Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Broccoli By-Products and Derived Ingredients
2.2. Biscuits Preparation
2.3. Rheological and Mechanical Analysis
2.3.1. Lubricated Biaxial Extension of Doughs
2.3.2. Spread and Stickiness of Doughs
2.3.3. Texture Profile Analysis of Biscuits
2.3.4. Fracture Test of Biscuits by Single-Edge Notched Three-Point Bending Test
2.3.5. Color Analysis of Biscuits
2.4. Determination of Glucosinolates
2.5. Total Phenolic Content
2.6. Simultaneous Determination of Carotenoids and Tocopherols
2.7. Statistical Analysis
3. Results
3.1. Rheological Properties of Doughs
3.2. Rheological Properties of Biscuits
3.3. Glucosinolate Content in Broccoli, Extracts, and Biscuits
3.4. Total Phenolic Content
3.5. Tocopherols and Carotenoids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Zhang, H.; Liang, X.; Ong, C.N. Simultaneous Determination of Carotenoids, Tocopherols and Phylloquinone in 12 Brassicaceae Vegetables. LWT 2020, 130, 109649. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, L.; Xue, C.; Jiang, X.; Wei, Z. Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods. Molecules 2020, 25, 5076. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, H.; Yu, Y.; Zhao, J.; Liu, L.; Zhao, S.; Xie, J.; Li, C.; Shen, M. Simultaneous Determination of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2021, 14, 1567–1576. [Google Scholar] [CrossRef]
- Chutia, H.; Mahanta, C.L. Green Ultrasound and Microwave Extraction of Carotenoids from Passion Fruit Peel Using Vegetable Oils as a Solvent: Optimization, Comparison, Kinetics, and Thermodynamic Studies. Innov. Food Sci. Emerg. Technol. 2021, 67, 102547. [Google Scholar] [CrossRef]
- Ali Redha, A.; Torquati, L.; Langston, F.; Nash, G.R.; Gidley, M.J.; Cozzolino, D. Determination of Glucosinolates and Isothiocyanates in Glucosinolate-Rich Vegetables and Oilseeds Using Infrared Spectroscopy: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Connolly, E.L.; Sim, M.; Travica, N.; Marx, W.; Beasy, G.; Lynch, G.S.; Bondonno, C.P.; Lewis, J.R.; Hodgson, J.M.; Blekkenhorst, L.C. Glucosinolates From Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front. Pharmacol. 2021, 12, 767975. [Google Scholar] [CrossRef]
- Le, T.N.; Sakulsataporn, N.; Chiu, C.H.; Hsieh, P.C. Polyphenolic Profile and Varied Bioactivities of Processed Taiwanese Grown Broccoli: A Comparative Study of Edible and Non-Edible Parts. Pharm 2020, 13, 82. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Bademunt, A.; Bobo, G.; Echeverria, G.; Viñas, I.; Aguiló-Aguayo, I. Physiochemical and Nutritional Characteristics, Bioaccessibility and Sensory Acceptance of Baked Crackers Containing Broccoli Co-Products. Int. J. Food Sci. Technol. 2019, 54, 634–640. [Google Scholar] [CrossRef]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid Metabolism in Plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Flakelar, C.L.; Prenzler, P.D.; Luckett, D.J.; Howitt, J.A.; Doran, G. A Rapid Method for the Simultaneous Quantification of the Major Tocopherols, Carotenoids, Free and Esterified Sterols in Canola (Brassica Napus) Oil Using Normal Phase Liquid Chromatography. Food Chem. 2017, 214, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xia, Y.; Liu, H.Y.; Guo, H.; He, X.Q.; Liu, Y.; Wu, D.T.; Mai, Y.H.; Li, H.B.; Zou, L.; et al. Nutritional Values, Beneficial Effects, and Food Applications of Broccoli (Brassica Oleracea Var. Italica Plenck). Trends Food Sci. Technol. 2022, 119, 288–308. [Google Scholar] [CrossRef]
- Aǧagündüz, D.; Şahin, T.Ö.; Yilmaz, B.; Ekenci, K.D.; Duyar Özer, Ş.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid. Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 13 November 2023).
- Li, Z.; Zheng, S.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; Xu, D. Characterization of Glucosinolates in 80 Broccoli Genotypes and Different Organs Using UHPLC-Triple-TOF-MS Method. Food Chem. 2021, 334, 127519. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, L.; Ser, S.L.; Cumming, J.R.; Ku, K.-M. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D.A. Broccoli-Derived by-Products—A Promising Source of Bioactive Ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef]
- Xu, X.; Dai, M.; Lao, F.; Chen, F.; Hu, X.; Liu, Y.; Wu, J. Effect of Glucoraphanin from Broccoli Seeds on Lipid Levels and Gut Microbiota in High-Fat Diet-Fed Mice. J. Funct. Foods 2020, 68, 103858. [Google Scholar] [CrossRef]
- Thery, T.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Isolation, Characterisation and Application of a New Antifungal Protein from Broccoli Seeds–New Food Preservative with Great Potential. Food Control 2020, 117, 107356. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Rosell, C.M.; Fadda, C.; Anders, A.; Jeliński, T.; Ostaszyk, A. Broccoli Leaf Powder as an Attractive By-Product Ingredient: Effect on Batter Behaviour, Technological Properties and Sensory Quality of Gluten-Free Mini Sponge Cake. Int. J. Food Sci. Technol. 2019, 54, 1121–1129. [Google Scholar] [CrossRef]
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The Use of Food By-Products as a Novel for Functional Foods: Their Use as Ingredients and for the Encapsulation Process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Fatmah, F.; Utomo, S.W.; Lestari, F. Broccoli-Soybean-Mangrove Food Bar as an Emergency Food for Older People during Natural Disaster. Int. J. Environ. Res. Public Health 2021, 18, 3686. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Baczek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef]
- Nartea, A.; Kuhalskaya, A.; Fanesi, B.; Orhotohwo, O.L.; Susek, K.; Rocchetti, L.; Di Vittori, V.; Bitocchi, E.; Pacetti, D.; Papa, R. Legume Byproducts as Ingredients for Food Applications: Preparation, Nutrition, Bioactivity, and Techno-Functional Properties. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1953–1985. [Google Scholar] [CrossRef]
- DIRECTIVE 2009/32/EC on the Approximation of the Laws of the Member States on Extraction Solvents Used in the Production of Foodstuffs and Food Ingredients. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:141:0003:0011:EN:PDF (accessed on 15 November 2023).
- Bojorquez-Rodríguez, E.M.; Guajardo-Flores, D.; Jacobo-Velázquez, D.A.; Serna-Saldívar, S.O. Evaluation of the Effects of Process Conditions on the Extraction of Glucosinolates from Broccoli Sprouts. Horticulturae 2022, 8, 1090. [Google Scholar] [CrossRef]
- Yam, K.L.; Papadakis, S.E. A Simple Digital Imaging Method for Measuring and Analyzing Color of Food Surfaces. J. Food Eng 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Colorimetry-Part 4: CIE 1976 L*a*b* COLOUR SPACE. Available online: http://math.unife.it/astro-fisica/insegnamenti/ottica-applicata/materiale-didattico/colorimetria/CIE%20DS%20014-4.3.pdf (accessed on 15 November 2023).
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioproc. Tech. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Nartea, A.; Fanesi, B.; Pacetti, D.; Lenti, L.; Fiorini, D.; Lucci, P.; Frega, N.G.; Falcone, P.M. Cauliflower By-Products as Functional Ingredient in Bakery Foods: Fortification of Pizza with Glucosinolates, Carotenoids and Phytosterols. Curr. Res. Food Sci. 2023, 6, 100437. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of Total Phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, I1.1.1–I1.1.8. [Google Scholar] [CrossRef]
- Nartea, A.; Fanesi, B.; Falcone, P.M.; Pacetti, D.; Frega, N.G.; Lucci, P. Impact of Mild Oven Cooking Treatments on Carotenoids and Tocopherols of Cheddar and Depurple Cauliflower (Brassica oleracea L. Var. Botrytis). Antioxidants 2021, 10, 196. [Google Scholar] [CrossRef]
- Nartea, A.; Falcone, M.P.; Torri, L.; Ghanbarzadeh, B.; Frega, N.G.; Pacetti, D.; Frias, J.M. Modeling Softening Kinetics at Cellular Scale and Phytochemicals Extractability in Cauliflower under Different Cooking Treatments. Foods 2021, 10, 1969. [Google Scholar] [CrossRef]
- Swackhamer, C.; Bornhorst, G.M. Fracture Properties of Foods: Experimental Considerations and Applications to Mastication. J. Food Eng. 2019, 263, 213–226. [Google Scholar] [CrossRef]
- Hollis, J.H. The Effect of Mastication on Food Intake, Satiety and Body Weight. Physiol. Behav. 2018, 193, 242–245. [Google Scholar] [CrossRef]
- Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Ultrasound-Assisted Extraction of Catharanthus roseus (L.) G. Don (Patricia White Cultivar) Stem for Maximizing Saponin Yield and Antioxidant Capacity. J. Food Process. Preserv. 2018, 42, e13597. [Google Scholar] [CrossRef]
- Abdull Razis, A.F.; Iori, R.; Ioannides, C. The Natural Chemopreventive Phytochemical R-Sulforaphane Is a Far More Potent Inducer of the Carcinogen-Detoxifying Enzyme Systems in Rat Liver and Lung than the S-Isomer. Int. J. Cancer 2011, 128, 2775–2782. [Google Scholar] [CrossRef]
- Wu, X.; Huang, H.; Childs, H.; Wu, Y.; Yu, L.; Pehrsson, P.R. Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annu. Rev. Food Sci. Technol. 2021, 12, 485–511. [Google Scholar] [CrossRef]
- Orlando, P.; Nartea, A.; Silvestri, S.; Marcheggiani, F.; Cirilli, I.; Dludla, P.V.; Fiorini, R.; Pacetti, D.; Loizzo, M.R.; Lucci, P.; et al. Bioavailability Study of Isothiocyanates and Other Bioactive Compounds of Brassica Oleracea L. Var. Italica Boiled or Steamed: Functional Food or Dietary Supplement? Antioxidants 2022, 11, 209. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Hosseinpanah, F.; Keyzad, A.; Azizi, F. Effects of Broccoli Sprout with High Sulforaphane Concentration on Inflammatory Markers in Type 2 Diabetic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial. J. Funct. Foods 2012, 4, 837–841. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lim, S. Bin Antioxidant and Anticancer Activities of Broccoli By-Products from Different Cultivars and Maturity Stages at Harvest. Prev. Nutr. Food Sci. 2015, 20, 8–14. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of Nutraceuticals: Role of the Food Matrix, Processing Conditions, the Gastrointestinal Tract, and Nanodelivery Systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 954–994. [Google Scholar] [CrossRef]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; de Beserra, A.F.L.; de Almeida, F.N.S.; Dimenstein, R. Alpha-Tocopherol and Gamma-Tocopherol Concentration in Vegetable Oils. Food Sci. Technol. 2014, 34, 379–385. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.; Pompei, C. Carotenoids Evolution during Pasta, Bread and Water Biscuit Preparation from Wheat Flours. Food Chem. 2010, 121, 746–751. [Google Scholar] [CrossRef]
B_CTRL | B_BF10 | B_100W | B_75W25ET | B_50W50ET | |
---|---|---|---|---|---|
Flour “00” (g) | 500 | 430 | 500 | 500 | 500 |
BF (g) | 0 | 70 | 0 | 0 | 0 |
Cream of tartar (g) | 8 | 8 | 8 | 8 | 8 |
Sucrose (g) | 200 | 200 | 200 | 200 | 200 |
Sodium bicarbonate (g) | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Sodium chloride (g) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Egg (g) | 162 | 169 | 164 | 169 | 156 |
Milk (mL) | 10 | 10 | 10 | 10 | 10 |
High oleic sunflower oil (mL) | 140 | 140 | 110 | 110 | 110 |
Extract 100W (mL) | 0 | 0 | 30 | 0 | 0 |
Extract 75W25ET (mL) | 0 | 0 | 0 | 30 | 0 |
Extract 50W50ET (mL) | 0 | 0 | 0 | 0 | 30 |
BF | E_100W | E_75W25ET | E_50W50ET | |
---|---|---|---|---|
Glucoraphanin | 421.4 ± 19.7 | Nd | 668.6 ± 3.6 | 7107.8 ± 8.9 |
Glucoalyssin | 12.5 ± 0.7 | Nd | Nd | Nd |
Gluconapin | 2.8 ± 0.6 | Nd | Nd | Nd |
4-Hydroxyglucobrassicin | 12.0 ± 0.4 | Nd | Nd | Nd |
Glucoerucin | 1.3 ± 0.9 | Nd | Nd | 22.6 ± 0.5 |
Glucobrassicin | 369.7 ± 7.9 | Nd | Nd | 1312.7 ± 5.5 |
Gluconasturtiin | 41.1 ± 3.1 | Nd | Nd | 121.7 ± 1.0 |
4-Methoxyglucobrassicin | 58.1 ± 2.1 | Nd | 280.7 ± 1.1 | 286.1 ± 1.2 |
Neoglucobrassicin | 283.9 ± 7.3 | Nd | Nd | 898.3 ± 3.9 |
Total | 1222.7 ± 50.9 | Nd | 949.3 ± 2.3 | 9749.1 ± 15.3 |
B_BF10 | |
---|---|
Glucoraphanin | 18.1 ± 1.6 |
Gluconapin | 0.7 ± 0.4 |
4-Hydroxyglucobrassicin | 0.6 ± 0.2 |
Glucobrassicin | 5.7 ± 1.1 |
Gluconasturtiin | 0.5 ± 0.1 |
4-Methoxyglucobrassicin | 2.0 ± 0.4 |
Neoglucobrassicin | 3.9 ± 0.4 |
Total | 33.2 ± 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanesi, B.; Ismaiel, L.; Nartea, A.; Orhotohwo, O.L.; Kuhalskaya, A.; Pacetti, D.; Lucci, P.; Falcone, P.M. Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products. Antioxidants 2023, 12, 2115. https://doi.org/10.3390/antiox12122115
Fanesi B, Ismaiel L, Nartea A, Orhotohwo OL, Kuhalskaya A, Pacetti D, Lucci P, Falcone PM. Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products. Antioxidants. 2023; 12(12):2115. https://doi.org/10.3390/antiox12122115
Chicago/Turabian StyleFanesi, Benedetta, Lama Ismaiel, Ancuta Nartea, Oghenetega Lois Orhotohwo, Anastasiya Kuhalskaya, Deborah Pacetti, Paolo Lucci, and Pasquale Massimiliano Falcone. 2023. "Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products" Antioxidants 12, no. 12: 2115. https://doi.org/10.3390/antiox12122115
APA StyleFanesi, B., Ismaiel, L., Nartea, A., Orhotohwo, O. L., Kuhalskaya, A., Pacetti, D., Lucci, P., & Falcone, P. M. (2023). Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products. Antioxidants, 12(12), 2115. https://doi.org/10.3390/antiox12122115