Chemical Composition and Antioxidant Properties of Common and Lemon Verbena
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Standards and Reagents
2.3. Nutritional Value
2.3.1. Proximate Composition and Energy
2.3.2. Composition in Free Sugars and Organic Acids
2.3.3. Composition in Fatty Acids and Tocopherols
2.4. Non-Nutritional Composition
2.4.1. Extract Preparation
2.4.2. Analysis of Phenolic Compounds
2.4.3. Total Phenolic Compound (TPC), Total Flavonoid (TF), and Total Phenolic Acid (TPA) Content
2.5. Antioxidant Activity
2.5.1. DPPH Radical Scavenging Activity
2.5.2. ABTS Radical Scavenging Activity
2.5.3. FRAP Assay
2.5.4. CUPRAC Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition
3.2. Chemical Composition
3.3. Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrakou, K.; Iatrou, G.; Lamari, F.N. Ethnopharmacological survey of medicinal plants traded in herbal markets in the Peloponnisos, Greece. J. Herb. Med. 2020, 19, 100305. [Google Scholar] [CrossRef]
- Caleja, C.; Finimundy, T.C.; Pereira, C.; Barros, L.; Calhelha, R.C.; Sokovic, M.; Ivanov, M.; Carvalho, A.M.; Rosa, E.; Ferreira, I.C.F.R. Function infusions and their mixtures with bioactive properties. Food Funct. 2019, 10, 5939–5951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricco, R.A.; Wagner, M.L.; Portmann, E.; Reides, C.; Llesuy, S.; Gurni, A.A.; Carballo, M.A. Survey on polyphenols, antioxidant activity and genotoxicity on argentinean species of Lippia and Aloysia (Verbenaceae). Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 2010, 9, 388–396. [Google Scholar]
- Bahramsoltani, R.; Rostamiasrabadi, P.; Shahpiri, Z.; Marques, A.M.; Rahimi, R.; Farzaei, M.H. Aloysia citrodora Paláu (Lemon verbena): A review of phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 222, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Mpiana, P.T. Traditional uses, Physical properties, Phytochemistry and Bioactivity of Lippia multiflora Moldenke (Verbenaceae): A Mini-review. Discov. Phytomedicine 2020, 7, 19. [Google Scholar] [CrossRef]
- Li, H.B.; Wong, C.C.; Cheng, K.W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Fernandes, Â.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical composition of Cynara cardunculus L. var. altilis heads: The impact of harvesting time. Agronomy 2020, 10, 1088. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Pinela, J.; Dias, M.I.; Giannoulis, K.D.; Kostić, M.; Soković, M.; Queijo, B.; Santos-Buelga, C.; Ferreira, I.C.F.R.; et al. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem. 2022, 369, 130875. [Google Scholar] [CrossRef]
- Bukvicki, D.; Gottardi, D.; Prasad, S.; Novakovic, M.; Marin, D.P.; Tyagi, K.A. The Healing Effects of Spices in Chronic Diseases. Curr. Med. Chem. 2020, 27, 4401–4420. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Santos-buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical composition of cardoon (Cynara cardunculus L. var. altilis) petioles as affected by plant growth stage. Food Res. Int. 2022, 156, 111330. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Barros, L.; Rodrigues, M.Â.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Stevia rebaudiana Bertoni cultivated in Portugal: A prospective study of its antioxidant potential in different conservation conditions. Ind. Crops Prod. 2016, 90, 49–55. [Google Scholar] [CrossRef]
- Crespo, Y.A.; Sánchez, L.R.B.; Quintana, Y.G.; Cabrera, A.S.T.; del Sol, A.B.; Mayancha, D.M.G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon 2019, 5, e01942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amer, S.A.; Rizk, A.E. Production and evaluation of novel functional extruded corn snacks fortified with ginger, bay leaves and turmeric powder. Food Prod. Process. Nutr. 2022, 4, 4. [Google Scholar] [CrossRef]
- Van Wyk, B.; Wink, M. Medicinal Plants of the World: An Illustrated Scientific Guide to Important Medicinal Plants and Their Uses; CABI: São Paulo, Brazil; p. 520.
- Kubica, P.; Kokotkiewicz, A.; Malinowska, M.A.; Synowiec, A.; Gniewosz, M.; Hussain, S.; Yaqoob, M.; Bonn, G.K.; Jakschitz, T.; Mahmoud, E.A.; et al. Phenylpropanoid Glycoside and Phenolic Acid Profiles and Biological Activities of Biomass Extracts from Different Types of Verbena officinalis Microshoot Cultures and Soil-Grown Plant. Antioxidants 2022, 11, 409. [Google Scholar] [CrossRef]
- Mengiste, B.; Yesuf, J.; Getachew, B. In-vitro antibacterial activity and phytochemical analysis of leaf extract of Verbena officinalis. Int. J. Pharmacogn. 2014, 1, 744–779. [Google Scholar]
- Calvo, M.I.; San Julian, A.; Fernández, M. Identification of the major compounds in extracts of Verbena officinalis L. (Verbenaceae) by HPLC with Post-Column derivatization. Chromatographia 1997, 46, 241–244. [Google Scholar] [CrossRef]
- Casanova, E.; García-Mina, J.M.; Calvo, M.I. Antioxidant and antifungal activity of Verbena officinalis L. leaves. Plant Foods Hum. Nutr. 2008, 63, 93–97. [Google Scholar] [CrossRef]
- Khan, A.W.; Khan, A.U.; Ahmed, T. Anticonvulsant, anxiolytic, and sedative activities of Verbena officinalis. Front. Pharmacol. 2016, 7, 499. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.; Chou, G.; Wang, Z. Two new iridoids from Verbena officinalis L. Molecules 2014, 19, 10473–10479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilia, A.R.; Giomi, M.; Innocenti, M.; Gallori, S.; Vincieri, F.F. HPLC-DAD-ESI-MS analysis of the constituents of aqueous preparations of verbena and lemon verbena and evaluation of the antioxidant activity. J. Pharm. Biomed. Anal. 2008, 46, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Ganzera, M.; Stuppner, H. Analysis of the aerial parts of Verbena officinalis L. by micellar electrokinetic capillary chromatography. Chromatographia 2004, 60, 193–197. [Google Scholar] [CrossRef]
- El-Wakil, E.S.; El-Shazly, M.A.M.; El-Ashkar, A.M.; Aboushousha, T.; Ghareeb, M.A. Chemical profiling of Verbena officinalis and assessment of its anti-cryptosporidial activity in experimentally infected immunocompromised mice. Arab. J. Chem. 2022, 15, 103945. [Google Scholar] [CrossRef]
- Kawashty, S.A.; El-Garf, I.A. The flavonoid chemosystematics of Egyptian Verbena species. Biochem. Syst. Ecol. 2000, 28, 919–921. [Google Scholar] [CrossRef]
- Rehecho, S.; Hidalgo, O.; García-Iñiguez de Cirano, M.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical composition, mineral content and antioxidant activity of Verbena officinalis L. LWT-Food Sci. Technol. 2011, 44, 875–882. [Google Scholar] [CrossRef]
- Verma, V.K.; Siddiqui, N.U. Bioactive chemical constituents from the plant Verbena officinalis Linn. Int. J. Pharm. Pharm. Sci. 2011, 3, 108–109. [Google Scholar]
- Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (Common Vervain)-A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020, 86, 1241–1257. [Google Scholar] [CrossRef]
- dos Santos, A.C.; Sutili, F.J.; Heinzmann, B.M.; Cunha, M.A.; Brusque, I.C.M.; Baldisserotto, B.; Zeppenfeld, C.C. Aloysia triphylla essential oil as additive in silver catfish diet: Blood response and resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2017, 62, 213–216. [Google Scholar] [CrossRef]
- Maliki, I.; Es-safi, I.; El Moussaoui, A.; Mechchate, H.; El Majdoub, Y.O.; Bouymajane, A.; Cacciola, F.; Mondello, L.; Elbadaoui, K. Salvia officinalis and Lippia triphylla: Chemical characterization and evaluation of antidepressant-like activity. J. Pharm. Biomed. Anal. 2021, 203, 114207. [Google Scholar] [CrossRef]
- Rashid, H.M.; Mahmod, A.I.; Afifi, F.U.; Talib, W.H. Antioxidant and Antiproliferation Activities of Lemon Verbena (Aloysia citrodora): An In Vitro and In Vivo Study. Plants 2022, 11, 785. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Bertelloni, F.; Najar, B.; Nardoni, S.; Pistelli, L.; Mancianti, F. Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. Microorganisms 2020, 8, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, H.F.M.; El-Beltagi, H.S.; Nasr, N.F. Assessment of Volatile Components, Free Radical-Scavenging Capacity and Anti-Microbial Activity of Lemon Verbena Leaves. Res. J. Phytochem. 2008, 2, 84–92. [Google Scholar] [CrossRef]
- Amin, B.; Noorani, R.; Razavi, B.M.; Hosseinzadeh, H. The effect of ethanolic extract of Lippia citriodora on rats with chronic constriction injury of neuropathic pain. Cell J. 2018, 19, 528–536. [Google Scholar] [CrossRef]
- Funes, L.; Fernández-Arroyo, S.; Laporta, O.; Pons, A.; Roche, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Micol, V. Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract. Food Chem. 2009, 117, 589–598. [Google Scholar] [CrossRef]
- Wernert, M.F.; Wagner, M.L.; Gurni, A.A.; Carballo, M.A.; Ricco, R.A. Estudio de polifenoles de infusiones y cocimientos de hojas de “Cedrón” (Aloysia citrodora Palau) y “Poleo” (Lippia turbinata Griseb.)-Verbenaceae. BlacpmaBoletín Latinoam. y del Caribe Plantas Med. y Aromáticas 2009, 8, 308–311. [Google Scholar]
- Rezig, L.; Saada, M.; Trabelsi, N.; Tammar, S.; Limam, H.; Rebey, I.B.; Smaoui, A.; Sghaier, G.; Del Re, G.; Ksouri, R.; et al. Chemical composition, antioxidant and antimicrobial activities of Aloysia triphylla L. Essential oils and methanolic extract. Ital. J. Food Sci. 2019, 31, 556–572. [Google Scholar] [CrossRef]
- Ombito, J.O.; Salano, E.N.; Yegon, P.K.; Ngetich, W.K.; Mwangi, E.M. A review on the chemistry of some species of genus Lippia (Verbenaceae family). J. Sci. Innov. Res. 2014, 3, 460–466. [Google Scholar] [CrossRef]
- Felgines, C.; Fraisse, D.; Besson, C.; Vasson, M.P.; Texier, O. Bioavailability of lemon verbena (Aloysia triphylla) polyphenols in rats: Impact of colonic inflammation. Br. J. Nutr. 2014, 111, 1773–1781. [Google Scholar] [CrossRef] [Green Version]
- Escobar, P.; Leal, S.M.; Herrera, L.V.; Martinez, J.R.; Stashenko, E. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components. Mem. Inst. Oswaldo Cruz 2010, 105, 184–190. [Google Scholar] [CrossRef]
- Parodi, T.V.; Gressler, L.T.; de Silva, L.L.; Geferson, A.B.; Schmidt, D.; Caron, B.O.; Heinzmann, B.M.; Baldisserotto, B. Chemical composition of the essential oil of Aloysia triphylla under seasonal influence and its anaesthetic activity in fish. Aquac. Res. 2020, 51, 2515–2524. [Google Scholar] [CrossRef]
- Gil, A.; Van Baren, C.M.; Di Leo Lira, P.M.; Bandoni, A.L. Identification of the genotype from the content and composition of the essential oil of lemon verbena (Aloysia citriodora Palau). J. Agric. Food Chem. 2007, 55, 8664–8669. [Google Scholar] [CrossRef]
- Fateh, A.H.; Mohamed, Z.; Chik, Z.; Alsalahi, A.; Md Zain, S.R.; Alshawsh, M.A. Mutagenicity and genotoxicity effects of Verbena officinalis leaves extract in Sprague-Dawley Rats. J. Ethnopharmacol. 2019, 235, 88–99. [Google Scholar] [CrossRef]
- Lai, S.W.; Yu, M.S.; Yuen, W.H.; Chang, R.C.C. Novel neuroprotective effects of the aqueous extracts from Verbena officinalis Linn. Neuropharmacology 2006, 50, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabian, F.; Ardakani, M.M.; Rahmani, K.; Azadi, N.A.; Alemohammad, Z.B.; Bidaki, R.; Karimi, M.; Emtiazy, M.; Hashempur, M.H. Aloysia citriodora Palau (lemon verbena) for insomnia patients: A randomized, double-blind, placebo-controlled clinical trial of efficacy and safety. Phyther. Res. 2019, 33, 350–359. [Google Scholar] [CrossRef]
- Sourki, A.H.; Ghani, A.; Kiani, F.; Alipour, A. Phytochemical profiles of lemon verbena (Lippia citriodora H.B.K.) and its potential application to cookie enrichment. Food Sci. Nutr. 2021, 9, 3100–3113. [Google Scholar] [CrossRef]
- Rojas, L.B.; Velasco, J.; Díaz, T.; Gil Otaiza, R.; Carmona, J.; Usubillaga, A. Chemical composition and antibacterial effects of the essential oil of Aloysia triphylla against genito-urinary pathogens. Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 2010, 9, 56–62. [Google Scholar]
- Horwitz, W.; Latimer, G. (Eds.) AOAC Official Methods of Analysis of Association of Official Analytical Chemists Intern1. In AOAC Official Methods of Analysis of Association of Official Analytical Chemists International; AOAC Inter.: Gaithersburg, MD, USA, 2016; ISBN 0935584773. [Google Scholar]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Pinela, J.; Barreira, J.C.M.; Barros, L.; Verde, S.C.; Antonio, A.L.; Carvalho, A.M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage. Food Chem. 2016, 206, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Viapiana, A.; Struck-Lewicka, W.; Konieczynski, P.; Wesolowski, M.; Kaliszan, R. An approach based on HPLC-fingerprint and chemometrics to quality consistency evaluation of Matricaria chamomilla L. commercial samples. Front. Plant Sci. 2016, 7, 1561. [Google Scholar] [CrossRef] [Green Version]
- Singleton, S.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- 4.00, B.H. Birkenblätter–Betulae Herba 4.00. In European Pharmacopoeia; Council of Europe: Strasbourg, France, 2002; p. 1308.
- Society, P.P. Polish Pharmacopoeia VI. In Polish Pharmaceutical Society; Polish Pharmaceutical Society: Warszawa, Poland, 2002; p. 150. [Google Scholar]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoǧlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Straint, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘“Antioxidant Power”’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef]
- Pereira, E.; Antonio, A.L.; Barreira, J.C.M.; Barros, L.; Bento, A.; Ferreira, I.C.F.R. Gamma irradiation as a practical alternative to preserve the chemical and bioactive wholesomeness of widely used aromatic plants. Food Res. Int. 2015, 67, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.; Antonio, A.L.; Rafalski, A.; Barreira, J.C.M.; Barros, L.; Oliveira, M.B.P.P. Electron-beam irradiation as an alternative to preserve nutritional, chemical and antioxidant properties of dried plants during extended storage periods. LWT 2017, 82, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Himénez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.; Rodríguez-García, I. Lipid Classes, Fatty Acids, and Tocopherols of Leaves of Six Edible Plant Species. Eur. Food Res. Technol. 1999, 209, 313–316. [Google Scholar] [CrossRef]
- Tammar, S.; Salem, N.; Wannes, W.A.; Limam, H.; Bourgou, S.; Fares, N.; Dakhlaoui, S.; Hammami, M.; Khammassi, S.; Re, G.D.; et al. Chemometric profiling and bioactivity of verbena (Aloysia citrodora) methanolic extract from four localities in Tunisia. Foods 2021, 10, 2912. [Google Scholar] [CrossRef]
- Aldeen, M.G.N.; Mansoor, R.; Aljoubbeh, M. Fluctuations of phenols and flavonoids in infusion of lemon verbena (Lippia citriodora) dried leaves during growth stages. Nutr. Food Sci. 2015, 45, 766–773. [Google Scholar] [CrossRef]
- Rita, I.; Pereira, C.; Barros, L.; Ferreira, I.C.F.R. Exploring reserve lots of Cymbopogon citratus, Aloysia citrodora and Thymus × citriodorus as improved sources of phenolic compounds. Food Chem. 2018, 257, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.; Grangeia, H.; Figueirinha, A.; Figueiredo, I.V.; Batista, M.T. Influence of harvest date and material quality on polyphenolic content and antioxidant activity of Cymbopogon citratus infusion. Ind. Crops Prod. 2016, 83, 738–745. [Google Scholar] [CrossRef]
- Sartor, T.; Xavier, V.B.; Falcão, M.A.; Mondin, C.A.; dos Santos, M.A.; Cassel, E.; Astarita, L.V.; Santarém, E.R. Seasonal changes in phenolic compounds and in the biological activities of Baccharis dentata (Vell.) G.M. Barroso. Ind. Crops Prod. 2013, 51, 355–359. [Google Scholar] [CrossRef]
- Monteiro, J.M.; Albuquerque, U.P.; Neto, E.M.F.L.; Araújo, E.L.; Albuquerque, M.M.; Amorim, E.L.C. The effects of seasonal climate changes in the caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) Brenan. Rev. Bras. Farmacogn. 2006, 16, 338–344. [Google Scholar] [CrossRef]
- Connor, A.M.; Finn, C.E.; Alspach, P.A. Genotypic and environmental variation in antioxidant activity and total phenolic content among blackberry and hybridberry cultivars. J. Am. Soc. Hortic. Sci. 2005, 130, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Fotakis, C.; Tsigrimani, D.; Tsiaka, T.; Lantzouraki, D.Z.; Strati, I.F.; Makris, C.; Tagkouli, D.; Proestos, C.; Sinanoglou, V.J.; Zoumpoulakis, P. Metabolic and antioxidant profiles of herbal infusions and decoctions. Food Chem. 2016, 211, 963–971. [Google Scholar] [CrossRef]
- Pohl, P.; Dzimitrowicz, A.; Jedryczko, D.; Szymczycha-Madeja, A.; Welna, M.; Jamroz, P. The determination of elements in herbal teas and medicinal plant formulations and their tisanes. J. Pharm. Biomed. Anal. 2016, 130, 326–335. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Babili, F. El Culinary Decoctions: Spectrophotometric Determination of Various Polyphenols Coupled with their Antioxidant Activities. Pharm. Crop 2013, 4, 15–20. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Tamer, C.E.; Yekeler, F.Z.; Çopur, Ö.U.; İncedayi, B.; Suna, S. A study of fortification of lemonade with herbal extracts. Food Sci. Technol. 2017, 37, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Suna, S.; Incedayi, B.; Tamer, C.E.; Ozcan-Sinir, G.; Copur, O.U. Lemon verbena (Lippia citriodora Kunth) beverages: Physicochemical properties, contents of total phenolics and minerals, and bioaccessibility of antioxidants. Ital. J. Food Sci. 2019, 31, 40–53. [Google Scholar]
- Dziurka, M.; Kubica, P.; Kwiecien, I.; Biesaga-Koscielniak, J.; Ekiert, H.; Abdelmohsen, S.A.M.; Al-Harbi, F.F.; El-Ansary, D.O.; Elansary, H.O.; Szopa, A. In Vitro Cultures of Some Medicinal Plant Species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and Q. Plants 2021, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic profile and antioxidant properties of commercial and wild Fragaria vesca L. roots: A comparison between hydromethanolic and aqueous extracts. Ind. Crops Prod. 2015, 63, 125–132. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chem. 2012, 135, 1028–1035. [Google Scholar] [CrossRef]
- Skotti, E.; Anastasaki, E.; Kanellou, G.; Polissiou, M.; Tarantilis, P.A. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind. Crops Prod. 2014, 53, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Proestos, C.; Komaitis, M. Ultrasonically assisted extraction of phenolic compounds from aromatic plants: Comparison with conventional extraction technics. J. Food Qual. 2006, 29, 567–582. [Google Scholar] [CrossRef]
Standards | Regression Equation * | Linearity (µg/mL) | R2 | LODs (µg/mL) | LOQs (µg/mL) | Recovery (%) |
---|---|---|---|---|---|---|
GA | y = 33081x − 46804 | 40.4–202 | 0.984 | 6.2 | 20.5 | 94.53 |
SRA | y = 8297x − 19750 | 40–200 | 0.993 | 2.0 | 5.8 | 92.47 |
pCA | y = 19842x − 22834 | 40–200 | 0.989 | 7.3 | 23.5 | 94.71 |
FA | y = 40200x + 34550 | 40–200 | 0.988 | 5.5 | 15.1 | 96.11 |
SNA | y = 39790x − 31190 | 40–200 | 0.993 | 4.8 | 13.6 | 102.43 |
CNA | y = 80832x − 64493 | 40.8–204 | 0.996 | 3.8 | 10.6 | 91.59 |
PRA | y = 74574x + 57542 | 40.8–204 | 0.992 | 8.5 | 25.7 | 104.37 |
RUT | y = 39689x + 58775 | 40–200 | 0.987 | 9.2 | 27.5 | 95.65 |
Q | y = 66816x + 43491 | 40.8–204 | 0.991 | 4.1 | 12.7 | 96.83 |
Constituents (per 100 g) | Verbena officinalis | Aloysia citrodora |
---|---|---|
Protein (g) | 5.9 ± 0.2 b | 13.7 ± 0.5 a |
Ash (g) | 5.8 ± 0.2 b | 9.9 ± 0.2 a |
Fat (g) | 1.50 ± 0.05 b | 1.90 ± 0.07 a |
Total dietary fiber (g) | 70 ± 1 a | 57.1 ± 0.3 b |
Available carbohydrates (g) | 17 ± 1 a | 17.4 ± 0.8 a |
Energy (kcal) | 244 ± 3 b | 256 ± 1 a |
Fructose (g) | 1.54 ± 0.05 a | 1.33 ± 0.02 b |
Glucose (g) | 0.530 ± 0.006 a | 0.390 ± 0.007 b |
Sucrose (g) | 0.220 ± 0.002 a | 0.190 ± 0.002 b |
Total free sugars (g) | 2.29 ± 0.06 a | 1.91 ± 0.02 b |
Oxalic acid (g) | 0.36 ± 0.02 b | 2.46 ± 0.04 a |
Quinic acid (g) | 0.193 ± 0.006 | nd |
Malic acid (g) | 0.99 ± 0.05 b | 1.18 ± 0.08 a |
Citric acid (g) | 1.13 ± 0.04 a | 1.05 ± 0.04 b |
Succinic acid (g) | 2.24 ± 0.09 b | 3.4 ± 0.2 a |
Total organic acids (g) | 4.92 ± 0.01 b | 8.12 ± 0.01 a |
α-Tocopherol (mg) | 2.58 ± 0.03 a | 2.56 ± 0.08 a |
β-Tocopherol (mg) | 3.23 ± 0.07 | nd |
Total tocopherols (mg) | 5.81 ± 0.04 a | 2.56 ± 0.08 b |
Fatty Acids (%) | Verbena officinalis | Aloysia citrodora |
---|---|---|
Myristic acid (C14:0) | 0.85 ± 0.03 b | 1.88 ± 0.02 a |
Palmitic acid (C16:0) | 21.1 ± 0.6 b | 32 ± 1 a |
Palmitoleic acid (C16:1) | 1.06 ± 0.06 a | 0.99 ± 0.01 a |
Heptadecanoic acid (C17:0) | 0.70 ± 0.01 b | 1.52 ± 0.04 a |
Heptadecenoic acid (C17:1) | 0.82 ± 0.04 b | 8.1 ± 0.2 a |
Stearic acid (C18:0) | 5.1 ± 0.2 | nd |
Oleic acid (C18:1 n9) | 13.9 ± 0.5 a | 9.8 ± 0.3 b |
Linoleic acid (C18:2n6) | 17.63 ± 0.01 a | 15.7 ± 0.7 b |
α-Linolenic acid (C18:3n3) | 36 ± 2 a | 24.0 ± 0.6 b |
Behenic acid (C22:0) | 1.69 ± 0.05 b | 2.8 ± 0.2 a |
Lignoceric acid (C24:0) | 1.03 ± 0.03 b | 2.74 ± 0.05 a |
Fatty acid classes | ||
Saturated fatty acids (SFAs) | 30.5 ± 0.7 b | 41 ± 1 a |
Monounsaturated fatty acids (MUFAs) | 15.8 ± 0.4 b | 18.9 ± 0.1 a |
Polyunsaturated fatty acids (PUFAs) | 54 ± 2 a | 39.8 ± 0.1 b |
Verbena officinalis | Aloysia citrodora | |||||
---|---|---|---|---|---|---|
Hydromethanolic Extract | Infusion | Decoction | Hydromethanolic Extract | Infusion | Decoction | |
GA | 0.06 ± 0.01 a | 0.34 ± 0.15 c | 0.77 ± 0.32 d | 0.14 ± 0.06 b | 2.74 ± 0.95 e | 2.82 ± 0.63 ef |
SRA | 1.03 ± 0.41 a | 2.61 ± 0.16 b | 2.69 ± 0.17 b | nd | nd | nd |
pCA | nd | nd | nd | 0.05 ± 0.02 a | 0.15 ± 0.01 b | 0.17 ± 0.01 bc |
FA | 0.24 ± 0.09 a | 1.80 ± 0.14 b | 2.03 ± 0.34 b | 0.59 ± 0.10 a | 5.88 ± 0.65 c | 6.27 ± 0.32 c |
SNA | nd | nd | nd | nd | nd | nd |
CNA | 0.02 ± 0.00 a | 0.09 ± 0.01 ab | 5.12 ± 1.43 c | 0.03 ± 0.00 a | 0.12 ± 0.01 b | 0.12 ± 0.09 b |
PRA | nd | 1.35 ± 0.04 a | 1.36 ± 0.04 a | 0.78 ± 0.17 c | 2.77 ± 0.20 b | 2.74 ± 0.04 b |
RUT | 0.86 ± 0.47 b | 1.90 ± 0.25 a | 1.75 ± 0.16 a | 4.96 ± 1.17 d | 7.79 ± 0.45 e | 3.32 ± 0.18 c |
Q | 0.54 ± 0.01 a | nd | 4.49 ± 0.08 b | 0.54 ± 0.02 a | nd | 4.51 ± 0.08 b |
TF (mg QE/g DW) | 1.15 ± 0.33 a | 1.65 ± 0.29 a | 3.15 ± 0.16 b | 2.18 ± 0.34 c | 3.23 ± 0.57 b | 5.04 ± 0.30 d |
TPA (mg CE/g DW) | 1.56 ± 0.09 a | 11.60 ± 1.42 c | 15.14 ± 0.51 d | 5.69 ± 0.56 b | 38.13 ± 1.77 f | 28.51 ± 11.14 e |
TPC (mg GE/g DW) | 25.45 ± 3.81 a | 77.53 ± 3.01 c | 104.64 ± 6.77 d | 49.30 ± 1.77 b | 137.46 ± 5.17 e | 193.49 ± 7.55 f |
Verbena officinalis | Aloysia citrodora | ||||||
---|---|---|---|---|---|---|---|
Hydromethanolic Extract | Infusion | Decoction | Hydromethanolic Extract | Infusion | Decoction | Ascorbic Acid | |
DPPH (mg TE/g DW) | 25.90 ± 7.39 a | 111.35 ± 9.12 c | 134.25 ± 2.65 d | 77.11 ± 6.95 b | 219.10 ± 2.57 e | 280.22 ± 2.07 f | 68.45 ± 1.32 |
ABTS (mg TE/g DW) | 19.04 ± 5.91 a | 132.57 ± 4.58 c | 162.59 ± 4.62 d | 48.88 ± 1.19 b | 342.99 ± 8.52 e | 374.77 ± 5.57 f | 32.68 ± 1.12 |
FRAP (mmol Fe2+/g DW) | 0.37 ± 0.07 a | 3.89 ± 0.12 c | 5.91 ± 0.50 d | 0.91 ± 0.01 b | 7.31 ± 0.41 e | 8.45 ± 1.01 f | 1.74 ± 0.34 |
Verbena officinalis | Aloysia citrodora | |||||||
---|---|---|---|---|---|---|---|---|
DPPH | ABTS | FRAP | CUPRAC | DPPH | ABTS | FRAP | CUPRAC | |
GA | 0.903 | 0.702 | 0.962 | 0.910 | 0.903 | 0.998 * | 0.793 | 0.750 |
SRA | 0.917 | 0.887 | 0.947 | 0.936 | - | - | - | - |
pCA | - | - | - | - | 0.890 | 0.997 * | 0.996 * | 0.882 |
FA | 0.964 | 0.896 | 0.968 | 0.940 | 0.772 | 0.999 * | 0.883 | 0.860 |
CNA | 0.672 | 0.670 | 0.785 | 0.805 | 0.856 | 0.796 | 0.890 | 0.741 |
PRA | 0.880 | 0.781 | 0.935 | 0.823 | 0.852 | 0.894 | 0.788 | 0.637 |
RUT | 0.844 | 0.744 | 0.876 | 0.860 | −0.144 | 0.064 | 0.012 | −0.189 |
Q | 0.577 | 0.575 | 0.704 | 0.727 | 0.652 | 0.481 | 0.524 | 0.686 |
TF | 0.823 | 0.822 | 0.906 | 0.909 | 0.929 | 0.832 | 0.860 | 0.845 |
TPA | 0.996 * | 0.998* | 0.992 | 0.882 | 0.830 | 0.828 | 0.907 | 0.804 |
TPC | 0.909 | 0.880 | 0.997 * | 0.896 | 0.795 | 0.853 | 0.776 | 0.798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polumackanycz, M.; Petropoulos, S.A.; Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Plenis, A.; Viapiana, A. Chemical Composition and Antioxidant Properties of Common and Lemon Verbena. Antioxidants 2022, 11, 2247. https://doi.org/10.3390/antiox11112247
Polumackanycz M, Petropoulos SA, Añibarro-Ortega M, Pinela J, Barros L, Plenis A, Viapiana A. Chemical Composition and Antioxidant Properties of Common and Lemon Verbena. Antioxidants. 2022; 11(11):2247. https://doi.org/10.3390/antiox11112247
Chicago/Turabian StylePolumackanycz, Milena, Spyridon Alexandros Petropoulos, Mikel Añibarro-Ortega, José Pinela, Lillian Barros, Alina Plenis, and Agnieszka Viapiana. 2022. "Chemical Composition and Antioxidant Properties of Common and Lemon Verbena" Antioxidants 11, no. 11: 2247. https://doi.org/10.3390/antiox11112247
APA StylePolumackanycz, M., Petropoulos, S. A., Añibarro-Ortega, M., Pinela, J., Barros, L., Plenis, A., & Viapiana, A. (2022). Chemical Composition and Antioxidant Properties of Common and Lemon Verbena. Antioxidants, 11(11), 2247. https://doi.org/10.3390/antiox11112247