Targeted Metabolomics Study on the Effect of Vinegar Processing on the Chemical Changes and Antioxidant Activity of Angelica sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Collection and Processing of A. sinensis Samples and Preparation of Test Solution
2.2.1. Fresh A. sinensis Material Samples Collection and Processing
2.2.2. Preparation and Extraction of Processed Samples of A. sinensis
2.2.3. Preparation of Quality Control (QC) Sample and System Stability Investigation
2.3. Chromatography and Mass Spectrometric Analysis
2.3.1. UPLC Conditions
2.3.2. ESI-QTRAP-MS Conditions
2.4. Data Acquisition and Processing
2.5. In Vitro Antioxidant Activity Assay
2.6. Statistical Analysis
3. Results
3.1. QC Sample Analysis
3.2. Analysis of the Chemical Composition of A. sinensis and Its Concocted Products
3.3. Multivariate System Analysis
3.3.1. Principal Component Analysis, PCA
3.3.2. Orthogonal Partial Least Squares Method, OPLS-DA
3.4. Analysis of the Differential Composition of A. sinensis and Its Products
3.4.1. Analysis of the Differential Components of A and S-A
3.4.2. Analysis of the Differential Components of A and V-A
3.4.3. Analysis of the Common Differential Components
3.5. In Vitro Antioxidant Activity Studies
3.6. Composition–Effectiveness Relationship Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mu, M.; Liu, H.; Liang, Y.H.; Li, M. Status, Challenges and Countermeasures of Supervision on Food Flavorings in China. J. Food Sci. Technol. 2022, 40, 36–42. [Google Scholar] [CrossRef]
- Campos-Hernández, N.; Jaramillo-Flores, M.E.; Téllez-Medina, D.I.; Alamilla-Beltrán, L. Effect of traditional dehydration processing of pepper jalapeno rayado (Capsicum annuum) on secondary metabolites with antioxidant activity. CyTA J. Food 2018, 16, 316–324. [Google Scholar] [CrossRef]
- Zhao, Z.; Liang, Z.; Chan, K.; Lu, G.; Lee, E.M.L.; Chen, H.; Li, L. A Unique Issue in the Standardization of Chinese Materia Medica: Processing. Planta Med. 2010, 76, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Mikołajczak, N.; Tańska, M.; Konopka, I. The effect of the hydrophilic and lipophilic herbal extracts on the oxidative stability of cooking plant oils during low- and high-temperature heating. NFS J. 2021, 25, 41–50. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; He, F.Y.; Yang, Y.T.; Shi, J.L.; Deng, K.W.; Tang, Y.; Liu, W.L. Research situation of Maillard reaction and its influence on research methods for processing and preparation process of Chinese materia medica. Chin. Tradit. Herb. Drugs 2014, 45, 125–130. [Google Scholar] [CrossRef]
- Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemistry. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.B.; Zhao, Y.; Lv, Y. In vivo macrophage activation and physicochemical property of the different polysaccharide fractions purified from Angelica sinensis. Carbohydr. Polym. 2008, 71, 372–379. [Google Scholar] [CrossRef]
- Wang, K.Y.; Tao, X.H.; Liu, X.K.; Li, Y.; He, W.Y.; Gao, W.Y. A textual research on the genuine production areas and processing methods of Chinese angelica in the past dynasties. Jilin J. Chin. Med. 2021, 41, 1371–1374. [Google Scholar] [CrossRef]
- Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genom. 2001, 48, 155–168. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Saleem, H.K.R.S.R.A. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019, 9, 303. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhang, M.L.; Chen, P.; Harnly James, M.; Sun, J.H. Mass spectrometry-based nontargeted and targeted analytical approaches in fingerprinting and metabolomics of food and agricultural research. J. Agric. Food Chem. 2022, 70, 11138–11153. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Tian, Q.Q.; Huang, Q.M.; Long, Y.; Zhang, Y.L.; Wan, J.Y.; Li, N. Comparison of Contents of Angelica Sinensis Radix by Freeze-Drying Method with Those by Traditional Drying Methods. Asia-Pac. Tradit. Med. 2022, 18, 55–60. [Google Scholar]
- Yang, Y.S.; Nie, S.M.; Liu, Y.Y.; Yu, H.; Liu, Y.J.; Song, T.B. Using orthogonal design to optimize the processing technology of vinegar-baked Radix Angelica sinensis. Her. Med. 2020, 39, 1528–1531. [Google Scholar] [CrossRef]
- Wilson, I.D.; Theodoridis, G.; Virgiliou, C. A perspective on the standards describing mass spectrometry-based metabolic phenotyping (metabolomics/metabonomics) studies in publications. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1164, 122515. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.Y.; Shao, S.X.; Wang, P.J.; Yang, R.X.; Zheng, Y.C.; Chen, X.M.; Ye, N.X. The albino mechanism of a new theanine-rich tea cultivar ‘Fuhuang 2’. Chin. J. Biotechnol. 2022, 38, 3956–3972. [Google Scholar] [CrossRef]
- Sun, J.; Chen, X.N.; Liu, J.N.; Guan, P.W.; Wang, C.C.; Pan, B.; Li, J. Identification of active components in Longxue Tongluo Capsules against ischemic brain injury based on component-activity relationship. Chin. J. Chin. Mat. Med. 2019, 44, 150–157. [Google Scholar] [CrossRef]
- Gao, Y.B.; Miao, J.J.; Lai, K.Q. Study on Maillard reaction mechanism by quantum chemistry calculation. J. Mol. Model. 2023, 29, 81. [Google Scholar] [CrossRef]
- Meng, J.; Chen, X.F.; Yang, W.Y.; Li, Z.F.; Zhang, Y.; Song, J.H.; Yang, X.W. Evaluation of Bupleuri Radix resources in Qingchuan based on DTOPSIS and grey related degree. China J. Chin. Mater. Med. 2014, 39, 433–437. [Google Scholar] [CrossRef]
- Esteghlal, S.; Gahruie, H.H.; Niakousari, M.; Barba, F.J.; Bekhit, A.E.-D.; Mallikarjunan, K.; Roohinejad, S. Bridging the knowledge gap for the impact of non-thermal processing on proteins and amino acids. Foods 2019, 8, 262. [Google Scholar] [CrossRef]
- Idhaya, T.; Suruliandi, A.; Calitoiu, D.; Raja, S.P. Calibrating the classifier for protein family prediction with protein sequence using machine learning techniques: An empirical investigation. Int. J. Wavelets Multiresolut. 2023, 21, 2250045. [Google Scholar] [CrossRef]
- Behera, L.M.; Ghosh, M.; Rana, S. Deciphering the conformational landscape of few selected aromatic noncoded amino acids (NCAAs) for applications in rational design of peptide therapeutics. Amino Acids 2022, 54, 1183–1202. [Google Scholar] [CrossRef]
- Prandi, B.; Zurlini, C.; Maria, C.I.; Cutroneo, S.; Di Massimo, M.; Bondi, M.; Tedeschi, T. Targeting the nutritional value of proteins from legumes by-products through mild extraction technologies. Front. Nutr. 2021, 8, 695793. [Google Scholar] [CrossRef] [PubMed]
- Nai, J.J.; Zhang, C.; Shao, H.L.; Li, B.Q.; Li, H.; Gao, L.; Sheng, H.G. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int. J. Biol. Macromol. 2021, 183, 2337–2353. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Wu, Y.T.; Shen, C.B.; Lin, X.H.; Zhang, H.; Kang, Y.H. Research progress on pharmacological effects of 5-hydroxymethylfurfural. J. Xinxiang Med. Univ. 2022, 39, 92–95. [Google Scholar] [CrossRef]
- Meng, X.L.; Wang, B.; Lv, C.Z.; Hu, C.; He, M.J.; Zhang, S.S. Quantification of Chinese yam processing methods based on pyrolysis characteristics and its relation to Maillard reaction. Chin. Herb. Med. 2020, 12, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Zieliński, H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Gao, H.F.; Wen, X.S.; Xian, C.J. Hydroxymethyl furfural in chinese herbal medicines: Its formation, presence, metabolism, bioactivities and implications. Afr. J. Tradit. Comp. Complement. Altern. 2015, 12, 43–54. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.H.; Soladoye Olugbenga, P.; Aluko Rotimi, E. Maillard reaction products derived from food protein-derived peptides: Insights into flavor and bioactivity. Crit. Rev. Food Sci. 2019, 60, 3429–3442. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Lei, W.H.; Huang, Y.Y.; Liu, L.L.; Zhu, Y. Research progress in changes of 5-hydroxymethylfurfural in food and its safety. J. Food Saf. Qual. 2022, 13, 4983–4991. [Google Scholar] [CrossRef]
- Czerwonka, M.; Opiłka, J.; Tokarz, A. Evaluation of 5-hydroxymethylfurfural content in non-alcoholic drinks. Eur. Food Res. Technol. 2017, 244, 11–18. [Google Scholar] [CrossRef]
- Liu, L.L.; Xu, B.; Zhang, Q. Maillard reaction and content changes of paeoniflorin in processing of Radix Paeoniae Alba. Chin. Arch. Tradit. Chin. Med. 2020, 38, 74–77+264. [Google Scholar] [CrossRef]
- Jiang, H. Content determination of ten organic acids in Crataegus pinnatifida before and after processing by HPLC. Tianjin J. Tradit. Chin. Med. 2021, 38, 935–941. [Google Scholar] [CrossRef]
Group | Index | Formula | Compounds | Class I | A | S-A | VIP | p-Value | FC | UP/Down |
---|---|---|---|---|---|---|---|---|---|---|
A and S-A | MW0105650 | C10H20N6O4 | Argnine–Asparagine | Amino acids and derivatives | 2.13 × 104 | 1.75 × 106 | 1.38 | 1.13 × 10−3 | 1.22 × 10−2 | up |
MW0169576 | C19H35NO3 | N-pentadecanoyl-L-Homoserine lactone | 9.00 | 2.26 × 104 | 1.39 | 2.78 × 10−3 | 3.99 × 10−4 | up | ||
MW0159268 | C11H18N4O3 | Valine–Histidine | 3.26 × 104 | 7.07 × 106 | 1.39 | 1.84 × 10−3 | 4.61 × 10−3 | up | ||
MW0151674 | C12H24N2O3 | Isoleucine–Leucine | 4.03 × 103 | 3.58 × 105 | 1.39 | 5.19 × 10−5 | 1.12 × 10−2 | up | ||
MW0105085 | C10H13NO4 | 3-Methoxytyrosine | 5.77 × 103 | 4.51 × 105 | 1.35 | 4.27 × 10−4 | 1.28 × 10−2 | up | ||
MW0110378 | C10H20N2O3 | Valine–Valine | 1.78 × 103 | 1.24 × 105 | 1.36 | 1.29 × 10−5 | 1.44 × 10−2 | up | ||
Lmrj002244 | C10H14N2O2 | Cyclo(Proline–Proline) | 1.32 × 106 | 6.95 × 105 | 1.38 | 9.59 × 10−4 | 1.90 × 10−2 | up | ||
Smnp005894 | C25H28O12 | 6’-O-Cinnamoyl-8-Epi-Arygioside | Phenolic acids | 9.00 | 6.49 × 106 | 1.39 | 2.55 × 10−4 | 1.39 × 10−4 | up | |
NK10264324 | C6H6O3 | Phloroglucinol; 1,3,5-Benzenetriol | 1.32 × 106 | 2.37 × 105 | 1.31 | 1.05 × 10−1 | 5.54 | down | ||
MW0000084 | C20H24N2O3 | 3-Hydroxyquinidine | Alkaloids | 4.58 × 103 | 1.74 × 106 | 1.38 | 5.71 × 10−4 | 2.64 × 10−3 | up | |
Lmmp001410 | C13H20N2O3 | Dihydrocaffeoylputrescine | 7.41 × 103 | 1.84 × 106 | 1.39 | 3.26 × 10−5 | 4.03 × 10−3 | up | ||
Wafp002310 | C15H20N2O5 | 1-O-Caffeoyllysine | 1.83 × 105 | 5.97 × 105 | 1.38 | 3.26 × 10−3 | 3.07 | down | ||
Wayn002636 | C17H22N2O7 | N-(1-Deoxy-1-fructosyl)Tryptophan | Nucleotides and derivatives | 2.57 × 106 | 1.21 × 106 | 1.37 | 4.33 × 10−4 | 2.13 | down | |
pmb0964 | C16H23N5O5 | Isopentenyladenine-7-N-glucoside | 7.06 × 105 | 2.17 × 105 | 1.23 | 6.47 × 10−2 | 3.26 | down | ||
MWSHY0121 | C21H18O12 | Luteolin-7-O-glucuronide | Flavonoids | 7.43 × 105 | 2.67 × 105 | 1.36 | 5.43 × 10−3 | 2.78 | down | |
MW0138670 | C21H20O11 | Kaempferol 7-O-glucoside | 1.08 × 105 | 3.60 × 104 | 1.38 | 5.14 × 10−3 | 3.00 × 101 | down | ||
pma6455 | C5H11O8P | Ribulose-5-phosphate | Saccharides | 2.53 × 105 | 1.24 × 105 | 1.34 | 2.29 × 10−4 | 2.04 | down | |
Lsmp010410 | C27H28O12 | Ethyl 1,4-di-O-caffeoylquinate | Others | 3.27 × 105 | 9.43 × 105 | 1.38 | 7.43 × 10−4 | 3.47 | down | |
Lmhp012042 | C21H38O4 | 2-Linoleoylglycerol | Lipids | 2.99 × 105 | 1.43 × 105 | 1.37 | 1.88 × 10−4 | 2.09 | down | |
Rfmb087 | C18H32O4 | 9-Hydroxy-13-oxo-10-octadecenoic acid | 4.94 × 105 | 2.23 × 105 | 1.38 | 2.51 × 10−4 | 2.22 | down |
Group | Index | Formula | Compounds | Class I | A | V-A | VIP | p-Value | FC | Type |
---|---|---|---|---|---|---|---|---|---|---|
A and V-A | Lmrj002244 | C10H14N2O2 | Cyclo(Proline–Proline) | Amino acids and derivatives | 2.23 × 105 | 4.94 × 105 | 1.32 | 3.56 × 10−4 | 8.73 × 101 | up |
MW0110378 | C10H20N2O3 | Valine–Valine | 2.23 × 105 | 4.94 × 105 | 1.31 | 2.21 × 10−5 | 1.66 × 102 | up | ||
MW0159268 | C11H18N4O3 | Valine–Histidine | 2.23 × 105 | 4.94 × 105 | 1.33 | 1.27 × 10−3 | 2.01 × 102 | up | ||
MW0105085 | C10H13NO4 | 3-Methoxytyrosine | 2.23 × 105 | 4.94 × 105 | 1.30 | 7.71 × 10−4 | 2.08 × 102 | up | ||
pme1419 | C6H13NO2S | L-Methionine methyl ester | 2.2 × 105 | 4.94 × 105 | 1.33 | 1.04 × 10−4 | 7.84 × 10−2 | down | ||
MW0109707 | C5H10N2O4 | Serine–Glycine | 2.23 × 105 | 4.94 × 105 | 1.32 | 7.38 × 10−5 | 1.13 × 10−1 | down | ||
MW0169576 | C19H35NO3 | N-pentadecanoyl-L-Homoserine lactone | 2.23 × 105 | 4.94 × 105 | 1.33 | 4.87 × 10−4 | 3.17 × 103 | up | ||
Hmtn001288 | C9H10O4 | Methyl 2,4-Dihydroxyphenylacetate | Phenolic acids | 2.23 × 105 | 4.94 × 105 | 1.32 | 4.44 × 10−4 | 1.26 × 102 | up | |
Smnp005894 | C25H28O12 | 6’-O-Cinnamoyl-8-Epi-Arygioside | 2.23 × 105 | 4.94 × 105 | 1.33 | 4.60 × 10−3 | 4.49 × 103 | up | ||
Zmhn002508 | C21H28O12 | 4-p-Cumaroyl-rhamnosyl-(1 → 6)-D-glucose | 2.23 × 105 | 4.94 × 105 | 1.32 | 1.02 × 10−5 | 1.71 × 10−1 | down | ||
NK10264324 | C6H6O3 | Phloroglucinol; 1,3,5-Benzenetriol | 2.23 × 105 | 4.94 × 105 | 1.23 | 1.21 × 10−1 | 2.44 × 10−1 | down | ||
Smcp000882 | C15H21NO7 | N-benzoyl-2-aminoethyl-β-D-glucopyranoside | Alkaloids | 2.23 × 105 | 4.94 × 105 | 1.32 | 2.69 × 10−4 | 5.30 × 101 | up | |
Lmmp001410 | C13H20N2O3 | Dihydrocaffeoylputrescine | 2.23 × 105 | 4.94 × 105 | 1.32 | 1.17 × 10−5 | 2.77 × 102 | up | ||
MW0000084 | C20H24N2O3 | 3-Hydroxyquinidine | 2.23 × 105 | 4.94 × 105 | 1.32 | 1.77 × 10−3 | 4.98 × 102 | up | ||
Wafp002310 | C15H20N2O5 | 1-O-Caffeoyllysine | 2.23 × 105 | 4.94 × 105 | 1.32 | 1.37 × 10−3 | 4.93 × 10−2 | down | ||
Lshp011101 | C20H23NO12 | Narciclasine 4-Glucopyranoside | 2.23 × 105 | 4.94 × 105 | 1.32 | 9.43 × 10−4 | 2.23 × 10−1 | down | ||
Lsmp010410 | C27H28O12 | Ethyl 1,4-di-O-caffeoylquinate | Others | 2.23 × 105 | 4.94 × 105 | 1.32 | 1.49 × 10−3 | 8.11 × 10−3 | down | |
MA10039492 | C6H6O6 | Dehydroascorbic acid | Vitamin | 2.23 × 105 | 4.94 × 105 | 1.32 | 8.96 × 10−3 | 2.05 × 10−1 | down | |
Rfmb087 | C18H32O4 | 9-Hydroxy-13-oxo-10-octadecenoic acid | Lipids | 2.23 × 105 | 4.94 × 105 | 1.31 | 7.42 × 10−4 | 2.01 × 10−1 | down |
Detection Metrics | A | S-A | V-A |
---|---|---|---|
DPPH free radical scavenging (%) | 46.30 ± 0.75 | 49.63 ± 1.07 ** | 60.65 ± 1.06 ** |
Hydroxyl free radical scavenging (%) | 70.39 ± 1.04 | 76.52 ± 0.97 ** | 66.60 ± 0.97 ** |
T-AOC (nM) | 0.33 ± 0.01 | 0.41 ± 0.01 ** | 0.36 ± 0.01 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, L.; Wang, F.; Hu, S.; Ding, T.; Wang, Y.; Huang, Y.; Fan, B.; Sun, J. Targeted Metabolomics Study on the Effect of Vinegar Processing on the Chemical Changes and Antioxidant Activity of Angelica sinensis. Antioxidants 2023, 12, 2053. https://doi.org/10.3390/antiox12122053
Chen L, Li L, Wang F, Hu S, Ding T, Wang Y, Huang Y, Fan B, Sun J. Targeted Metabolomics Study on the Effect of Vinegar Processing on the Chemical Changes and Antioxidant Activity of Angelica sinensis. Antioxidants. 2023; 12(12):2053. https://doi.org/10.3390/antiox12122053
Chicago/Turabian StyleChen, Linlin, Long Li, Fengzhong Wang, Shenghai Hu, Tingting Ding, Yongru Wang, Yulong Huang, Bei Fan, and Jing Sun. 2023. "Targeted Metabolomics Study on the Effect of Vinegar Processing on the Chemical Changes and Antioxidant Activity of Angelica sinensis" Antioxidants 12, no. 12: 2053. https://doi.org/10.3390/antiox12122053