragopogonsaponin A | C36H56O10 | + | - | - | - | - | - |
473.3267 | 16.34 | Messagenic acid I | C29H46O5 | - | - | + | - | + | - |
315.1965 | 16.73 | Cleistanthol | C20H28O3 | + | - | - | - | - | - |
Parts | Solvents | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | MCA (mg EDTAE/g) | PBD (mmol TE/g) |
---|---|---|---|---|---|---|---|
Stems | n-hexane | 11.05 ± 2.02 e | 48.61 ± 2.37 e | 60.17 ± 0.43 e | 52.93 ± 1.27 d | 9.45 ± 0.89 b | 1.66 ± 0.09 d |
Ethyl acetate | 90.82 ± 0.67 c | 394.24 ± 4.10 c | 180.42 ± 4.23 c | 149.78 ± 10.97 c | 10.28 ± 0.68 b | 2.12 ± 0.14 c | |
Dichloromethane | 21.16 ± 2.55 d | 107.76 ± 0.97 d | 79.20 ± 2.91 d | 52.75 ± 1.43 d | 28.80 ± 0.32 a | 1.56 ± 0.07 d | |
Methanol | 909.88 ± 4.25 a | 3358.33 ± 51.14 a | 781.88 ± 16.37 a | 996.70 ± 47.28 a | 6.15 ± 0.53 c | 4.96 ± 0.26 a | |
Water | 547.54 ± 25.39 b | 1926.18 ± 34.63 b | 506.98 ± 2.54 b | 688.38 ± 3.43 b | 9.65 ± 0.35 b | 2.73 ± 0.05 b | |
Fruits | n-hexane | 1.30 ± 0.14 e | 12.43 ± 1.38 | 39.76 ± 1.01 d | 34.33 ± 1.78 d | 12.79 ± 1.33 b | 1.12 ± 0.04 c |
Ethyl acetate | 4.75 ± 0.22 d | 13.73 ± 0.61 | 45.12 ± 0.64 c | 45.19 ± 1.30 c | 7.31 ± 0.23 c | 1.07 ± 0.07 cd | |
Dichloromethane | 5.44 ± 1.19 c | 16.88 ± 4.27 | 44.08 ± 2.62 c | 30.70 ± 1.42 d | 7.97 ± 0.37 c | 0.95 ± 0.07 d | |
Methanol | 245.59 ± 4.46 a | 824.40 ± 17.11 | 282.66 ± 11.38 a | 292.94 ± 6.60 a | 8.53 ± 0.43 c | 1.63 ± 0.07 b | |
Water | 161.23 ± 8.19 b | 694.79 ± 4.46 | 272.07 ± 6.41 b | 263.60 ± 1.89 b | 21.80 ± 0.59 a | 1.80 ± 0.03 a | |
Leaves | n-hexane | 16.43 ± 2.59 c | 51.83 ± 4.18 d | 55.48 ± 3.12 d | 48.48 ± 1.28 c | 22.31 ± 1.93 ab | 2.57 ± 0.13 a |
Ethyl acetate | 20.20 ± 1.31 c | 71.78 ± 1.77 c | 71.76 ± 1.82 c | 52.14 ± 0.23 c | 20.44 ± 0.38 b | 2.68 ± 0.17 a | |
Dichloromethane | 4.88 ± 0.35 d | 45.60 ± 3.84 d | 73.45 ± 1.16 c | 54.82 ± 0.77 c | 23.44 ± 0.03 a | 2.58 ± 0.21 a | |
Methanol | 480.10 ± 7.80 a | 1171.58 ± 25.83 a | 506.98 ± 7.27 a | 664.85 ± 0.49 a | 6.44 ± 0.28 c | 2.76 ± 0.19 a | |
Water | 193.39 ± 2.50 b | 638.33 ± 14.11 b | 293.80 ± 10.03 b | 327.71 ± 5.89 b | 19.95 ± 0.25 b | 1.49 ± 0.05 b |
Parts | Solvents | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|---|
Stems | n-hexane | 8.89 ± 0.08 a | 1.95 ± 0.15 b | 40.91 ± 3.96 c | 0.49 ± 0.01 b | 1.01 ± 0.02 a |
Ethyl acetate | 8.28 ± 0.14 bc | 2.19 ± 0.15 b | 61.56 ± 2.29 b | 0.55 ± 0.01 a | 0.89 ± 0.04 a | |
Dichloromethane | 8.17 ± 0.32 c | 2.16 ± 0.11 b | 39.01 ± 0.95 c | 0.55 ± 0.01 a | 1.07 ± 0.21 a | |
Methanol | 8.64 ± 0.01 ab | 2.50 ± 0.05 a | 82.93 ± 0.37 a | 0.41 ± 0.01 c | 0.93 ± 0.06 a | |
Water | 5.73 ± 0.03 d | 1.32 ± 0.05 c | 36.84 ± 0.20 c | 0.05 ± 0.01 d | 1.06 ± 0.01 a | |
Fruits | n-hexane | 8.50 ± 0.32 a | 2.18 ± 0.05 a | 35.08 ± 2.26 c | 0.52 ± 0.02 c | na |
Ethyl acetate | 8.07 ± 0.14 ab | 2.32 ± 0.13 a | 53.40 ± 5.84 b | 0.63 ± 0.01 a | 0.84 ± 0.07 a | |
Dichloromethane | 8.37 ± 0.60 a | 2.32 ± 0.10 a | 35.12 ± 1.26 c | 0.55 ± 0.01 b | 0.83 ± 0.12 a | |
Methanol | 7.26 ± 0.16 b | 0.48 ± 0.11 b | 62.38 ± 0.55 a | 0.43 ± 0.01 d | 0.98 ± 0.02 a | |
Water | 1.07 ± 0.18 c | 0.32 ± 0.02 b | 3.59 ± 0.41 d | 0.17 ± 0.01 e | 1.00 ± 0.01 a | |
Leaves | n-hexane | 7.28 ± 0.18 a | 1.46 ± 0.12 a | 45.12 ± 3.73 b | 0.59 ± 0.03 a | 0.90 ± 0.04 ab |
Ethyl acetate | 8.37 ± 0.37 a | 1.68 ± 0.34 a | 43.18 ± 1.24 b | 0.60 ± 0.01 a | 0.86 ± 0.03 ab | |
Dichloromethane | 7.93 ± 0.89 a | 1.98 ± 0.10 a | 47.64 ± 0.81 b | 0.60 ± 0.01 a | 0.77 ± 0.05 b | |
Methanol | 8.41 ± 0.30 a | 0.49 ± 0.09 b | 69.92 ± 1.88 a | 0.30 ± 0.01 b | 1.00 ± 0.14 a | |
Water | 2.60 ± 0.04 b | na | 9.45 ± 1.04 c | 0.05 ± 0.01 c | 1.01 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zengin, G.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Leyva-Jiménez, F.J.; Segura-Carretero, A.; Elbasan, F.; Yildiztugay, E.; Malik, S.; Khalid, A.; Abdalla, A.N.; et al. Phytochemical Profile and Biological Activities of Different Extracts of Three Parts of Paliurus spina-christi: A Linkage between Structure and Ability. Antioxidants 2023, 12, 255. https://doi.org/10.3390/antiox12020255
Zengin G, Fernández-Ochoa Á, Cádiz-Gurrea MdlL, Leyva-Jiménez FJ, Segura-Carretero A, Elbasan F, Yildiztugay E, Malik S, Khalid A, Abdalla AN, et al. Phytochemical Profile and Biological Activities of Different Extracts of Three Parts of Paliurus spina-christi: A Linkage between Structure and Ability. Antioxidants. 2023; 12(2):255. https://doi.org/10.3390/antiox12020255
Chicago/Turabian StyleZengin, Gokhan, Álvaro Fernández-Ochoa, María de la Luz Cádiz-Gurrea, Francisco Javier Leyva-Jiménez, Antonio Segura-Carretero, Fevzi Elbasan, Evren Yildiztugay, Sumira Malik, Asaad Khalid, Ashraf N. Abdalla, and et al. 2023. "Phytochemical Profile and Biological Activities of Different Extracts of Three Parts of Paliurus spina-christi: A Linkage between Structure and Ability" Antioxidants 12, no. 2: 255. https://doi.org/10.3390/antiox12020255
APA StyleZengin, G., Fernández-Ochoa, Á., Cádiz-Gurrea, M. d. l. L., Leyva-Jiménez, F. J., Segura-Carretero, A., Elbasan, F., Yildiztugay, E., Malik, S., Khalid, A., Abdalla, A. N., & Fawzi Mahomoodally, M. (2023). Phytochemical Profile and Biological Activities of Different Extracts of Three Parts of Paliurus spina-christi: A Linkage between Structure and Ability. Antioxidants, 12(2), 255. https://doi.org/10.3390/antiox12020255