Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Blood Processing
2.3. Parameters of Oxidative Stress and Antioxidant Status
2.4. Erythrocyte Parameters Assessment
2.5. Fluorescent Microscope Techniques
2.6. Na,K-ATPase Enzyme Kinetics Assessment
2.7. Assessment of Red Blood Cell Osmotic Resistance
2.8. Statistical Analyses
3. Results
3.1. Parameters of Oxidative Stress and Antioxidant Status
3.2. Erythrocyte Parameters
3.3. Na,K-ATPase Enzyme Kinetics in Erythrocyte Membranes
4. Discussion
4.1. Changes in Oxidative Stress Markers in Children with ASD
4.2. Are Erythrocyte Properties Altered in Children with ASD?
4.3. Na,K-ATPase Enzyme Kinetics in Erythrocyte Membranes and ASD
4.4. Sex-Specific Differences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radosinska, J.; Vrbjar, N. Erythrocyte Deformability and Na,K-ATPase Activity in Various Pathophysiological Situations and Their Protection by Selected Nutritional Antioxidants in Humans. IJMS 2021, 22, 11924. [Google Scholar] [CrossRef] [PubMed]
- Radosinska, J.; Vrbjar, N. The Role of Red Blood Cell Deformability and Na,K-ATPase Function in Selected Risk Factors of Cardiovascular Diseases in Humans: Focus on Hypertension, Diabetes Mellitus and Hypercholesterolemia. Physiol. Res. 2016, 65 (Suppl. S1), S43–S54. [Google Scholar] [CrossRef]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism Spectrum Disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Marí-Bauset, S.; Zazpe, I.; Mari-Sanchis, A.; Llopis-González, A.; Morales-Suárez-Varela, M. Food Selectivity in Autism Spectrum Disorders: A Systematic Review. J. Child Neurol. 2014, 29, 1554–1561. [Google Scholar] [CrossRef]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S.; Elbeltagi, R.; Alhawamdeh, R. Role of Gastrointestinal Health in Managing Children with Autism Spectrum Disorder. World J. Clin. Pediatr. 2023, 12, 171–196. [Google Scholar] [CrossRef] [PubMed]
- Stigler, K.A.; Sweeten, T.L.; Posey, D.J.; McDougle, C.J. Autism and Immune Factors: A Comprehensive Review. Res. Autism Spectr. Disord. 2009, 3, 840–860. [Google Scholar] [CrossRef]
- Bartakovicova, K.; Kemenyova, P.; Belica, I.; Janik Szapuova, Z.; Stebelova, K.; Waczulikova, I.; Ostatnikova, D.; Babinska, K. Sleep Problems and 6-Sulfatoxymelatonin as Possible Predictors of Symptom Severity, Adaptive and Maladaptive Behavior in Children with Autism Spectrum Disorder. IJERPH 2022, 19, 7594. [Google Scholar] [CrossRef]
- Muskens, J.B.; Ester, W.A.; Klip, H.; Zinkstok, J.; Van Dongen-Boomsma, M.; Staal, W.G. Novel Insights into Somatic Comorbidities in Children and Adolescents Across Psychiatric Diagnoses: An Explorative Study. Child Psychiatry Hum. Dev. 2023. [Google Scholar] [CrossRef]
- Micai, M.; Fatta, L.M.; Gila, L.; Caruso, A.; Salvitti, T.; Fulceri, F.; Ciaramella, A.; D’Amico, R.; Del Giovane, C.; Bertelli, M.; et al. Prevalence of Co-Occurring Conditions in Children and Adults with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2023, 155, 105436. [Google Scholar] [CrossRef]
- Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, V.; Brown, W.T.; Cohen, I. Oxidative Stress in Autism: Increased Lipid Peroxidation and Reduced Serum Levels of Ceruloplasmin and Transferrin—The Antioxidant Proteins. Life Sci. 2004, 75, 2539–2549. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Marini, M.; Abruzzo, P.M.; Bolotta, A.; Ghezzo, A.; Visconti, P.; Thornalley, P.J.; Rabbani, N. Quantitation of Plasma Thiamine, Related Metabolites and Plasma Protein Oxidative Damage Markers in Children with Autism Spectrum Disorder and Healthy Controls. Free Radic. Res. 2016, 50, S85–S90. [Google Scholar] [CrossRef] [PubMed]
- Raymond, L.J.; Deth, R.C.; Ralston, N.V.C. Potential Role of Selenoenzymes and Antioxidant Metabolism in Relation to Autism Etiology and Pathology. Autism Res. Treat. 2014, 2014, 164938. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Bennuri, S.C.; Wynne, R.; Melnyk, S.; James, S.J.; Frye, R.E. Mitochondrial and Redox Abnormalities in Autism Lymphoblastoid Cells: A Sibling Control Study. FASEB J. 2017, 31, 904–909. [Google Scholar] [CrossRef]
- Frye, R.E.; Lionnard, L.; Singh, I.; Karim, M.A.; Chajra, H.; Frechet, M.; Kissa, K.; Racine, V.; Ammanamanchi, A.; McCarty, P.J.; et al. Mitochondrial Morphology Is Associated with Respiratory Chain Uncoupling in Autism Spectrum Disorder. Transl. Psychiatry 2021, 11, 527. [Google Scholar] [CrossRef]
- Richardson, K.J.; Kuck, L.; Simmonds, M.J. Beyond Oxygen Transport: Active Role of Erythrocytes in the Regulation of Blood Flow. Am. J. Physiol.-Heart Circ. Physiol. 2020, 319, H866–H872. [Google Scholar] [CrossRef]
- Alexy, T.; Detterich, J.; Connes, P.; Toth, K.; Nader, E.; Kenyeres, P.; Arriola-Montenegro, J.; Ulker, P.; Simmonds, M.J. Physical Properties of Blood and Their Relationship to Clinical Conditions. Front. Physiol. 2022, 13, 906768. [Google Scholar] [CrossRef]
- Jasenovec, T.; Radosinska, D.; Celusakova, H.; Filcikova, D.; Babinska, K.; Ostatnikova, D.; Radosinska, J. Erythrocyte Deformability in Children with Autism Spectrum Disorder: Correlation with Clinical Features. Physiol. Res. 2019, 68, S307–S313. [Google Scholar] [CrossRef]
- Ghezzo, A.; Visconti, P.; Abruzzo, P.M.; Bolotta, A.; Ferreri, C.; Gobbi, G.; Malisardi, G.; Manfredini, S.; Marini, M.; Nanetti, L.; et al. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features. PLoS ONE 2013, 8, e66418. [Google Scholar] [CrossRef]
- Ciccoli, L.; De Felice, C.; Paccagnini, E.; Leoncini, S.; Pecorelli, A.; Signorini, C.; Belmonte, G.; Guerranti, R.; Cortelazzo, A.; Gentile, M.; et al. Erythrocyte Shape Abnormalities, Membrane Oxidative Damage, and β-Actin Alterations: An Unrecognized Triad in Classical Autism. Mediat. Inflamm. 2013, 2013, 432616. [Google Scholar] [CrossRef]
- Bolotta, A.; Battistelli, M.; Falcieri, E.; Ghezzo, A.; Manara, M.C.; Manfredini, S.; Marini, M.; Posar, A.; Visconti, P.; Abruzzo, P.M. Oxidative Stress in Autistic Children Alters Erythrocyte Shape in the Absence of Quantitative Protein Alterations and of Loss of Membrane Phospholipid Asymmetry. Oxidative Med. Cell. Longev. 2018, 2018, 6430601. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Gausson, V.; Descamps-Latscha, B. Are Advanced Oxidation Protein Products Potential Uremic Toxins? Kidney Int. 2003, 63, S11–S14. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- San-Gil, F.; Schier, G.M.; Moses, R.G.; Gan, I.E. Improved Estimation of Fructosamine, as a Measure of Glycated Serum Protein, with the Technicon RA-1000 Analyzer. Clin. Chem. 1985, 31, 2005–2006. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Radosinska, J.; Kollarova, M.; Jasenovec, T.; Radosinska, D.; Vrbjar, N.; Balis, P.; Puzserova, A. Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties. Biology 2023, 12, 1030. [Google Scholar] [CrossRef] [PubMed]
- Jasenovec, T.; Radosinska, D.; Kollarova, M.; Balis, P.; Zorad, S.; Vrbjar, N.; Bernatova, I.; Cacanyiova, S.; Tothova, L.; Radosinska, J. Effects of Taxifolin in Spontaneously Hypertensive Rats with a Focus on Erythrocyte Quality. Life 2022, 12, 2045. [Google Scholar] [CrossRef]
- Lang, E.; Pozdeev, V.I.; Gatidis, S.; Qadri, S.M.; Häussinger, D.; Kubitz, R.; Herebian, D.; Mayatepek, E.; Lang, F.; Lang, K.S.; et al. Bile Acid-Induced Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2016, 38, 1500–1509. [Google Scholar] [CrossRef]
- Jasenovec, T.; Radosinska, D.; Kollarova, M.; Balis, P.; Ferenczyova, K.; Kalocayova, B.; Bartekova, M.; Tothova, L.; Radosinska, J. Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats. Molecules 2021, 26, 4868. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Protein Glycation—Biomarkers of Metabolic Dysfunction and Early-Stage Decline in Health in the Era of Precision Medicine. Redox Biol. 2021, 42, 101920. [Google Scholar] [CrossRef]
- Brzeźniakiewicz-Janus, K.; Rupa-Matysek, J.; Tukiendorf, A.; Janus, T.; Franków, M.; Lancé, M.D.; Gil, L. Red Blood Cells Mean Corpuscular Volume (MCV) and Red Blood Distribution Width (RDW) Parameters as Potential Indicators of Regenerative Potential in Older Patients and Predictors of Acute Mortality—Preliminary Report. Stem. Cell Rev. Rep. 2020, 16, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Nasrallah, O.; Alzeer, S. Measuring Some Oxidative Stress Biomarkers in Autistic Syrian Children and Their Siblings: A Case-Control Study. Biomark. Insights 2022, 17, 117727192211239. [Google Scholar] [CrossRef]
- Yenkoyan, K.; Harutyunyan, H.; Harutyunyan, A. A Certain Role of SOD/CAT Imbalance in Pathogenesis of Autism Spectrum Disorders. Free Radic. Biol. Med. 2018, 123, 85–95. [Google Scholar] [CrossRef]
- László, A.; Novák, Z.; Szőllősi-Varga, I.; Hai, D.Q.; Vetró, Á.; Kovács, A. Blood Lipid Peroxidation, Antioxidant Enzyme Activities and Hemorheological Changes in Autistic Children. Ideggyogy. Szle. 2013, 66, 23–28. [Google Scholar] [PubMed]
- James, S.J.; Cutler, P.; Melnyk, S.; Jernigan, S.; Janak, L.; Gaylor, D.W.; Neubrander, J.A. Metabolic Biomarkers of Increased Oxidative Stress and Impaired Methylation Capacity in Children with Autism. Am. J. Clin. Nutr. 2004, 80, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, S.; Fuchs, G.J.; Schulz, E.; Lopez, M.; Kahler, S.G.; Fussell, J.J.; Bellando, J.; Pavliv, O.; Rose, S.; Seidel, L.; et al. Metabolic Imbalance Associated with Methylation Dysregulation and Oxidative Damage in Children with Autism. J. Autism Dev. Disord. 2012, 42, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Al-Yafee, Y.A.; Al- Ayadhi, L.Y.; Haq, S.H.; El-Ansary, A.K. Novel Metabolic Biomarkers Related to Sulfur-Dependent Detoxification Pathways in Autistic Patients of Saudi Arabia. BMC Neurol. 2011, 11, 139. [Google Scholar] [CrossRef]
- Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; et al. The Role of Glutathione Redox Imbalance in Autism Spectrum Disorder: A Review. Free Radic. Biol. Med. 2020, 160, 149–162. [Google Scholar] [CrossRef]
- Zoroglu, S.S.; Armutcu, F.; Ozen, S.; Gurel, A.; Sivasli, E.; Yetkin, O.; Meram, I. Increased Oxidative Stress and Altered Activities of Erythrocyte Free Radical Scavenging Enzymes in Autism. Eur. Arch. Psychiatry Clin. Neurosci. 2004, 254, 143–147. [Google Scholar] [CrossRef]
- Altun, H.; Şahin, N.; Kurutaş, E.B.; Karaaslan, U.; Sevgen, F.H.; Fındıklı, E. Assessment of Malondialdehyde Levels, Superoxide Dismutase, and Catalase Activity in Children with Autism Spectrum Disorders. Psychiatry Clin. Psychopharmacol. 2018, 28, 408–415. [Google Scholar] [CrossRef]
- Vellingiri, B.; Venkatesan, D.; Iyer, M.; Mohan, G.; Krishnan, P.; Sai Krishna, K.; Narayanasamy, A.; Gopalakrishnan, A.V.; Kumar, N.S.; Subramaniam, M.D. Concurrent Assessment of Oxidative Stress and MT-ATP6 Gene Profiling to Facilitate Diagnosis of Autism Spectrum Disorder (ASD) in Tamil Nadu Population. J. Mol. Neurosci. 2023, 73, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Söğüt, S.; Zoroğlu, S.S.; Özyurt, H.; Ramazan Yılmaz, H.; Özuğurlu, F.; Sivaslı, E.; Yetkin, Ö.; Yanık, M.; Tutkun, H.; Savaş, H.A.; et al. Changes in Nitric Oxide Levels and Antioxidant Enzyme Activities May Have a Role in the Pathophysiological Mechanisms Involved in Autism. Clin. Chim. Acta 2003, 331, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Imataka, G.; Yui, K.; Shiko, Y.; Kawasaki, Y.; Sasaki, H.; Shiroki, R.; Yoshihara, S. Urinary and Plasma Antioxidants in Behavioral Symptoms of Individuals with Autism Spectrum Disorder. Front. Psychiatry 2021, 12, 684445. [Google Scholar] [CrossRef] [PubMed]
- Al-Gadani, Y.; El-Ansary, A.; Attas, O.; Al-Ayadhi, L. Metabolic Biomarkers Related to Oxidative Stress and Antioxidant Status in Saudi Autistic Children. Clin. Biochem. 2009, 42, 1032–1040. [Google Scholar] [CrossRef]
- Yorbik, O.; Sayal, A.; Akay, C.; Akbiyik, D.I.; Sohmen, T. Investigation of Antioxidant Enzymes in Children with Autistic Disorder. Prostaglandins Leukot. Essent. Fat. Acids 2002, 67, 341–343. [Google Scholar] [CrossRef]
- Meguid, N.A.; Dardir, A.A.; Abdel-Raouf, E.R.; Hashish, A. Evaluation of Oxidative Stress in Autism: Defective Antioxidant Enzymes and Increased Lipid Peroxidation. Biol. Trace Elem. Res. 2011, 143, 58–65. [Google Scholar] [CrossRef]
- Paşca, S.P.; Nemeş, B.; Vlase, L.; Gagyi, C.E.; Dronca, E.; Miu, A.C.; Dronca, M. High Levels of Homocysteine and Low Serum Paraoxonase 1 Arylesterase Activity in Children with Autism. Life Sci. 2006, 78, 2244–2248. [Google Scholar] [CrossRef]
- Bessis, M. Red Cell Shapes. An Illustrated Classification and Its Rationale. Nouv. Rev. Fr. Hematol. 1972, 12, 721–745. [Google Scholar]
- Xu, Z.; Zheng, Y.; Wang, X.; Shehata, N.; Wang, C.; Sun, Y. Stiffness Increase of Red Blood Cells during Storage. Microsyst. Nanoeng. 2018, 4, 17103. [Google Scholar] [CrossRef]
- Chabanel, A.; Schachter, D.; Chien, S. Increased Rigidity of Red Blood Cell Membrane in Young Spontaneously Hypertensive Rats. Hypertension 1987, 10, 603–607. [Google Scholar] [CrossRef]
- Starzyk, D.; Korbut, R.; Gryglewski, R.J. The Role of Nitric Oxide in Regulation of Deformability of Red Blood Cells in Acute Phase of Endotoxaemia in Rats. J. Physiol. Pharmacol. 1997, 48, 731–735. [Google Scholar] [PubMed]
- Lang, E.; Qadri, S.M.; Lang, F. Killing Me Softly—Suicidal Erythrocyte Death. Int. J. Biochem. Cell Biol. 2012, 44, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Chauhan, A.; Brown, W.T.; Chauhan, V. Increased Activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the Frontal Cortex and Cerebellum of Autistic Individuals. Life Sci. 2009, 85, 788–793. [Google Scholar] [CrossRef]
- Al-Mosalem, O.A.; El-Ansary, A.; Attas, O.; Al-Ayadhi, L. Metabolic Biomarkers Related to Energy Metabolism in Saudi Autistic Children. Clin. Biochem. 2009, 42, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, A.; Schiavi, S.; La Rosa, P.; Rossi-Espagnet, M.C.; Petrillo, S.; Bottino, F.; Tagliente, E.; Longo, D.; Lupi, E.; Casula, L.; et al. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front. Psychiatry 2022, 13, 889636. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson, A.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill. Summ. 2021, 70, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.; Wright, S.; Sargeant, C.; Cortese, S.; Wood-Downie, H. Research Review: A Systematic Review and meta-analysis of Sex Differences in Narrow Constructs of Restricted and Repetitive Behaviours and Interests in Autistic Children, Adolescents, and Adults. Child Psychol. Psychiatry 2023, jcpp.13855. [Google Scholar] [CrossRef]
- Gunes, S.; Ekinci, O.; Celik, T. Iron Deficiency Parameters in Autism Spectrum Disorder: Clinical Correlates and Associated Factors. Ital. J. Pediatr. 2017, 43, 86. [Google Scholar] [CrossRef]
- Gockley, J.; Willsey, A.J.; Dong, S.; Dougherty, J.D.; Constantino, J.N.; Sanders, S.J. The Female Protective Effect in Autism Spectrum Disorder Is Not Mediated by a Single Genetic Locus. Mol. Autism 2015, 6, 25. [Google Scholar] [CrossRef]
- Werling, D.M.; Geschwind, D.H. Sex Differences in Autism Spectrum Disorders. Curr. Opin. Neurol. 2013, 26, 146–153. [Google Scholar] [CrossRef]
- Kern, J.K.; Geier, D.A.; Homme, K.G.; King, P.G.; Bjørklund, G.; Chirumbolo, S.; Geier, M.R. Developmental Neurotoxicants and the Vulnerable Male Brain: A Systematic Review of Suspected Neurotoxicants That Disproportionally Affect Males. Acta Neurobiol. Exp. 2017, 77, 269–296. [Google Scholar] [CrossRef]
- Dukhande, V.V.; Isaac, A.O.; Chatterji, T.; Lai, J.C.K. Reduced Glutathione Regenerating Enzymes Undergo Developmental Decline and Sexual Dimorphism in the Rat Cerebral Cortex. Brain Res. 2009, 1286, 19–24. [Google Scholar] [CrossRef] [PubMed]
PLASMA | Control (n = 14–17) | ASD (n = 18–28) | Statistics (p Value) |
---|---|---|---|
AOPP (μmol/g prot) | 0.664 ± 0.3 | 0.998 ± 0.73 | 0.11 |
FRUC (mmol/g prot) | 0.017 ± 0.003 | 0.022 ± 0.003 | 0.015 |
TBARS (μmol/L) | 1.55 ± 0.3 | 1.62 ± 0.34 | 0.56 |
FRAP (μmol/L) | 570 ± 81 | 536 ± 100 | 0.24 |
GSH/GSSG | 3.34 ± 0.29 | 3.01 ± 0.45 | 0.06 |
CAT (U/mL) | 0.636 ± 0.35 | 1.21 ± 0.39 | <0.0001 |
SOD (inhibition rate %) | 2415 ± 232 | 2392 ± 234 | 0.77 |
GPx (U/L) | 139 ± 21 | 155 ± 25 | 0.046 |
ERYTHROCYTES | Control (n = 15–17) | ASD (n = 29–31) | Statistics (p Value) |
AOPP (μmol/g Hb) | 7.25 ± 0.9 | 7.88 ± 0.8 | 0.015 |
FRUC (mmol/g Hb) | 3.49 ± 0.67 | 3.73 ± 0.94 | 0.37 |
TBARS (μmol/L) | 63.4 ± 22.3 | 93.7 ± 38.6 | 0.007 |
FRAP (μmol/L) | 44,937 ± 4636 | 45,771 ± 5595 | 0.61 |
GSH/GSSG | 0.68 ± 0.07 | 0.71 ± 0.15 | 0.43 |
CAT (U/mg Hb) | 5.09 ± 0.67 | 5.52 ± 0.77 | 0.06 |
SOD (inhibition rate %) | 830 (590; 2660) | 710 (500; 880) | 0.15 |
GPx (U/g Hb) | 155 ± 46 | 160 ± 47 | 0.73 |
Erythrocyte Shape | Control (n = 10) | ASD (n = 7) |
---|---|---|
Normal | 95.1% | 81.6% |
Echinocyte I | 4.4% | 15.7% |
Echinocyte II | 0.5% | 2.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasenovec, T.; Radosinska, D.; Jansakova, K.; Kopcikova, M.; Tomova, A.; Snurikova, D.; Vrbjar, N.; Radosinska, J. Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder. Antioxidants 2023, 12, 2054. https://doi.org/10.3390/antiox12122054
Jasenovec T, Radosinska D, Jansakova K, Kopcikova M, Tomova A, Snurikova D, Vrbjar N, Radosinska J. Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder. Antioxidants. 2023; 12(12):2054. https://doi.org/10.3390/antiox12122054
Chicago/Turabian StyleJasenovec, Tomas, Dominika Radosinska, Katarina Jansakova, Maria Kopcikova, Aleksandra Tomova, Denisa Snurikova, Norbert Vrbjar, and Jana Radosinska. 2023. "Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder" Antioxidants 12, no. 12: 2054. https://doi.org/10.3390/antiox12122054
APA StyleJasenovec, T., Radosinska, D., Jansakova, K., Kopcikova, M., Tomova, A., Snurikova, D., Vrbjar, N., & Radosinska, J. (2023). Alterations in Antioxidant Status and Erythrocyte Properties in Children with Autism Spectrum Disorder. Antioxidants, 12(12), 2054. https://doi.org/10.3390/antiox12122054