Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Extraction of Collagen from Common Carp Fish Byproduct
2.2. Preparation of Collagen Hydrolysate
2.3. Isolation of Peptide Fractions
2.4. Amino Acid Analysis
2.5. Antioxidant Activities
2.5.1. DPPH Radical-Scavenging Activity
2.5.2. Hydroxyl Radical Scavenging Activity
2.5.3. Reducing Power
2.6. Functional Properties
2.6.1. Solubility
2.6.2. Emulsifying Properties
2.6.3. Foam Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Amino Acid Composition of the Extracted Collagen and Their Peptide Fractions
3.2. Antioxidant Activity of Peptide Fractions
3.2.1. DPPH Radical Scavenging Activity
3.2.2. Hydroxyl Radical Scavenging Activity
3.2.3. Reducing Power
3.3. Functional Properties of Peptide Fractions
3.3.1. Solubility
3.3.2. Emulsifying Properties
3.3.3. Foaming Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majidiyan, N.; Hadidi, M.; Azadikhah, D.; Moreno, A. Protein Complex Nanoparticles Reinforced with Industrial Hemp Essential Oil: Characterization and Application for Shelf-Life Extension of Rainbow Trout Fillets. Food Chem. X 2022, 13, 100202. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Fish By-Products Utilization, Getting More Benefits from Fish Processing | Food Loss and Waste in Fish Value Chains. Available online: https://www.fao.org/flw-in-fish-value-chains/resources/articles/fish-by-products-utilization-getting-more-benefits-from-fish-processing/en/ (accessed on 7 December 2021).
- Stankus, A. State of World Aquaculture 2020 and Regional Reviews: FAO Webinar Series. FAO Aquac. Newsl. 2021, 63, 17–18. [Google Scholar]
- Hadidi, M.; Majidiyan, N.; Jelyani, A.Z.; Moreno, A.; Hadian, Z.; Khanegah, A.M. Alginate/Fish Gelatin-Encapsulated Lactobacillus Acidophilus: A Study on Viability and Technological Quality of Bread during Baking and Storage. Foods 2021, 10, 2215. [Google Scholar] [CrossRef] [PubMed]
- Zamorano-Apodaca, J.C.; García-Sifuentes, C.O.; Carvajal-Millán, E.; Vallejo-Galland, B.; Scheuren-Acevedo, S.M.; Lugo-Sánchez, M.E. Biological and Functional Properties of Peptide Fractions Obtained from Collagen Hydrolysate Derived from Mixed By-Products of Different Fish Species. Food Chem. 2020, 331, 127350. [Google Scholar] [CrossRef] [PubMed]
- Nurilmala, M.; Hizbullah, H.H.; Karnia, E.; Kusumaningtyas, E.; Ochiai, Y. Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus Albacares) Skin. Mar. Drugs 2020, 18, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easterbrook, C.; Maddern, G. Porcine and Bovine Surgical Products: Jewish, Muslim, and Hindu Perspectives. Arch. Surg. 2008, 143, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.; Zhao, X.; Yang, Y.; Tian, C. Antioxidant and Anti-inflammatory Peptide Fraction from Oyster Soft Tissue by Enzymatic Hydrolysis. Food Sci. Nutr. 2020, 8, 3947. [Google Scholar] [CrossRef]
- Hadidi, M.; Boostani, S.; Jafari, S.M. Pea Proteins as Emerging Biopolymers for the Emulsification and Encapsulation of Food Bioactives. Food Hydrocoll. 2022, 126, 107474. [Google Scholar] [CrossRef]
- Safari, R.; Motamedzadegan, A.; Ovissipour, M.; Regenstein, J.M.; Gildberg, A.; Rasco, B. Use of Hydrolysates from Yellowfin Tuna (Thunnus Albacares) Heads as a Complex Nitrogen Source for Lactic Acid Bacteria. Food Bioprocess Technol. 2012, 5, 73–79. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Rodríguez-Amado, I.; Sotelo, C.G.; Sanz, N.; Pérez-Martín, R.I.; Valcárcel, J. Production, Characterization, and Bioactivity of Fish Protein Hydrolysates from Aquaculture Turbot (Scophthalmus Maximus) Wastes. Biomolecules 2020, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- See, S.F.; Hoo, L.L.; Babji, A.S. Optimization of Enzymatic Hydrolysis of Salmon (Salmo Salar) Skin by Alcalase. Int. Food Res. J. 2011, 18, 1359–1365. [Google Scholar]
- Qiu, Y.T.; Wang, Y.M.; Yang, X.R.; Zhao, Y.Q.; Chi, C.F.; Wang, B. Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus Pelamis) Scales: Preparation, Identification and Activity Evaluation. Mar. Drugs 2019, 17, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huertas-alonso, A.J.; Gavahian, M.; González-serrano, D.J.; Hadidi, M.; Salgado-ramos, M.; Prado Sánchez-Verdú, M.; Simirgiotis, M.J.; Barba, F.J.; Franco, D.; Lorenzo, J.M.; et al. Valorization of Wastewater from Table Olives: NMR Identification of Antioxidant Phenolic Fraction and Microwave Single-Phase Reaction of Sugary Fraction. Antioxidants 2021, 10, 1652. [Google Scholar] [CrossRef] [PubMed]
- Taheri, A.; Farvin, K.H.S.; Jacobsen, C.; Baron, C.P. Antioxidant Activities and Functional Properties of Protein and Peptide Fractions Isolated from Salted Herring Brine. Food Chem. 2014, 142, 318–326. [Google Scholar] [CrossRef]
- Zamora-Sillero, J.; Ramos, P.; Monserrat, J.M.; Prentice, C. Evaluation of the Antioxidant Activity In Vitro and in Hippocampal HT-22 Cells System of Protein Hydrolysates of Common Carp (Cyprinus Carpio) By-Product. J. Aquat. Food Prod. Technol. 2018, 27, 21–34. [Google Scholar] [CrossRef]
- Franěk, R.; Kašpar, V.; Shah, M.A.; Gela, D.; Pšenička, M. Production of Common Carp Donor-Derived Offspring from Goldfish Surrogate Broodstock. Aquaculture 2021, 534, 736252. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Jyothirmayi, T.; Diwan, P.V.; Dinesh Kumar, B. Antioxidant Activity and Functional Properties of Enzymatic Protein Hydrolysates from Common Carp (Cyprinus Carpio) Roe (Egg). J. Food Sci. Technol. 2015, 52, 5817–5825. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Gao, Y.; Chen, J.; Liu, R. Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis. Food Chem. 2022, 378, 132089. [Google Scholar] [CrossRef]
- Hadidi, M.; Ibarz, A.; Pouramin, S. Optimization of Extraction and Deamidation of Edible Protein from Evening Primrose (Oenothera Biennis L.) Oil Processing by-products and Its Effect on Structural and Techno-Functional Properties. Food Chem. 2021, 334, 127613. [Google Scholar] [CrossRef]
- Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.S.; Lorenzo, J.M. Application of Cornelian Cherry (Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants 2021, 10, 1777. [Google Scholar] [CrossRef]
- Hadidi, M.; Jafarzadeh, S.; Ibarz, A. Modified Mung Bean Protein: Optimization of Microwave-Assisted Phosphorylation and Its Functional and Structural Characterizations. LWT 2021, 151, 112119. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique. J. Agric. Food Chem. 2002, 26, 716–723. [Google Scholar] [CrossRef]
- Hadidi, M.; Khaksar, F.B.; Pagan, J.; Ibarz, A. Application of Ultrasound-Ultrafiltration-Assisted Alkaline Isoelectric Precipitation (UUAAIP) Technique for Producing Alfalfa Protein Isolate for Human Consumption: Optimization, Comparison, Physicochemical, and Functional Properties. Food Res. Int. 2020, 130, 108907. [Google Scholar] [CrossRef] [PubMed]
- Alemán, A.; Giménez, B.; Montero, P.; Gómez-Guillén, M.C. Antioxidant Activity of Several Marine Skin Gelatins. LWT-Food Sci. Technol. 2011, 44, 407–413. [Google Scholar] [CrossRef]
- Liu, Q.; Kong, B.; Xiong, Y.L.; Xia, X. Antioxidant Activity and Functional Properties of Porcine Plasma Protein Hydrolysate as Influenced by the Degree of Hydrolysis. Food Chem. 2010, 118, 403–410. [Google Scholar] [CrossRef]
- Chi, C.F.; Cao, Z.H.; Wang, B.; Hu, F.Y.; Li, Z.R.; Zhang, B. Antioxidant and Functional Properties of Collagen Hydrolysates from Spanish Mackerel Skin as Influenced by Average Molecular Weight. Molecules 2014, 19, 11211–11230. [Google Scholar] [CrossRef] [Green Version]
- Hajfathalian, M.; Ghelichi, S.; García-Moreno, P.J.; Moltke Sørensen, A.D.; Jacobsen, C. Peptides: Production, Bioactivity, Functionality, and Applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 3097–3129. [Google Scholar] [CrossRef] [Green Version]
- Pavithra, K.; Vadivukkarasi, S. Evaluation of Free Radical Scavenging Activity of Various Extracts of Leaves from Kedrostis Foetidissima (Jacq.) Cogn. Food Sci. Hum. Wellness 2015, 4, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N. Ascorbic Acid Metabolism and Functions: A Comparison of Plants and Mammals. Free. Radic. Biol. Med. 2018, 122, 116–129. [Google Scholar] [CrossRef]
- Chi, C.; Hu, F.; Li, Z.; Wang, B.; Luo, H. Influence of Different Hydrolysis Processes by Trypsin on the Physicochemical, Antioxidant, and Functional Properties of Collagen Hydrolysates from Sphyrna Lewini, Dasyatis Akjei, and Raja Porosa. J. Aquat. Food Prod. Technol. 2016, 25, 616–632. [Google Scholar] [CrossRef]
- Gbogouri, G.A.; Linder, M.; Fanni, J.; Parmentier, M. Influence of Hydrolysis Degree on the Functional Properties of Salmon Byproducts Hydrolysates. J. Food Sci. 2004, 69, C615–C622. [Google Scholar] [CrossRef]
- Sorgentini, D.A.; Wagner, J.R. Comparative Study of Foaming Properties of Whey and Isolate Soybean Proteins. Food Res. Int. 2002, 35, 721–729. [Google Scholar] [CrossRef]
- Viji, P.; Phannendra, T.S.; Jesmi, D.; Madhusudana Rao, B.; Dhiju Das, P.H.; George, N. Functional and Antioxidant Properties of Gelatin Hydrolysates Prepared from Skin and Scale of Sole Fish. J. Aquat. Food Prod. Technol. 2019, 28, 976–986. [Google Scholar] [CrossRef]
- Alolod, G.A.L.; Nuñal, S.N.; Nillos, M.G.G.; Peralta, J.P. Bioactivity and Functionality of Gelatin Hydrolysates from the Skin of Oneknife Unicornfish (Naso Thynnoides). J. Aquat. Food Prod. Technol. 2019, 28, 1013–1026. [Google Scholar] [CrossRef]
- Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative Activity and Functional Properties of Protein Hydrolysate of Yellow Stripe Trevally (Selaroides Leptolepis) as Influenced by the Degree of Hydrolysis and Enzyme Type. Food Chem. 2007, 102, 1317–1327. [Google Scholar] [CrossRef]
- Amagliani, L.; Silva, J.V.C.; Saffon, M.; Dombrowski, J. On the Foaming Properties of Plant Proteins: Current Status and Future Opportunities. Trends Food Sci. Technol. 2021, 118, 261–272. [Google Scholar] [CrossRef]
Amino Acid | Collagen | PF1 (>30 kDa) | PF2 (10–30 kDa) | PF3 (3–10 kDa) | PF4 (<3 kDa) |
---|---|---|---|---|---|
Essential amino acid | |||||
Histidine (His) | 0.97 | 2.62 | 6.58 | 7.41 | 10.67 |
Isoleucine (Ile) | 0.85 | 1.45 | 1.49 | 1.17 | 1.46 |
Leucine (Leu) | 1.91 | 1.88 | 1.67 | 1.34 | 3.35 |
Lysine (Lys) | 3.67 | 4.19 | 4.48 | 4.19 | 5.02 |
Methionine (Met) | 0.48 | 0.74 | 0.83 | 0.80 | ND |
Phenylalanine (Phe) | 0.58 | 1.08 | 1.20 | 0.95 | 1.26 |
Tyrosine (Tyr) | 0.43 | 0.49 | 0.41 | 0.41 | 0.94 |
Threonine (Thr) | 5.02 | 4.85 | 3.86 | 2.89 | 5.54 |
Valine (Val) | 1.25 | 2.45 | 2.39 | 2.01 | 1.57 |
Non-essential amino acid | |||||
Alanine (Ala) | 8.35 | 10.20 | 10.42 | 9.42 | 11.61 |
Aspartic/asparagine (Asp) | 4.62 | 5.07 | 4.81 | 5.55 | 17.47 |
Arginine (Arg) | 9.31 | 11.51 | 9.51 | 10.13 | 6.49 |
Glycine (Gly) | 27.81 | 23.25 | 23.39 | 23.70 | 15.06 |
Glutamic/glutamine (Glu) | 10.02 | 10.67 | 10.64 | 11.45 | 7.22 |
Proline (Pro) | 12.89 | 9.53 | 8.99 | 9.05 | 3.66 |
Hydroxyproline (Hyp) | 9.30 | 7.65 | 6.70 | 6.72 | 5.75 |
Serine (Ser) | 2.55 | 2.37 | 2.64 | 2.81 | 2.93 |
Peptide Fraction | Concentration (mg/mL) | DPPH Radical Scavenging Activity (%) | Hydroxyl Radical Scavenging Activity (%) | Reducing Power (OD at 700 nm) |
---|---|---|---|---|
PF1 (>30 kDa) | 1 | 61.83 ± 1.35 h | 53.70 ± 1.35 k | 0.07 ± 0.01 j |
5 | 65.76 ± 1.43 g | 61.06 ± 0.86 j | 0.09 ± 0.01 h,i | |
10 | 71.33 ± 0.76 f | 66.36 ± 1.01 i | 0.12 ± 0.01 g,h | |
PF2 (10–30 kDa) | 1 | 65.93 ± 0.93 g | 66.80 ± 1.44 i | 0.09 ± 0.01 h,i |
5 | 70.93 ± 0.97 f | 71.13 ± 1.60 h | 0.148 ± 0.004 g | |
10 | 76.53 ± 1.25 e | 77.26 ± 0.87 g | 0.184 ± 0.010 f | |
PF3 (3–10 kDa) | 1 | 72.70 ± 1.31 f | 76.96 ± 1.79 g | 0.115 ± 0.007 g,h |
5 | 77.60 ± 1.13 e | 86.86 ± 1.25 f | 0.18 ± 0.01 f | |
10 | 84.46 ± 1.09 c | 91.46 ± 1.02 d | 0.24 ± 0.01 e | |
PF4 (<3 kDa) | 1 | 87.06 ± 1.40 b | 88.76 ± 0.76 e | 0.138 ± 0.003 g |
5 | 82.23 ± 0.90 d | 91.80 ± 0.70 d | 0.25 ± 0.01 e | |
10 | 76.20 ± 1.15 e | 95.46 ± 0.56 b,c | 0.34 ± 0.01 d | |
Ascorbic acid | 1 | 88.73 ± 1.36 b | 94.10 ± 0.52 c | 0.64 ± 0.01 c |
5 | 94.36 ± 0.98 a | 96.83 ± 0.61 a,b | 0.82 ± 0.03 b | |
10 | 95.46 ± 1.20 a | 98.26 ± 0.35 a | 1.42 ± 0.06 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Serrano, D.J.; Hadidi, M.; Varcheh, M.; Jelyani, A.Z.; Moreno, A.; Lorenzo, J.M. Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties. Antioxidants 2022, 11, 509. https://doi.org/10.3390/antiox11030509
González-Serrano DJ, Hadidi M, Varcheh M, Jelyani AZ, Moreno A, Lorenzo JM. Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties. Antioxidants. 2022; 11(3):509. https://doi.org/10.3390/antiox11030509
Chicago/Turabian StyleGonzález-Serrano, Diego J., Milad Hadidi, Matin Varcheh, Aniseh Zarei Jelyani, Andres Moreno, and Jose M. Lorenzo. 2022. "Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties" Antioxidants 11, no. 3: 509. https://doi.org/10.3390/antiox11030509
APA StyleGonzález-Serrano, D. J., Hadidi, M., Varcheh, M., Jelyani, A. Z., Moreno, A., & Lorenzo, J. M. (2022). Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties. Antioxidants, 11(3), 509. https://doi.org/10.3390/antiox11030509