The Association of Oxidative and Antioxidant Potential with Cardiometabolic Risk Profile in the Group of 60- to 65-Year-Old Seniors from Central Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects Recruitment
2.2. Basic Laboratory Measurements
2.3. TAS, TOS, and Oxidation Markers Estimation
2.4. Statistical Analysis
3. Results
(p < 0.001)
4. Discussion
4.1. TAS
4.2. TOS
4.3. Plasma and Platelet Lipid Peroxides
4.4. Plasma and Platelet Protein Free Thiol Groups
4.5. Plasma and Platelet Protein Free Amino Groups
4.6. Superoxide Anion Generated by Platelets
4.7. Limitations of the study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Gawron-Skarbek, A.; Chrzczanowicz, J.; Kostka, J.; Nowak, D.; Drygas, W.; Jegier, A.; Kostka, T. Cardiovascular risk factors and total serum antioxidant capacity in healthy men and in men with coronary heart disease. Biomed. Res. Int. 2014, 2014, 216964. [Google Scholar] [CrossRef] [PubMed]
- Vericel, E.; Croset, M.; Sedivy, P.; Courpron, P.; Dechavanne, M.; Lagarde, M. Platelets and aging I.—Aggregation, arachidonate metabolism and antioxidant status. Thromb. Res. 1988, 49, 331–342. [Google Scholar] [CrossRef]
- Romay, C.; Pascual, C.; Lissi, E.A. The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Braz. J. Med. Biol. Res. 1996, 29, 175–183. [Google Scholar] [PubMed]
- Rosell, M.; Regnstrom, J.; Kallner, A.; Hellenius, M.-L. Serum urate determines antioxidant capacity in middle-aged men-a controlled, randomized diet and exercise intervention study. J. Intern. Med. 1999, 246, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molino-Lova, R.; Prisco, D.; Pasquini, G.; Vannetti, F.; Paperini, A.; Zipoli, R.; Luisi, M.; Cecchi, F.; Macchi, C. Higher uric acid levels are associated with better functional recovery in elderly patients receiving cardiac rehabilitation. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1210–1215. [Google Scholar] [CrossRef]
- Strazzullo, P.; Puig, J.G. Uric acid and oxidative stress: Relative impact on cardiovascular risk? Nutr. Metab. Cardiovasc. Dis. 2007, 17, 409–414. [Google Scholar] [CrossRef]
- Packer, J.E.; Slater, T.F.; Willson, R.L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 1979, 278, 737–738. [Google Scholar] [CrossRef]
- Stocker, R.; Weidemann, M.J.; Hunt, N.H. Possible mechanisms responsible for the increased ascorbic acid content of Plasmodium vinckei-infected mouse erythrocytes. Biochim. Biophys. Acta. 1986, 881, 391–397. [Google Scholar] [CrossRef]
- Münzel, T.; Gori, T.; Bruno, R.M.; Taddei, S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur. Heart J. 2010, 31, 2741–2748. [Google Scholar] [CrossRef] [Green Version]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ristow, M.; Schmeisser, S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 2011, 51, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Schie, M.C.; Van Loon, J.E.; De Maat, M.P.M.; Leebeek, F.W.G. Genetic determinants of von Willebrand factor levels and activity in relation to the risk of cardiovascular disease: A review. J. Thromb. Haemost. 2011, 9, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.J.; Ridker, P.M. Inflammatory bio-markers and cardiovascular risk prediction. J. Intern. Med. 2002, 252, 283–294. [Google Scholar] [CrossRef]
- Peres, B.U.; Allen, A.J.H.; Daniele, P.; Humphries, K.H.; Taylor, C.; Laher, I.; Almeida, F.; Jen, R.; Sandford, A.J.; van Eeden, S.F.; et al. Circulating levels of cell adhesion molecules and risk of cardiovascular events in obstructive sleep apnea. PLoS ONE 2021, 16, e0255306. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar]
- Karolczak, K.; Konieczna, L.; Kostka, T.; Witas, P.J.; Sołtysik, B.; Baczek, T.; Watala, C. Testosterone and dihydrotestosterone reduce platelet activation and reactivity in older men and women. Aging 2018, 10, 902–929. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Sen, S.; Mondal, M.C.; Kumar, A. Simple Modified Colorimetric Methods for Assay of total Oxidative Stress and Antioxidant Defense in Plasma: Study in Diabetic Patients. Arch. Med. 2015, 7, 1–6. [Google Scholar]
- Baskol, M.; Seckin, K.D.; Baskol, G. Advanced oxidation protein products, total thiol levels and total oxidant/antioxidant status in patients with nash. Turk. J. Gastroenterol. 2015, 25, 32–37. [Google Scholar] [CrossRef]
- Ando, Y.; Steiner, M. Sulfhydryl and disulfide groups of platelet membranes. I. Determination of sulfhydryl groups. Biochim. Biophys. Acta (BBA)-Biomembr. 1973, 311, 26–37. [Google Scholar] [CrossRef]
- Sashidhar, R.B.; Capoor, A.K.; Ramana, D. Quantitation of epsilon-amino group using amino acids as reference standards by trinitrobenzene sulfonic acid. A simple spectrophotometric method for the estimation of hapten to carrier protein ratio. J. Immunol. Methods 1994, 167, 21–27. [Google Scholar]
- Gresele, P.; Pignatelli, P.; Guglielmini, G.; Carnevale, R.; Mezzasoma, A.M.; Ghiselli, A.; Momi, S.; Violi, F. Resveratrol, at Concentrations Attainable with Moderate Wine Consumption, Stimulates Human Platelet Nitric Oxide Production. J. Nutr. 2008, 138, 1602–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karolczak, K.; Soltysik, B.; Kostka, T.; Witas, P.J.; Watala, C. Platelet and Red Blood Cell Counts, as well as the Concentrations of Uric Acid, but Not Homocysteinaemia or Oxidative Stress, Contribute Mostly to Platelet Reactivity in Older Adults. Oxidative Med. Cell. Longev. 2019, 2019, 9467562. [Google Scholar] [CrossRef] [Green Version]
- Cals, M.J.; Succari, M.; Meneguzzer, E.; Ponteziere, C.; Bories, P.N.; Devanlay, M.; Desveaux, N.; Gatey, M.; Luciani, L.; Blonde-Cynober, F.; et al. Markers of oxidative stress in fit, health-conscious elderly people living in the Paris area. The Research Group on Ageing (GERBAP). Nutrition 1997, 13, 319–326. [Google Scholar] [CrossRef]
- Ceballos-Picot, I.; Trivier, J.-M.; Nicole, A.; Sinet, P.-M.; Thevenin, M. Age-Correlated Modifications of Copper-Zinc Superoxide Dismutase and Glutathione-Related Enzyme Activities in Human Erythrocytes. Clin. Chem. 1992, 38, 66–70. [Google Scholar] [CrossRef]
- Lesgards, J.-F.; Durand, P.; Lassarre, M.; Stocker, P.; Lesgards, G.; Lanteaume, A.; Prost, M.; Lehucher-Michel, M.-P. Assessment of lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ. Health Perspect. 2002, 110, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Mutlu-Türkoğlu, Ü.; Ilhan, E.; Öztezcan, S.; Kuru, A.; Aykaç-Toker, G.; Uysal, M. Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin. Biochem. 2003, 36, 397–400. [Google Scholar] [CrossRef]
- Aslan, R.; Kutlu, R.; Civi, S.; Tasyurek, E. The correlation of the total antioxidant status (TAS), total oxidant status (TOS) and paraoxonase activity (PON1) with smoking. Clin. Biochem. 2014, 47, 393–397. [Google Scholar] [CrossRef]
- Nälsén, C.; Öhrvall, M.; Kamal-Eldin, A.; Vessby, B. Plasma antioxidant capacity among middle-aged men: The contribution of uric acid. Scand. J. Clin. Lab. Investig. 2006, 66, 239–248. [Google Scholar] [CrossRef]
- Distelmaier, K.; Wiesbauer, F.; Blessberger, H.; Oravec, S.; Schrutka, L.; Binder, C.; Dostal, E.; Schillinger, M.; Wojta, J.; Lang, I.M.; et al. Impaired antioxidant HDL function is associated with premature myocardial infarction. Eur. J. Clin. Investig. 2015, 45, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Bashar, T.; Akhter, N. Study on oxidative stress and antioxidant level in patients of acute myocardial infarction before and after regular treatment. Bangladesh Med. Res. Counc. Bull. 2015, 40, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagatini, M.D.; Martins, C.C.; Battisti, V.; Gasparetto, D.; da Rosa, C.S.; Spanevello, R.M.; Ahmed, M.; Schmatz, R.; Schetinger, M.R.C.; Morsch, V.M. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Hear. Vessel. 2010, 26, 55–63. [Google Scholar] [CrossRef]
- Zhang, P.-Y.; Xu, X.; Li, X.-C. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3091–3096. [Google Scholar]
- Tie, G.; Messina, K.E.; Yan, J.; Messina, J.A.; Messina, L.M. Hypercholesterolemia Induces Oxidant Stress That Accelerates the Ageing of Hematopoietic Stem Cells. J. Am. Hear. Assoc. 2014, 3, e000241. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.A.; De Silva, T.A.; Jackman, K.; Sobey, C.G. Effect of Gender and Sex Hormones on Vascular Oxidative Stress. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1037–1043. [Google Scholar] [CrossRef]
- Keaney, J.F., Jr.; Larson, M.G.; Vasan, R.S.; Wilson, P.W.; Lipinska, I.; Corey, D.; Massaro, J.M.; Sutherland, P.; Vita, J.A.; Benjamin, E.J. Obesity and systemic oxidative stress: Clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [Green Version]
- Morrow, J.D. Is oxidant stress a connection between obesity and atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 2003, 23, 368–370. [Google Scholar] [CrossRef] [Green Version]
- Vassalle, C.; Novembrino, C.; Maffei, S.; Sciarrino, R.; De Giuseppe, R.; Vigna, L.; de Liso, F.; Mercuri, A.; Bamonti, F. Determinants of oxidative stress related to gender: Relevance of age and smoking habit. Clin. Chem. Lab. Med. (CCLM) 2011, 49, 1509–1513. [Google Scholar] [CrossRef]
- Kaya, A.; Uzunhasan, I.; Baskurt, M.; Ozkan, A.; Ataoglu, E.; Okcun, B.; Yigit, Z. Oxidative Status and Lipid Profile in Metabolic Syndrome: Gender Differences. Metab. Syndr. Relat. Disord. 2010, 8, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Hernández-Fonseca, J.P.; Pedreañez, A.; Viera, N.; Mosquera, J. Renal oxidative stress and renal CD8+ T-cell infiltration in mercuric chloride-induced nephropathy in rats: Role of angiotensin II. J. Immunotoxicol. 2015, 13, 324–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prusty, S.; Sahu, P.; Subudhi, B. Angiotensin Mediated Oxidative Stress and Neuroprotective Potential of Antioxidants and AT1 Receptor Blockers. Mini-Reviews Med. Chem. 2017, 17, 518–528. [Google Scholar] [CrossRef]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; De Caterina, R. Basic mechanisms behind the effects of n-3 fatty acids on cardiovascular disease. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 109–115. [Google Scholar] [CrossRef] [Green Version]
- van Dam, B.; van Hinsbergh, V.W.; Stehouwer, C.D.; Versteilen, A.; Dekker, H.; Buytenhek, R.; Princen, H.M.; Schalkwijk, C.G. Vitamin E inhibits lipid peroxidation-induced adhesion molecule expression in endothelial cells and decreases soluble cell adhesion molecules in healthy subjects. Cardiovasc. Res. 2003, 57, 563–571. [Google Scholar] [CrossRef]
- Yang, L.; Froio, R.M.; Sciuto, T.E.; Dvorak, A.M.; Alon, R.; Luscinskas, F.W. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood 2005, 106, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Nanetti, L.; Mazzanti, L.; Silvestrini, M.; Bartolini, M.; Provinciali, L. Lipid peroxidation in stroke patients. Clin. Chem. Lab. Med. (CCLM) 2008, 46, 113–117. [Google Scholar] [CrossRef]
- Polidori, M.; Frei, B.; Cherubini, A.; Nelles, G.; Rordorf, G.; Keaney, J.F.; Schwamm, L.; Mecocci, P.; Koroshetz, W.J.; Beal, M. Increased plasma levels of lipid hydroperoxides in patients with ischemic stroke. Free Radic. Biol. Med. 1998, 25, 561–567. [Google Scholar] [CrossRef]
- Koprivica, Z.; Djordjevic, D.; Vuletic, M.; Zivkovic, V.; Barudzic, N.; Andjelkovic, N.; Djuric, D.; Iric-Cupic, V.; Krkeljic, J.; Jakovljevic, V. von Willebrand Factor and Oxidative Stress Parameters in Acute Coronary Syndromes. Oxidative Med. Cell. Longev. 2011, 2011, 918312. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Chen, J.; Gallagher, R.; Zheng, Y.; Chung, D.W.; López, J.A. Shear stress–induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region. Blood 2011, 118, 5283–5291. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, J.; Zhao, L.; Liao, Y.; Zhou, Q.; Cui, Y.; Hu, W.; Chen, J.; Ren, X.; Wei, Q.; et al. ADAMTS13 inhibits oxidative stress and ameliorates progressive chronic kidney disease following ischaemia/reperfusion injury. Acta Physiol. 2021, 231, e13586. [Google Scholar] [CrossRef] [PubMed]
- Sadler, J.E. Biochemistry and Genetics of von Willebrand Factor. Annu. Rev. Biochem. 1998, 67, 395–424. [Google Scholar] [CrossRef] [PubMed]
- Rey, C.; Véricel, E.; Némoz, G.; Chen, W.; Chapuy, P.; Lagarde, M. Purification and characterization of glutathione peroxidase from human blood platelets. Age-related changes in the enzyme. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 1994, 1226, 219–224. [Google Scholar] [CrossRef]
- Freedman, J.E.; Frei, B.; Welch, G.N.; Loscalzo, J. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J. Clin. Investig. 1995, 96, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijk, P.R.; Abdulle, A.E.; Bulthuis, M.L.; Perton, F.G.; Connelly, M.A.; van Goor, H.; Dullaart, R.P. The Systemic Redox Status Is Maintained in Non-Smoking Type 2 Diabetic Subjects Without Cardiovascular Disease: Association with Elevated Triglycerides and Large VLDL. J. Clin. Med. 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Fu, X.; Wang, Y.; Ling, M.; McMullen, B.; Kulman, J.; Chung, D.W.; López, J.A. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood 2010, 115, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, I.E.; Deniz, F.S.S. Natural Products and Extracts as Xantine Oxidase Inhibitors-A Hope for Gout Disease? Curr. Pharm. Des. 2021, 27, 143–158. [Google Scholar] [CrossRef]
- Wautier, J.L.; Guillausseau, P.J. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab. 2001, 27, 535–542. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Farah, A.I.; Al-Qirim, T.M. The cardiovascular complications of diabetes: A striking link through protein glycation. Rom. J. Intern. Med. 2020, 58, 188–198. [Google Scholar] [CrossRef]
- Fuentes, E.; Palomo, I. Role of oxidative stress on platelet hyperreactivity during aging. Life Sci. 2016, 148, 17–23. [Google Scholar] [CrossRef]
- Cosentino, F.; Hishikawa, K.; Katusic, Z.S.; Lüscher, T.F. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 1997, 96, 25–28. [Google Scholar] [CrossRef]
- Quagliaro, L.; Piconi, L.; Assaloni, R.; Da Ros, R.; Szabó, C.; Ceriello, A. Primary role of superoxide anion generation in the cascade of events leading to endothelial dysfunction and damage in high glucose treated HUVEC. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 257–267. [Google Scholar] [CrossRef]
- Gilroy, D.W. New insights into the anti-inflammatory actions of aspirin- induction of nitric oxide through the generation of epi-lipoxins. Memórias Inst. Oswaldo Cruz 2005, 100, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Schrör, K.; Rauch, B.H. Aspirin and lipid mediators in the cardiovascular system. Prostaglandins Other Lipid Mediat. 2015, 121, 17–23. [Google Scholar] [CrossRef]
n = 300 | Females n = 150 | Males n = 150 | |
---|---|---|---|
Age [years] | 63 (61–64) | 63 (61–64) | 63 (62–64) * U |
Education [years] | 13.0 (12.0–16.0) | 13 (12–16) | 13 (11–16) |
BMI [kg/m²] | 27.74 (24.98–30.92) | 27.82 (24.51–31.22) | 27.71 (25.30–30.55) |
WHR | 0.93 (0.84–1.0) | 0.85 (0.80–0.91) | 0.99 (0.95–1.03) *** U |
WHtR | 0.57 (0.52–0.61) | 0.56 (0.51–0.61) | 0.58 (0.54–0.62) * U |
SBP [mmHg] | 135 (125–149) | 135 (123–145) | 139.5 (125–151) * U |
DBP [mmHg] | 82 (75–93) | 80.5 (74–95)) | 85 (75–95) * U |
Pulse [/min] | 67 (62–72) | 67 (62–72) | 67.0 (72.0) |
Blood platelets [103/mm3] | 212 (181–244) | 226.0 (200.0–266.0) | 195.0 (165.0–226.0) *** U |
Total cholesterol [mg/dL] | 203.5 (171.2 | 217.7 (180.8–249.6) | 187.5 (165.8–218.6) *** U |
LDL cholesterol [mg/dL] | 126.55 (100.7–154.8) | 139.6 (103.4–168.0) | 116.3 (97.4–141.5) *** U |
HDL cholesterol [mg/dL] | 48.25 (40.9–57.6) | 53.1 (45.7–64.2) | 44.35 (38.7–51.6) *** U |
Triglicerides [mg/dL] | 110.85 (77.8–159.8) | 110.55 (76.6–159.4) | 110.85 (78.4–162.15) |
Glucose [mg/dL] | 99.4 (91.4–110.8) | 96.5 (89.9–107.6) | 101.6 (93.7–114.4) ** U |
Uric acid [mg/dL] | 4.8 (4.0–5.6) | 4.2 (3.7–5.0) | 5.4 (4.8–6.1) *** U |
Homocysteine [µmol/L] | 14.5 (12.5–17.0) | 14.15 (12.2–16.0) | 15.3 (13.1–18.0) *** U |
vWF [µg/mL] | 5.51(4.88–6.16) | 5.42 (4.78–6.05) | 5.56 (4.95–6.21) |
VCAM-1 [ng/mL] | 272.59 (249.18–298.13) | 270.46 (247.04–292.81) | 273.65 (249.17–304.51) |
ICAM-1 [ng/mL] | 210.05 (202.91–218.14) | 210.04 (201.48–215.75) | 210.05 (203.86–218.61) |
TAS [mM] | 41.6 (30.9–46.8) | 40.99 (30.00–46.61) | 42.07 (32.15–47.09) |
TOS [mM] | 0.54 (0.08–0.06) | 0.55 (0.09–0.62) | 0.52 (0.08–0.58) * U |
Plasma lipid peroxides [mmol/L] | 0.27 (0.03–1.23) | 0.30 (0.01–1.15) | 0.25 (0.03–1.25) |
Platelet lipid peroxides [nmol/μg of protein] | 1.14 (0.47–24.35) | 1.15 (0.41–25.58) | 1.09 (0.05–23.76) |
Free thiol groups of platelet protein [μmol/μg of protein] | 2.84 (1.88–39.37) | 2.83 (1.90–66.03) | 2.83 (1.88–17.14) |
Free thiol groups of plasma protein [μmol/μg of protein] | 0.03 (0.02–0.05) | 0.02 (0.02–0.04) | 0.03 (0.02–0.04) * U |
Free amino groups of platelet protein [nmol/μg of protein] | 0.15 (0.05–1.53) | 0.14 (0.05–1.81) | 0.16 (0.05–1.05) |
Free amino groups of plasma protein [mmol/mg of protein] | 16.79 (10.97–25.72) | 16.51 (10.74–25.58) | 16.95 (11.71–26.33) |
Superoxide anion generated by resting platelets [1 × 108 plt/mL dilutant] | 0.37(0.13–3.50) | 0.37 (0.11–3.51) | 0.33 (0.13–3.28) |
Superoxide anion generated by homocysteinylated platelets [1 × 108 plt/mL dilutant] Hcy 1 × 108 plt/mL dilutant | 0.46 (0.16–4.55) | 0.43 (0.14–4.02) | 0.54 (0.17–4.54) |
n = 300 | Females n = 150 | Males n = 150 | |
---|---|---|---|
Metabolic syndrome | 195 | 79 | 116 *** |
Arterial hypertension | 157 | 68 | 89 * |
Hypercholesterolemia | 198 | 105 | 93 |
Diabetes mellitus type 2 | 35 | 16 | 19 |
Myocardial infarction | 15 | 2 | 13 ** |
Chronic ischaemic heart disease | 43 | 17 | 26 |
Previous stroke | 12 | 6 | 6 |
Smoking | 69 | 31 | 38 |
Obesity (BMI ≥ 30 kg/m2) | 95 | 47 | 48 |
Antiplatelets drugs | 54 | 28 | 26 |
β-adrenolytic drugs | 85 | 44 | 41 |
Ca-blockers | 33 | 12 | 21 |
Angiotensin converting enzyme Inhibitors | 70 | 33 | 37 |
Angiotensin II receptor blockers | 27 | 17 | 10 |
Diuretics | 57 | 29 | 28 |
Anihypertensive drugs (at least one) | 137 | 70 | 67 |
Hipolipidemic drugs | 69 | 28 | 41 |
Antidiabetic drugs | 34 | 15 | 19 |
TAS | TOS | Platelet Lipid Peroxides | Plasma Lipid Peroxides | Free Thiol Groups of Platelet Protein | Free Thiol Groups of Plasma Protein | Free Amino Groups of Platelet Protein | Free Amino Groups of Plasma Protein | Superoxide Anion Generated by Resting Platelets | Superoxide Anion Generated by Homocysteinylated Platelets | |
---|---|---|---|---|---|---|---|---|---|---|
Age | −0.02 | −0.07 | −0.04 | −0.05 | 0.00 | −0.04 | −0.01 | −0.03 | 0.09 | 0.10 |
Education status | 0.01 | 0.04 | 0.09 | −0.01 | 0.12 | −0.03 | 0.14 * | 0.02 | 0.09 | 0.09 |
BMI | 0.04 | 0.19 *** | 0.04 | 0.05 | −0.02 | −0.12 | 0.03 | −0.12 | −0.03 | −0.04 |
WHR | 0.00 | 0.03 | −0.12 | 0.07 | −0.05 | 0.02 | −0.02 | 0.03 | −0.04 | −0.05 |
WHtR | 0.01 | 0.16 ** | −0.06 | 0.06 | −0.05 | −0.08 | 0.03 | −0.07 | −0.04 | −0.04 |
SBP | 0.04 | 0.05 | 0.02 | 0.03 | 0.01 | 0.04 | 0.06 | 0.12 | 0.00 | 0.00 |
DBP | −0.02 | 0.01 | −0.05 | −0.01 | −0.01 | 0.05 | −0.01 | 0.06 | 0.02 | 0.01 |
Number of blood platelets | 0.01 | 0.09 | 0.01 | 0.06 | 0.00 | −0.07 | −0.16 * | −0.10 | −0.11 | −0.11 |
Total cholesterol (TC) | −0.17 ** | 0.09 | −0.01 | 0.03 | −0.08 | −0.07 | −0.08 | −0.02 | 0.03 | 0.03 |
HDL cholesterol | −0.01 | −0.07 | 0.04 | −0.08 | −0.06 | 0.01 | −0.11 * | 0.02 | 0.07 | 0.07 |
LDL cholesterol | −0.16 * | 0.12 * | −0.03 | 0.04 | −0.08 | −0.05 | −0.10 | −0.02 | 0.00 | 0.00 |
Triglicerides | −0.07 | 0.14 * | −0.04 | 0.07 | −0.01 | −0.05 | 0.10 | −0.02 | 0.03 | 0.03 |
Glucose | −0.06 | 0.02 | −0.10 | −0.05 | −0.01 | 0.13 * | 0.12 | 0.13 * | 0.19 ** | 0.21 * |
Uric acid | 0.11 | 0.08 | −0.08 | 0.04 | −0.13 * | 0.03 | −0.11 | 0.05 | −0.07 | −−0.08 |
Homocysteine | 0.05 | −0.06 | 0.02 | −0.09 | 0.02 | 0.01 | 0.01 | 0.04 | −0.05 | −0.05 |
vWF | 0.02 | 0.08 | 0.31 *** | −0.12 | 0.14 * | −0.10 | 0.08 | 0.10 | 0.04 | 0.05 |
VCAM-1 | −0.01 | −0.01 | −0.06 | −0.06 | 0.12 | 0.09 | −0.10 | 0.03 | −0.02 | −0.02 |
ICAM-1 | 0.02 | 0.03 | −0.11 | 0.19 * | −0.10 | −0.05 | −0.07 | −0.08 | −0.10 | −0.10 |
TAS | TOS | Platelet Lipid Peroxides | Plasma Lipid Peroxides | Free Thiol Groups of Platelet Protein | Free Thiol Groups of Plasma Protein | Free Amino Groups of Platelet Protein | Free Amino Groups of Plasma Protein | Superoxide Anion Generated by Resting Platelets | Superoxide Anion Generated by Homocysteinylated Platelets | |
---|---|---|---|---|---|---|---|---|---|---|
Age | −0.03 | −0.05 | −0.01 | −0.11 | 0.20 * | −0.08 | 0.14 | −0.05 | 0.19 * | 0.20 * |
Education status | −0.02 | 0.06 | 0.00 | −0.09 | 0.09 | −0.09 | 0.04 | 0.04 | −0.04 | −0.04 |
BMI | 0.14 | 0.14 | 0.06 | 0.17 | −0.02 | −0.17 | 0.08 | −0.14 | −0.02 | −0.02 |
WHR | −0.05 | 0.17 | −0.08 | 0.10 | −0.11 | −0.09 | 0.10 | 0.08 | 0.03 | 0.02 |
WHtR | 0.07 | 0.15 | −0.03 | 0.15 | −0.05 | −0.13 | 0.15 | −0.06 | 0.03 | 0.03 |
SBP | 0.04 | 0.23 ** | 0.02 | 0.26 ** | −0.06 | −0.09 | −0.11 | 0.08 | −0.09 | −0.09 |
DBP | −0.08 | 0.18 * | −0.05 | 0.17 * | −0.11 | −0.04 | −0.17 | −0.04 | −0.10 | −0.09 |
Number of blood platelets | 0.03 | 0.18 * | −0.03 | 0.04 | −0.17 | 0.00 | −0.15 | −0.12 | −0.10 | −0.10 |
Total cholesterol (TC) | −0.22 * | 0.12 | 0.00 | 0.08 | −0.10 | 0.01 | −0.12 | −0.01 | 0.02 | 0.03 |
HDL cholesterol | −0.01 | −0.06 | 0.07 | −0.04 | −0.02 | 0.08 | −0.15 | 0.03 | −0.02 | −0.02 |
LDL cholesterol | −0.26 ** | 0.12 | −0.02 | 0.09 | −0.13 | 0.02 | −0.16 | 0.01 | −0.02 | −0.01 |
Triglicerides | 0.00 | 0.12 | −0.05 | 0.08 | 0.01 | −0.09 | 0.21 * | −0.08 | 0.22 * | 0.22 * |
Glucose | −0.01 | 0.09 | −0.06 | −0.04 | 0.18 | 0.15 | 0.42 *** | 0.10 | 0.47 *** | 0.46 *** |
Uric acid | 0.17 | 0.17 | −0.01 | 0.09 | −0.21 * | −0.11 | −0.14 | −0.02 | −0.14 | −0.13 |
Homocysteine | −0.10 | 0.01 | −0.04 | −0.05 | −0.07 | −0.04 | 0.03 | 0.29 ** | −0.05 | −0.05 |
vWF | 0.07 | 0.19 * | 0.38 *** | −0.07 | 0.16 | −0.09 | 0.07 | 0.21 * | 0.07 | 0.07 |
VCAM-1 | 0.07 | 0.05 | −0.10 | −0.17 | −0.12 | 0.08 | −0.08 | 0.08 | 0.01 | 0.01 |
ICAM-1 | 0.11 | 0.15 | −0.14 | 0.22* | −0.19 * | 0.09 | −0.12 | 0.06 | −0.10 | −0.10 |
TAS | TOS | Platelet Lipid Peroxides | Plasma Lipid Peroxides | Free Thiol Groups of Platelet Protein | Free Thiol Groups of Plasma Protein | Free Amino Groups of Platelet Protein | Free Amino Groups of Plasma Protein | Superoxide Anion Generated by Resting Platelets | Superoxide Anion Generated by Homocysteinylated Platelets | |
---|---|---|---|---|---|---|---|---|---|---|
Age | −0.01 | −0.08 | −0.01 | −0.03 | −0.10 | −.02 | −0.10 | 0.01 | 0.00 | 0.01 |
Education status | 0.01 | 0.03 | 0.16 | 0.02 | 0.12 | 0.04 | 0.19 * | 0.01 | 0.17 | 0.17 |
BMI | −0.13 | 0.19 * | −0.04 | −0.01 | −0.04 | −0.08 | −0.03 | −0.10 | −0.04 | −0.05 |
WHR | −0.09 | 0.10 | −0.14 | 0.05 | −0.08 | −0.10 | −0.20 * | −0.12 | −0.18 * | −0.19 * |
WHtR | −0.08 | 0.16 | −0.11 | 0.01 | −0.09 | −0.08 | −0.10 | −0.11 | −0.13 | −0.14 |
SBP | 0.00 | −0.07 | 0.07 | −0.07 | 0.05 | 0.09 | 0.17 | 0.16 | 0.06 | 0.06 |
DBP | −0.01 | −0.13 | 0.02 | −0.08 | 0.06 | 0.09 | 0.11 | 0.16 | 0.10 | 0.10 |
Number of blood platelets | −0.02 | −0.03 | 0.05 | 0.15 | 0.14 | −0.03 | −0.14 | −0.03 | −0.10 | −0.10 |
Total cholesterol (TC) | −0.05 | 0.07 | −0.10 | 0.02 | −0.06 | −0.08 | −0.04 | −0.03 | 0.05 | 0.05 |
HDL cholesterol | −0.02 | −0.17 | −0.13 | −0.08 | −0.12 | 0.00 | −0.12 | 0.01 | 0.16 | 0.17 |
LDL cholesterol | 0.00 | 0.07 | −0.08 | 0.03 | −0.03 | −0.07 | −0.02 | −0.04 | 0.04 | 0.04 |
Triglicerides | −0.12 | 0.17 | −0.04 | 0.04 | −0.03 | −0.04 | 0.03 | 0.04 | −0.09 | −0.09 |
Glucose | −0.11 | −0.02 | −0.12 | −0.06 | −0.12 | −0.10 | −0.12 | −0.07 | −0.01 | −0.02 |
Uric acid | 0.01 | 0.15 | −0.16 | −0.02 | −0.11 | 0.21 * | −0.14 | 0.10 | −0.05 | −0.06 |
Homocysteine | 0.09 | 0.01 | 0.12 | −0.16 | 0.06 | 0.00 | −0.03 | 0.14 | −0.06 | −0.06 |
vWF | −0.05 | −0.11 | 0.14 | −0.10 | 0.11 | −0.14 | 0.07 | −0.12 | 0.00 | 0.01 |
VCAM-1 | −0.07 | −0.11 | 0.02 | 0.02 | 0.27 ** | 0.10 | −0.10 | −0.03 | −0.04 | −0.04 |
ICAM-1 | −0.11 | 0.01 | −0.02 | 0.14 | −0.02 | −0.24 ** | −0.01 | −0.37 *** | −0.11 | −0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sołtysik, B.K.; Karolczak, K.; Watała, C.; Kostka, T. The Association of Oxidative and Antioxidant Potential with Cardiometabolic Risk Profile in the Group of 60- to 65-Year-Old Seniors from Central Poland. Antioxidants 2022, 11, 1065. https://doi.org/10.3390/antiox11061065
Sołtysik BK, Karolczak K, Watała C, Kostka T. The Association of Oxidative and Antioxidant Potential with Cardiometabolic Risk Profile in the Group of 60- to 65-Year-Old Seniors from Central Poland. Antioxidants. 2022; 11(6):1065. https://doi.org/10.3390/antiox11061065
Chicago/Turabian StyleSołtysik, Bartłomiej K., Kamil Karolczak, Cezary Watała, and Tomasz Kostka. 2022. "The Association of Oxidative and Antioxidant Potential with Cardiometabolic Risk Profile in the Group of 60- to 65-Year-Old Seniors from Central Poland" Antioxidants 11, no. 6: 1065. https://doi.org/10.3390/antiox11061065