Antioxidant and DNA-Protective Potentials, Main Phenolic Compounds, and Microscopic Features of Koelreuteria paniculata Aerial Parts
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of the Plant Extracts
2.4. Microscopic Analysis
2.5. HPLC Analysis of Flavonoids and Phenolic Acids
2.6. Antioxidant Activity Analyzes
2.6.1. DPPH• Scavenging Assay
2.6.2. ABTS•+ Scavenging Assay
2.6.3. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6.4. Cupric Reducing Antioxidant Capacity (CUPRAC) Assay
2.7. DNA Nicking Protection Assay
2.8. Statistical Analysis
3. Results
3.1. HPLC Analysis of Phenolic Compounds in Koelreuteria paniculata Extracts
3.1.1. Flavonoid Content
3.1.2. Content of Phenolic Acids
3.2. Antioxidant and DNA Protective Capacity
3.3. Light Microscopy Analysis of Koelreuteria paniculata Aerial Parts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatachalapathy, D.; Shivamallu, C.; Prasad, S.K.; Thangaraj Saradha, G.; Rudrapathy, P.; Amachawadi, R.G.; Patil, S.S.; Syed, A.; Elgorban, A.M.; Bahkali, A.H.; et al. Assessment of Chemopreventive Potential of the Plant Extracts against Liver Cancer Using HepG2 Cell Line. Molecules 2021, 26, 4593. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Adhikary, A.; Dingfelder, M.; Dizdaroglu, M. Hydroxyl Radical Is a Significant Player in Oxidative DNA Damage In Vivo. Chem. Soc. Rev. 2021, 50, 8355–8360. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, S.; Kaur, S. Role of ROS and COX-2/INOS Inhibition in Cancer Chemoprevention: A Review. Phytochem. Rev. 2012, 11, 309–337. [Google Scholar] [CrossRef]
- Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New Insights into the Medicinal Importance, Physiological Functions and Bioanalytical Aspects of an Important Bioactive Compound of Foods ‘Hyperin’: Health Benefits of the Past, the Present, the Future. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 31–42. [Google Scholar] [CrossRef]
- Singh, R.L.; Sapna Sharma, S.S.; Pankaj Singh, P.S. Antioxidants: Their Health Benefits and Plant Sources. In Phytochemicals of Nutraceutical Importance; Prakash, D., Sharma, G., Eds.; CABI: Wallingford, UK, 2014; pp. 248–265. ISBN 978-1-78064-363-2. [Google Scholar]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm Sci. Res. 2019, 10, 1567–1574. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Ljubojević, M.; Tomić, M.; Simikić, M.; Savin, L.; Narandžić, T.; Pušić, M.; Grubač, M.; Vejnović, S.; Marinković, M. Koelreuteria paniculata Invasiveness, Yielding Capacity and Harvest Date Influence on Biodiesel Feedstock Properties. J. Environ. Manag. 2021, 295, 113102. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M. Golden Rain Tree Leaf Extracts as Potential Inhibitor of Lipid Peroxidation and 4-Nitroquinoline-1-Oxide (4-NQO)-Induced DNA Damage. Afr. J. Biotechnol. 2011, 10, 19758–19763. [Google Scholar] [CrossRef]
- Kumar, M. Investigations on DNA Protective and Antioxidant Potential of Chloroform and Ethyl Acetate Fractions of Koelreuteria paniculata Laxm. Afr. J. Pharm. Pharmacol. 2011, 5, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Chandel, M.; Kumar, S.; Kaur, S. Studies on the Antioxidant/Genoprotective Activity of Extracts of Koelreuteria paniculata Laxm. Am. J. Biomed. Sci. 2012, 1, 177–189. [Google Scholar]
- Kumar, M.; Chandel, M.; Sharma, N.; Kumar, S.; Kaur, S. Efficacy of Golden Rain Tree against Free Radicals and H2O2-Induced Damage to PUC18/Calf Thymus DNA. Asian Pac. J. Trop. Biomed. 2012, 2, S781–S787. [Google Scholar] [CrossRef]
- Chunyi, T.; Wen, D.; Zhongsong, G. The Total Flavon Extraction from Fruits, Branchs, Leaves of the Koelreuteria paniculata Laxm and It,s Content Determination. Chin. Agric. Sci. Bull. 2005, 21, 159–163. [Google Scholar]
- Lin, W.-H.; Deng, Z.-W.; Lei, H.-M.; Fu, H.-Z.; Li, J. Polyphenolic Compounds from the Leaves of Koelreuteria paniculata Laxm. J. Asian Nat. Prod. Res. 2002, 4, 287–295. [Google Scholar] [CrossRef]
- Mostafa, A.E.; El-Hela, A.A.; Mohammad, A.-E.I.; Cutler, S.J.; Ross, S.A. New Triterpenoidal Saponins from Koelreuteria paniculata. Phytochem. Lett. 2016, 17, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, I.; Moharram, F.A.; Marzouk, M.S.; Soliman, H.S.M.; El-Dib, R.A. ChemInform Abstract: Two New Flavonol Glycosides from Leaves of Koelreuteria paniculata. Die Pharm. 2001, 56, 580–582. [Google Scholar] [CrossRef]
- Ghahari, S.; Alinezhad, H.; Nematzadeh, G.A.; Ghahari, S. Phytochemical Screening and Antimicrobial Activities of the Constituents Isolated from Koelreuteria paniculata Leaves. Nat. Prod. Res. 2015, 29, 1865–1869. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, D.; Zhao, Y.; Wang, T.; Yang, Y.; Aqeel, M.; Peng, W. Active Components in Branches and Leaves of Koelreuteria paniculata. Caribb. J. Sci. 2018, 51, 11–21. [Google Scholar]
- Qu, Q.-H.; Zhang, L.; Bao, H.; Zhang, J.-H.; You, X.-J.; Wang, J.-X. Chemical Constituents of Flavonoids from Flowers of Koelreuteria paniculata. J. Chin. Med. Mater. 2011, 34, 1716–1719. [Google Scholar]
- Yang, X.; Lei, H.; Fu, H.; Lin, W. Study on the flavonoids from the seeds of Koelreuteria paniculata Laxm. Acta Pharm. Sin. 2000, 35, 208–211. [Google Scholar]
- Sutiashvili, M.G.; Alaniya, M.D.; Mshvildadze, V.D.; Skhirtladze, A.V.; Pichette, A.; Lavoie, S. Flavonoid and Cycloartane Glycosides from Seeds of Koelreuteria paniculata. Chem. Nat. Compd. 2013, 49, 395–397. [Google Scholar] [CrossRef]
- Andonova, T.; Dimitrova-Dyulgerova, I.; Slavov, I.; Muhovski, Y.; Stoyanova, A. A Comparative Study of Koelreuteria paniculata Laxm. Aerial Parts Essential Oil Composition. J. Essent. Oil Bear. Plants 2020, 23, 1363–1370. [Google Scholar] [CrossRef]
- Andonova, T.; Muhovski, Y.; Fidan, H.; Slavov, I.; Stoyanova, A.; Dimitrova-Dyulgerova, I. Chemical Compounds, Antitumor and Antimicrobial Activities of Dry Ethanol Extracts from Koelreuteria paniculata Laxm. Plants 2021, 10, 2715. [Google Scholar] [CrossRef] [PubMed]
- Krasteva, G. Effect of Basal Medium on Growth and Polyphenols Accumulation by Gardenia Jasminoides Ellis Cell Suspension. BIO Web Conf. 2022, 45, 02006. [Google Scholar] [CrossRef]
- Kivrak, İ.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, Anticholinesterase and Antimicrobial Constituents from the Essential Oil and Ethanol Extract of Salvia Potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Ivanov, I.G.; Vrancheva, R.Z.; Marchev, A.S.; Petkova, N.T.; Aneva, Y.; Denev, P.P.; Georgiev, V.G.; Pavlov, A.I. Antioxidant Activities and Phenolic Compounds in Bulgarian Fumaria Species. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 296–306. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. [2] Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 15–27. ISBN 0076-6879. [Google Scholar]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Rajiv, C.; Roy, S.S.; Tamreihao, K.; Kshetri, P.; Singh, T.S.; Devi, H.S.; Sharma, S.K.; Ansari, M.A.; Devi, E.D.; Devi, A.K.; et al. Anticarcinogenic and Antioxidant Action of an Edible Aquatic Flora Jussiaea repens L. Using In Vitro Bioassays and In Vivo Zebrafish Model. Molecules 2021, 26, 2291. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, N. Online Web Statistical Calculators. Available online: http://astatsa.com/ (accessed on 8 May 2022).
- Mao, Y.-J.; Feng, Y.-L.; Wang, M.-J.; Lyu, Z.-Y.; Zhai, G.-Y. Research Progress on Rutin Derivatives. China J. Chin. Mater. Med. 2021, 46, 4654–4665. [Google Scholar] [CrossRef]
- Pandey, P.; Khan, F.; Qari, H.A.; Oves, M. Rutin (Bioflavonoid) as Cell Signaling Pathway Modulator: Prospects in Treatment and Chemoprevention. Pharmaceuticals 2021, 14, 1069. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xie, L.; Liu, K.; Liang, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. The Antihypertensive Potential of Flavonoids from Chinese Herbal Medicine: A Review. Pharmacol. Res. 2021, 174, 105919. [Google Scholar] [CrossRef]
- Yen, F.S.; Qin, C.S.; Xuan, S.T.S.; Ying, P.J.; Le, H.Y.; Darmarajan, T.; Gunasekaran, B.; Salvamani, S. Hypoglycemic Effects of Plant Flavonoids: A Review. Evid. Based Complement. Altern. Med. 2021, 2021, 2057333. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Bernatova, I. Biological Activities of (−)-Epicatechin and (−)-Epicatechin-Containing Foods: Focus on Cardiovascular and Neuropsychological Health. Biotechnol. Adv. 2018, 36, 666–681. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, Q.; Zheng, D.; Zhao, Y.; Wang, T.; Yan, S.; Gu, H. Active Constituents of Koelreuteria paniculata Root. Therm. Sci 2020, 24, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zheng, D.; Zhao, Y.; Wang, T.; Yang, Y.; Peng, W. Analysis of components in Koelreuteria paniculata. Caribb. J. Sci. 2017, 50, 13–18. [Google Scholar]
- Nadeem, M.; Imran, M.; Aslam Gondal, T.; Imran, A.; Shahbaz, M.; Muhammad Amir, R.; Wasim Sajid, M.; Batool Qaisrani, T.; Atif, M.; Hussain, G.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef] [Green Version]
- Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. Materials 2020, 13, 4454. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, I.; Yeşiloğlu, Y. Spectroscopic Studies on the Antioxidant Activity of P-Coumaric Acid. Spectrochim. Acta. Part A 2013, 115, 719–724. [Google Scholar] [CrossRef]
- Ferreira, P.S.; Victorelli, F.D.; Fonseca-Santos, B.; Chorilli, M. A Review of Analytical Methods for p -Coumaric Acid in Plant-Based Products, Beverages, and Biological Matrices. Crit. Rev. Anal. Chem. 2019, 49, 21–31. [Google Scholar] [CrossRef]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Sambyal, K.; Singh, R.V. Production of Salicylic Acid; a Potent Pharmaceutically Active Agent and Its Future Prospects. Crit. Rev. Biotechnol. 2021, 41, 394–405. [Google Scholar] [CrossRef]
- Calderon-Montano, M.J.; Burgos-Moron, E.; Perez-Guerrero, C.; Lopez-Lazaro, M. A Review on the Dietary Flavonoid Kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Zhelev, I.; Georgiev, K.; Dimitrova-Dyulgerova, I. In-vitro antioxidant and antineoplastic activities of carotenoids from flowers of Koelreuteria paniculata. World J. Pharm. Res. 2016, 5, 53–60. [Google Scholar]
Plant Aerial Parts | |||||
---|---|---|---|---|---|
No. | Compounds | Leaves | Stem Bark | Flowers | Flower Buds |
Flavonoids | |||||
1 | Rutin | 4.23 ± 0.96 a | 0.03 ± 0.01 b,c | 0.34 ± 0.08 b | 0.24 ± 0.09 b,c |
2 | Hesperidin | 2.97 ± 0.42 a | n.d. | 0.37 ± 0.07 b | 0.19 ± 0.06 b |
3 | Quercetin | 2.66 ± 0.54 a | 0.04 ± 0.01 b,c | 0.42 ± 0.09 b | 0.24 ± 0.04 b,c |
4 | (+)-Catechin | n.d. | 0.09 ± 0.02 | n.d. | n.d. |
5 | (−)-Epicatechin | 0.38 ± 0.06 b,c | 0.80 ± 0.14 b | 0.59 ± 0.05 b,c | 2.69 ± 0.82 a |
Phenolic acids | |||||
6 | Gallic | 1.02 ± 0.22 | n.d. | n.d. | n.d. |
7 | Protocatehuic | 0.30 ± 0.10 c | traces | 0.75 ± 0.10 a | 0.53 ± 0.06 b |
8 | Vanillic | 1.04 ± 0.08 a | 0.19 ± 0.04 b,c | 0.24 ± 0.04 b | 0.14 ± 0.05 b,c |
9 | Caffeic | 0.06 ± 0.02 n.s. | 0.11 ± 0.03 n.s. | 0.10 ± 0.02 n.s. | 0.14 ± 0.08 n.s. |
10 | Syringic | 0.13 ± 0.07 a,b,c | 0.07 ± 0.02 c | 0.23 ± 0.08 a,b | 0.24 ± 0.06 a |
11 | p-Coumaric | 0.26 ± 0.06 c | 0.05 ± 0.01 c | 6.97 ±1.04 a | 4.97 ± 0.97 a,b |
12 | Ferulic | 0.07 ± 0.02 b | n.d. | 0.13 ± 0.04 b | 0.94 ± 0.2 a |
13 | Salicylic | 0.39 ± 0.04 b,c | 0.10 ± 0.03 b,c | 0.77 ± 0.17 a,b | 1.64 ± 0.65 a |
14 | Rosmarinic | 10.34 ± 1.80 a | 0.22 ± 0.08 c | 3.00 ± 0.38 b | 2.62 ± 0.93 b,c |
Sample 3 | DPPH-Assay 2, mmol TE/g DW 1 | ABTS-Assay, mmol TE/g DW | FRAP-Assay, mmol TE/g DW | CUPRAC-Assay, mmol TE/g DW |
---|---|---|---|---|
LE | 751.27 ± 1.27 c | 645.88 ± 1.83 c | 1838.92 ± 2.42 c | 576.68 ± 2.58 d |
SBE | 278.39 ± 1.44 d | 342.55 ± 0.98 d | 637.62 ± 3.16 d | 846.16 ± 2.17 b |
FE | 1133.47 ± 1.97 a | 1437.49 ± 0.76 a | 4308.02 ± 2.84 a | 1748.50 ± 2.69 a |
FBE | 904.12 ± 1.75 b | 686.68 ± 1.45 b | 2464.10 ± 2.93 b | 731.81 ± 1.88 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andonova, T.; Muhovski, Y.; Vrancheva, R.; Slavov, I.; Apostolova, E.; Naimov, S.; Pavlov, A.; Dimitrova-Dyulgerova, I. Antioxidant and DNA-Protective Potentials, Main Phenolic Compounds, and Microscopic Features of Koelreuteria paniculata Aerial Parts. Antioxidants 2022, 11, 1154. https://doi.org/10.3390/antiox11061154
Andonova T, Muhovski Y, Vrancheva R, Slavov I, Apostolova E, Naimov S, Pavlov A, Dimitrova-Dyulgerova I. Antioxidant and DNA-Protective Potentials, Main Phenolic Compounds, and Microscopic Features of Koelreuteria paniculata Aerial Parts. Antioxidants. 2022; 11(6):1154. https://doi.org/10.3390/antiox11061154
Chicago/Turabian StyleAndonova, Tsvetelina, Yordan Muhovski, Radka Vrancheva, Ilya Slavov, Elena Apostolova, Samir Naimov, Atanas Pavlov, and Ivanka Dimitrova-Dyulgerova. 2022. "Antioxidant and DNA-Protective Potentials, Main Phenolic Compounds, and Microscopic Features of Koelreuteria paniculata Aerial Parts" Antioxidants 11, no. 6: 1154. https://doi.org/10.3390/antiox11061154
APA StyleAndonova, T., Muhovski, Y., Vrancheva, R., Slavov, I., Apostolova, E., Naimov, S., Pavlov, A., & Dimitrova-Dyulgerova, I. (2022). Antioxidant and DNA-Protective Potentials, Main Phenolic Compounds, and Microscopic Features of Koelreuteria paniculata Aerial Parts. Antioxidants, 11(6), 1154. https://doi.org/10.3390/antiox11061154