Dietary Intake of Carotenoids and Risk of Depressive Symptoms: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Selection Process and Data Extraction
2.4. Quality Evaluation
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
References | Country | Age | Gender (M/F) | Participants | Study Design | Sample Size | Types of Carotenoids | Criteria for Diagnosing Depressive Symptoms | Results | Quality Score | |
---|---|---|---|---|---|---|---|---|---|---|---|
Patients | Control | ||||||||||
May A.Beydoun [32], 2013 | American | 20–85 | 75/120 | 675/928 | Adults | Cross-sectional study | Total: n = 1798 Patients: n = 195 Control: n = 1603 | Total carotenoids | PHQ 1 | Negative correlation (p < 0.001). | 13 |
Yuri Milaneschi [1], 2012 | American | ≥65 | Elderly | Follow-up study | Total: n = 528 Patients: n = 78 Control: n = 450 | Total carotenoids | CES-D 2 | Negative correlation (p = 0.04). | 13 | ||
Tae-Hee Kim [33], 2015 | Korea | 12–18 | 0/35 | 0/245 | Adolescent girls | Case–control study | Total: n = 849 Patients: n = 35 Control: n = 245 | Beta– carotene | K-BDI 3 | Negative correlation (p = 0.044). | 14 |
Thao Thi Thu Nguyen [34], 2017 | Japan | ≥65 | 192/245 | 720/914 | Elderly | Cross-sectional study | Total: n = 1634 Patients: n = 437 Control: n = 1197 | Beta-carotene equivalent | GDS 4 | Negative correlation (p = 0.005). | 12 |
Xiaomin Huang [35], 2018 | China | ≥20 | 69/101 | 1374/1247 | Adults | Cross-sectional study | Total: n = 2791 Patients: n = 170 Control: n = 2621 | alpha-carotene; trans-beta-carotene; beta-cryptoxanthin; total (cis-and trans-) lycopene; lutein and zeaxanthin | PHQ-9 | alpha-Carotene: no correlation (p = 0.62); trans-beta-carotene: negative correlation (0.02); beta-cryptoxanthin: no correlation (p = 0.78); total (cis-and trans-): no correlation (p = 0.89); lutein and zeaxanthin: no correlation (p = 0.09) | 13 |
Shirin Amini [36], 2019 | Iran | 18–45 | 0/81 | 0/82 | Postpartum women | Case–control study | Total: n = 163 Patients: n = 81 Control: n = 83 | Lutein; beta-cryptoxanthin | DSM-IV 5 | Lutein: negative correlation (p < 0.001); beta-cryptoxanthin: negative correlation (0.006). | 14 |
Li Di [37], 2019 | China | 42–52 | 0/740 | 0/2022 | Late middle-aged women | Cross-sectional study | Total: n = 2762 Patients: n = 740 Control: n = 2022 | alpha-carotene; beta-carotene | CES-D | Total dietary alpha-carotene: negative correlation (0.002); total dietary beta-carotene: negative correlation (0.012). | 12 |
Hossei [38], 2020 | Iran | 15–18 | 0/115 | 0/148 | Female adolescents | Case–control study | Total: n = 263 Patients: n = 115 Control: n = 148 | beta-Carotene | DASS-21 6 | beta-Carotene: negative correlation (0.036). | 13 |
Honghan Ge [39], 2020 | China | 0–80 | 553/992 | 8002/7854 | Adults | Cross-sectional study | Total: n = 17,401 Patients: n = 1545 Control: n = 15,856 | alpha-Carotene; beta-carotene; beta-cryptoxanthin; lutein and zeaxanthin; lycopene; total carotenoids | PHQ-9 | alpha-Carotene: negative correlation (p < 0.05); beta-carotene: negative correlation (p < 0.01); beta-cryptoxanthin: negative correlation (p < 0.05) Lutein and zeaxanthin; negative correlation (p < 0.01); lycopene: negative correlation (p < 0.05); total carotenoid: negative correlation (p < 0.05) | 11 |
Sayyed Saeid [40], 2020 | Iran | 12–18 | 0/255 | 0/733 | Adolescent girls | Cross-sectional study | Total: n = 988 Patients: n = 255 Control: n = 733 | beta-carotene; alpha-carotene; lutein | 21-item Beck Depression Inventory | beta–carotene: negative correlation (p = 0.003); alpha-carotene: negative correlation (p = 0.004); lutein: negative correlation (p = 0.031). | 12 |
Behnoosh Boozari [41], 2021 | Iran | 18–43 | Healthy college students | Cross-sectional study | Total: n = 184 Patients: n = 93 Control: n = 91 | Total carotenoids | DASS-21 | Carotenoid: negative correlation (p = 0.001) | 12 | ||
Song Lin [42], 2021 | China | ≥18 | 126/203 | 1875/1901 | Adults | Cross-sectional study | Total: n = 4105 Patients: n = 329 Control: n = 3776 | alpha-carotene; beta-carotene; beta-cryptoxanthin; lutein/zeaxanthin; lycopene | PHQ-9 | alpha-carotene: no correlation (p = 0.61); beta-carotene: no correlation (p = 0.465). Carotenoids: negative correlation (p < 0.001); lycopene: no correlation (p = 0.649); lutein/zeaxanthin: no correlation (p = 0.099) | 12 |
3.2.1. Total Carotenoids
3.2.2. Alpha-Carotene
3.2.3. Beta-Carotene
3.2.4. Lycopene
3.2.5. Lutein and/or Zeaxanthin
3.2.6. Beta-Cryptoxanthin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milaneschi, Y.; Bandinelli, S.; Penninx, B.W.; Corsi, A.M.; Lauretani, F.; Vazzana, R.; Semba, R.D.; Guralnik, J.M.; Ferrucci, L. The relationship between plasma carotenoids and depressive symptoms in older persons. World J. Biol. Psychiatry 2012, 13, 588–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayuso-Mateos, J.L.; Vázquez-Barquero, J.L.; Dowrick, C.; Lehtinen, V.; Dalgard, O.S.; Casey, P.; Wilkinson, C.; Lasa, L.; Page, H.; Dunn, G.; et al. Depressive disorders in Europe: Prevalence figures from the ODIN study. Br. J. Psychiatry 2001, 179, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Uher, R.; Payne, J.L.; Pavlova, B.; Perlis, R.H. Major depressive disorder in DSM-5: Implications for clinical practice and research of changes from DSM-IV. Depress. Anxiety 2014, 31, 459–471. [Google Scholar] [CrossRef]
- Li, Z.; Hao, Y.; Han, Y.; Wu, S.; Zhu, D.; Liu, M.; Dong, Q.; Wang, X.; Guan, Y. Prevalence and associated physical symptoms of depressive and anxiety symptoms in neurology outpatient clinic. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1286–1287. [Google Scholar] [CrossRef]
- Friedrich, M.J. Depression Is the Leading Cause of Disability Around the World. JAMA 2017, 317, 1517. [Google Scholar] [CrossRef] [PubMed]
- Park, L.T.; Zarate, C.A., Jr. Depression in the Primary Care Setting. N. Engl. J. Med. 2019, 380, 559–568. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Meyer-Lindenberg, A. Environmental Exposures and Depression: Biological Mechanisms and Epidemiological Evidence. Annu. Rev. Public Health 2019, 40, 239–259. [Google Scholar] [CrossRef] [Green Version]
- Shadrina, M.; Bondarenko, E.A.; Slominsky, P.A. Genetics Factors in Major Depression Disease. Front. Psychiatry 2018, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Khanzode, S.D.; Dakhale, G.N.; Khanzode, S.S.; Saoji, A.; Palasodkar, R. Oxidative damage and major depression: The potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep. 2003, 8, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanatos, R.; Sanz, A. The role of mitochondrial ROS in the aging brain. FEBS Lett. 2018, 592, 743–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, M.; De Vos, N.; Pioli, R.; Demedts, P.; Wauters, A.; Neels, H.; Christophe, A. Lower serum vitamin E concentrations in major depression. Another marker of lowered antioxidant defenses in that illness. J. Affect. Disord. 2000, 58, 241–246. [Google Scholar] [CrossRef]
- Schmelzer, C.; Lindner, I.; Rimbach, G.; Niklowitz, P.; Menke, T.; Döring, F. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 2008, 32, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Scapagnini, G.; Davinelli, S.; Drago, F.; De Lorenzo, A.; Oriani, G. Antioxidants as antidepressants: Fact or fiction? CNS Drugs 2012, 26, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Nagappa, A.N.; Patil, C.R. Role of oxidative stress in depression. Drug Discov. Today 2020, 25, 1270–1276. [Google Scholar] [CrossRef]
- Lai, J.; Moxey, A.; Nowak, G.; Vashum, K.; Bailey, K.; McEvoy, M. The efficacy of zinc supplementation in depression: Systematic review of randomised controlled trials. J. Affect. Disord. 2012, 136, e31–e39. [Google Scholar] [CrossRef]
- Mahdavifar, B.; Hosseinzadeh, M.; Salehi-Abargouei, A.; Mirzaei, M.; Vafa, M. Dietary intake of B vitamins and their association with depression, anxiety, and stress symptoms: A cross-sectional, population-based survey. J. Affect. Disord. 2021, 288, 92–98. [Google Scholar] [CrossRef]
- Almeida, O.P.; Ford, A.H.; Hirani, V.; Singh, V.; van Bockxmeer, F.M.; McCaul, K.; Flicker, L. B vitamins to enhance treatment response to antidepressants in middle-aged and older adults: Results from the B-VITAGE randomised, double-blind, placebo-controlled trial. Br. J. Psychiatry 2014, 205, 450–457. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharm. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996, 384, 240–242. [Google Scholar] [CrossRef] [Green Version]
- Mangels, A.R.; Holden, J.M.; Beecher, G.R.; Forman, M.R.; Lanza, E. Carotenoid content of fruits and vegetables: An evaluation of analytic data. J. Am. Diet. Assoc. 1993, 93, 284–296. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Rajaram, S.; Jones, J.; Lee, G.J. Plant-Based Dietary Patterns, Plant Foods, and Age-Related Cognitive Decline. Adv. Nutr. 2019, 10, S422–S436. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Peters, M.; Godfrey, C.; Mcinerney, P.; Soares, C.; Hanan, K.; Parker, D. The Joanna Briggs Institute Reviewers’ Manual 2015: Methodology for JBI Scoping Reviews; The Joanna Briggs Institute: Adelaide, Australia, 2016. [Google Scholar]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Oishi, J.; Doi, H.; Kawakami, N. Nutrition and depressive symptoms in community-dwelling elderly persons in Japan. Acta Med. Okayama 2009, 63, 9–17. [Google Scholar]
- Beydoun, M.A.; Beydoun, H.A.; Boueiz, A.; Shroff, M.R.; Zonderman, A.B. Antioxidant status and its association with elevated depressive symptoms among US adults: National Health and Nutrition Examination Surveys 2005–6. Br. J. Nutr. 2013, 109, 1714–1729. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Choi, J.Y.; Lee, H.H.; Park, Y. Associations between Dietary Pattern and Depression in Korean Adolescent Girls. J. Pediatr. Adolesc. Gynecol. 2015, 28, 533–537. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Tsujiguchi, H.; Kambayashi, Y.; Hara, A.; Miyagi, S.; Yamada, Y.; Nakamura, H.; Shimizu, Y.; Hori, D.; Suzuki, F.; et al. Relationship between Vitamin Intake and Depressive Symptoms in Elderly Japanese Individuals: Differences with Gender and Body Mass Index. Nutrients 2017, 9, 1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Fan, Y.; Han, X.; Huang, Z.; Yu, M.; Zhang, Y.; Xu, Q.; Li, X.; Wang, X.; Lu, C.; et al. Association between Serum Vitamin Levels and Depression in U.S. Adults 20 Years or Older Based on National Health and Nutrition Examination Survey 2005–2006. Int. J. Environ. Res. Public Health 2018, 15, 1215. [Google Scholar] [CrossRef] [Green Version]
- Amini, S.; Jafarirad, S.; Amani, R.; Sayyah Bargard, M.; Cheraghian, B.; Hemmati, A.A. The relationship between dietary intakes during pregnancy and incidence of postpartum depression: A case-control study. Nutr. Food Sci. 2020, 50, 751–764. [Google Scholar] [CrossRef]
- Li, D.; Li, Y. Associations of α-carotenoid and β-carotenoid with depressive symptoms in late midlife women. J. Affect. Disord. 2019, 256, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Farhadnejad, H.; Neshatbini Tehrani, A.; Salehpour, A.; Hekmatdoost, A. Antioxidant vitamin intakes and risk of depression, anxiety and stress among female adolescents. Clin. Nutr. ESPEN 2020, 40, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Yang, T.; Sun, J.; Zhang, D. Associations between dietary carotenoid intakes and the risk of depressive symptoms. Food Nutr. Res. 2020, 64. [Google Scholar] [CrossRef]
- Khayyatzadeh, S.S.; Omranzadeh, A.; Miri-Moghaddam, M.M.; Arekhi, S.; Naseri, A.; Ziaee, A.; Khajavi, L.; Nejati Salehkhani, F.; Ferns, G.A.; Ghayour-Mobarhan, M. Dietary antioxidants and fibre intake and depressive symptoms in Iranian adolescent girls. Public Health Nutr. 2021, 24, 5650–5656. [Google Scholar] [CrossRef]
- Boozari, B.; Moradi, S.; Heydarpour, F.; Clark, C.C.T.; Nezamoleslami, S.; Saneei, P.; Safavi, S.M. The association between carotenoid intake, mental health, and sleep quality among university students. Sleep Breath 2021, 26, 829–837. [Google Scholar] [CrossRef]
- Lin, S.; Shen, Y. Dietary carotenoids intake and depressive symptoms in US adults, NHANES 2015–2016. J. Affect. Disord. 2021, 282, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.-M.; Parahoo, K. Causes of depression: Perceptions among people recovering from depression. J. Adv. Nurs. 2009, 65, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, D.; Dhabhar, F.S.; James, S.J.; Hough, C.M.; Jain, F.A.; Bersani, F.S.; Reus, V.I.; Verhoeven, J.E.; Epel, E.S.; Mahan, L.; et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 2017, 76, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullan, K.; Cardwell, C.R.; McGuinness, B.; Woodside, J.V.; McKay, G.J. Plasma Antioxidant Status in Patients with Alzheimer’s Disease and Cognitively Intact Elderly: A Meta-Analysis of Case-Control Studies. J. Alzheimers Dis. 2018, 62, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Polidori, M.C.; Stahl, W.; Eichler, O.; Niestroj, I.; Sies, H. Profiles of antioxidants in human plasma. Free Radic. Biol. Med. 2001, 30, 456–462. [Google Scholar] [CrossRef]
- Widomska, J.; Zareba, M.; Subczynski, W.K. Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain? Foods 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Fu, Y.; Zhou, X.; Pan, W.; Shi, Y.; Wang, M.; Zhang, X.; Qi, D.; Li, L.; Ma, K.; et al. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation. J. Neuroimmunol. 2016, 298, 1–8. [Google Scholar] [CrossRef]
- Zhou, X.; Gan, T.; Fang, G.; Wang, S.; Mao, Y.; Ying, C. Zeaxanthin improved diabetes-induced anxiety and depression through inhibiting inflammation in hippocampus. Metab. Brain Dis. 2018, 33, 705–711. [Google Scholar] [CrossRef]
- Niu, K.; Guo, H.; Kakizaki, M.; Cui, Y.; Ohmori-Matsuda, K.; Guan, L.; Hozawa, A.; Kuriyama, S.; Tsuboya, T.; Ohrui, T.; et al. A tomato-rich diet is related to depressive symptoms among an elderly population aged 70 years and over: A population-based, cross-sectional analysis. J. Affect. Disord. 2013, 144, 165–170. [Google Scholar] [CrossRef]
- Park, S.J.; Jaiswal, V.; Lee, H.J. Dietary Intake of Flavonoids and Carotenoids Is Associated with Anti-Depressive Symptoms: Epidemiological Study and In Silico-Mechanism Analysis. Antioxidants 2021, 11, 53. [Google Scholar] [CrossRef]
- Bhosale, P.; Li, B.; Sharifzadeh, M.; Gellermann, W.; Frederick, J.M.; Tsuchida, K.; Bernstein, P.S. Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry 2009, 48, 4798–4807. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Lagarda, M.J.; Garcia-López, F.J.; Sánchez-Siles, L.M.; Blanco-Navarro, I.; Alegría, A.; Pérez-Sacristán, B.; Garcia-Llatas, G.; Donoso-Navarro, E.; Silvestre-Mardomingo, R.A.; et al. Effect of β-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: A randomized crossover trial. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Amengual, J.; Lobo, G.P.; Golczak, M.; Li, H.N.; Klimova, T.; Hoppel, C.L.; Wyss, A.; Palczewski, K.; von Lintig, J. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. 2011, 25, 948–959. [Google Scholar] [CrossRef] [PubMed]
Carotene Species | Included Studies | Patients/Control | Odds Ratio; 95% CI | p |
---|---|---|---|---|
Alpha-carotene | 5 | 3039/25,008 | 0.71; 0.60–0.83 | <0.01 |
Beta-carotene | 7 | 3270/25,889 | 0.61; 0.52–0.70 | <0.01 |
Total carotenoids | 4 | 1632/18,199 | 0.61; 0.53–0.71 | <0.01 |
Lycopene | 3 | 2044/22,253 | 0.71; 0.55–0.90 | <0.01 |
Beta-cryptoxanthin | 4 | 2125/22,036 | 1.07; 0.52–2.21 | 0.86 |
Lutein and/or zeaxanthin | 3 | 2044/22,253 | 0.53; 0.43–0.66 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Xue, F.; Li, Z.; Li, X.; Ai, L.; Jin, M.; Xie, M.; Yu, Y. Dietary Intake of Carotenoids and Risk of Depressive Symptoms: A Systematic Review and Meta-Analysis. Antioxidants 2022, 11, 2205. https://doi.org/10.3390/antiox11112205
Yu Q, Xue F, Li Z, Li X, Ai L, Jin M, Xie M, Yu Y. Dietary Intake of Carotenoids and Risk of Depressive Symptoms: A Systematic Review and Meta-Analysis. Antioxidants. 2022; 11(11):2205. https://doi.org/10.3390/antiox11112205
Chicago/Turabian StyleYu, Qiong, Fengyu Xue, Zhijun Li, Xinwei Li, Lizhe Ai, Mengdi Jin, Mengtong Xie, and Yaqin Yu. 2022. "Dietary Intake of Carotenoids and Risk of Depressive Symptoms: A Systematic Review and Meta-Analysis" Antioxidants 11, no. 11: 2205. https://doi.org/10.3390/antiox11112205
APA StyleYu, Q., Xue, F., Li, Z., Li, X., Ai, L., Jin, M., Xie, M., & Yu, Y. (2022). Dietary Intake of Carotenoids and Risk of Depressive Symptoms: A Systematic Review and Meta-Analysis. Antioxidants, 11(11), 2205. https://doi.org/10.3390/antiox11112205