Development of a New Colorimetric, Kinetic and Automated Ceruloplasmin Ferroxidase Activity Measurement Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Apparatus
2.4. Colorimetric and Fully Automated Ceruloplasmin Ferroxidase Activity Measurement Method
Assay Protocol
2.5. Ceruloplasmin Determination with Immunoturbidimetric Method
2.6. p-Phenylenediamine (PPD) Oxidase Activity Measurement
2.7. o-Dianisidine Oxidase Activity Measurement
2.8. Statistical Analysis
3. Results
3.1. Optimization of Reagent 1
3.2. Optimization of Reagent 2
3.3. Analytical Parameters
3.3.1. Linearity
3.3.2. Detection Limit
3.3.3. Analytical Recovery
3.3.4. Precision
3.3.5. Interference and Inhibition
3.3.6. Extinction Coefficient (ε)
3.3.7. The Reaction Kinetics and The Absorbance Spectrum
3.4. Method Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burtis, C.A.; Ashwood, E.R. (Eds.) Tietz Textbook of Clinical Chemistry, 2nd ed.; Saunders: Philadelphia, PA, USA, 1994. [Google Scholar]
- Beshir, S.; Aziz, H.; Shaheen, W.; Eltahlawy, E. Serum levels of copper, ceruloplasmin and angiotensin converting enzyme among silicotic and non-silicotic workers. Maced. J. Med. Sci. 2015, 3, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczyk-Sowa, M.; Sowa, P.; Mucha, S.; Zostawa, J.; Mazur, B.; Owczarek, M.; Pierzchała, K. Changes in serum ceruloplasmin levels based on immunomodulatory treatments and melatonin supplementation in multiple sclerosis patients. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostevich, V.A.; Sokolov, A.V.; Kozlov, S.O.; Vlasenko, A.Y.; Kolmakov, N.N.; Zakharova, E.T.; Vasilyev, V.B. Functional link between ferroxidase activity of ceruloplasmin and protective effect of apo-lactoferrin: Studying rats kept on a silver chloride diet. Biometals 2016, 29, 691–704. [Google Scholar] [CrossRef]
- Linder, M. Ceruloplasmin and other copper binding components of blood plasma and their functions: An update. Metallomics 2016, 8, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Gaware, V. Ceruloplasmin its role and significance: A review. Pathology 2010, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Vashchenko, G. MacGillivray RT. Multi-copper oxidases and human iron metabolism. Nutrients 2013, 5, 2289–2313. [Google Scholar] [CrossRef] [Green Version]
- Gitlin, J. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J. Biol. Chem. 1988, 263, 6281–6287. [Google Scholar] [CrossRef]
- Kaya, S.; Merhan, O.; Kacar, C.; Colak, A.; Bozukluhan, K. Determination of ceruloplasmin, some other acute phase proteins, and biochemical parameters in cows with endometritis. Vet. World 2016, 9, 1056. [Google Scholar] [CrossRef]
- Cetin, O.; Karaman, E.; Boza, B.; Cim, N.; Alisik, M.; Erel, O.; Alkis, I.; Yildizhan, R.; Kolusari, A.; Sahin, G.H. Relationship between maternal blood ceruloplasmin level, catalase and myeloperoxidase activity and neural tube defects. Ginekol. Pol. 2017, 88, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Osaki, S.; Johnson, D.A.; Frieden, E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem. 1966, 241, 2746–2751. [Google Scholar] [CrossRef]
- Inoue, K.; Sakano, N.; Ogino, K.; Sato, Y.; Wang, D.-H.; Kubo, M.; Takahashi, H.; Kanbara, S.; Miyatake, N. Relationship between ceruloplasmin and oxidative biomarkers including ferritin among healthy Japanese. J. Clin. Biochem. Nutr. 2013, 52, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floris, G.; Medda, R.; Padiglia, A.; Musci, G. The physiopathological significance of ceruloplasmin: A possible therapeutic approach. Biochem. Pharmacol. 2000, 60, 1735–1741. [Google Scholar] [CrossRef]
- Shiva, S.; Wang, X.; A Ringwood, L.; Xu, X.; Yuditskaya, S.; Annavajjhala, V.; Miyajima, H.; Hogg, N.; Harris, Z.L.; Gladwin, M.T. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat. Chem. Biol. 2006, 2, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, M.; Bettegazzi, B.; Barbariga, M.; Codazzi, F.; Zacchetti, D.; Alessio, M. Ceruloplasmin potentiates nitric oxide synthase activity and cytokine secretion in activated microglia. J. Neuroinflamm. 2014, 11, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royce, P.M.; Steinmann, B. (Eds.) Connective Tissue and Its Heritable Disorder: Molecular, Genetic, and Medical Aspects, 1st ed.; Wiley-Liss: New York, NY, USA, 1993. [Google Scholar]
- Scheinberg, I.H.; Sternlieb, I. Wilson disease and idiopathic copper toxicosis. Am. J. Clin. Nutr. 1996, 63, 842S–845S. [Google Scholar] [CrossRef] [Green Version]
- Cunninghamn, J.; Leffell, M.; Mearkle, P.; Harmatz, P. Elevated plasma ceruloplasmin in insulin-dependent diabetes mellitus: Evidence for increased oxidative stress as a variable complication. Metabolism 1995, 44, 996–999. [Google Scholar] [CrossRef]
- Sarnat-Kucharczyk, M.; Rokicki, W.; Zalejska-Fiolka, J.; Pojda-Wilczek, D.; Mrukwa-Kominek, E. Determination of serum ceruloplasmin concentration in patients with primary open angle glaucoma with cataract and patients with cataract only: A pilot study. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 1384. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.-W.; Dong, J.; Jiang, J.-J.; Zhu, Y.-Y.; Liu, Y.-R. Ceruloplasmin, a reliable marker of fibrosis in chronic hepatitis B virus patients with normal or minimally raised alanine aminotransferase. World J. Gastroenterol. 2016, 22, 9586. [Google Scholar] [CrossRef]
- Yorbik, O.; Mutlu, C.; Ozdag, M.F.; Olgun, A.; Eryilmaz, G.; Ayta, S. Possible effects of copper and ceruloplasmin levels on auditory event potentials in boys with attention deficit hyperactivity disorder. Nöro Psikiyatr. Arşivi 2016, 53, 321. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, E.; Schmidt-Riovalle, J.; Sinausía, L.; Carmen Valenza, M.; Perona, J.S. Predictive value of ceruloplasmin for metabolic syndrome in adolescents. Biofactors 2016, 42, 163–170. [Google Scholar]
- Siotto, M.; Pasqualetti, P.; Marano, M.; Squitti, R. Automation of o-dianisidine assay for ceruloplasmin activity analyses: Usefulness of investigation in Wilson’s disease and in hepatic encephalopathy. J. Neural Transm. 2014, 121, 1281–1286. [Google Scholar] [CrossRef]
- Hohbadel, D.C.; McNeely, M.D.; Sunderman, F.W. Automated bichromatic analysis of serum ceruloplasmin. Ann. Clin. Lab. Sci. 1975, 5, 65–70. [Google Scholar]
- Sunderman, F.W., Jr.; Nomoto, S. Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem. 1970, 16, 903–910. [Google Scholar] [CrossRef]
- Osaki, S. Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin). J. Biol. Chem. 1966, 241, 5053–5059. [Google Scholar] [CrossRef]
- Wolf, T.L.; Kotun, J.; Meador-Woodruff, J.H. Plasma copper, iron, ceruloplasmin and ferroxidase activity in schizophrenia. Schizophr. Res. 2006, 86, 167–171. [Google Scholar] [CrossRef]
- Erel, O. Automated measurement of serum ferroxidase activity. Clin. Chem. 1998, 44, 2313–2319. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, M.; Yashiro, T. Determination of human serum ceruloplasmin by ion chromatography based on its ferroxidase activity. J. Chromatogr. B: Biomed. Sci. Appl. 1986, 374, 378–382. [Google Scholar] [CrossRef]
- Somani, B.L.; Ambade, V. A kinetic method amenable to automation for ceruloplasmin estimation with inexpensive and stable reagents. Clin. Biochem. 2007, 40, 571–574. [Google Scholar] [CrossRef]
- Ritchie, R.F.; Alper, C.A.; Graves, J.; Pearson, N.; Larson, C. Automated quantitation of proteins in serum and other biologic fluids. Am. J. Clin. Pathol. 1973, 59, 151–159. [Google Scholar] [CrossRef]
- Wolf, P.L.; Griffiths, J. Ceruloplasmin: Methods and clinical use. CRC Crit. Rev. Clin. Lab. Sci. 1982, 17, 229–245. [Google Scholar] [CrossRef]
- MacIntyre, G.; Gutfreund, K.S.; Martin, W.W.; Camicioli, R.; Cox, D.W. Value of an enzymatic assay for the determination of serum ceruloplasmin. J. Lab. Clin. Med. 2004, 144, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Schosinsky, K.H.; Lehmann, H.P.; Beeler, M.F. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin. Chem. 1974, 20, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Merle, U.; Eisenbach, C.; Weiss, K.H.; Tuma, S.; Stremmel, W. Serum ceruloplasmin oxidase activity is a sensitive and highly specific diagnostic marker for Wilson’s disease. J. Hepatol. 2009, 51, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Nakano, S.; Nagai, K.; Kishikawa, N.; Ohyama, K.; Aoyama, T.; Matsumoto, Y.; Kuroda, N. Development of an Evaluation Method for Hydroxyl Radical Scavenging Activities Using Sequential Injection Analysis with Chemiluminescence Detection. Anal. Sci. 2017, 33, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Harris, E.D. The iron-copper connection: The link to ceruloplasmin grows stronger. Nutr. Rev. 1995, 53, 170–173. [Google Scholar] [CrossRef]
- Yoshida, T.; Tanaka, M.; Sotomatsu, A.; Hirai, S. Activated microglia cause superoxide-mediated release of iron from ferritin. Neurosci. Lett. 1995, 190, 21–24. [Google Scholar] [CrossRef]
- Neselioglu, S.; Ergin, M.; Erel, O. A New Kinetic, Automated Assay to Determine the Ferroxidase Activity of Ceruloplasmin. Anal. Sci. 2017, 33, 1339–1344. [Google Scholar] [CrossRef]
Sample volume | 45 μL |
Reagent 1 | 150 μL (450 mmol/L acetate buffer solution, pH: 5.8) |
Reagent 2 | 20 μL (20 mmol/L iron(II) sulfate hexahydrate in deionized water) |
Wavelength | 415 nm |
Reading point | The reaction was linear with regard to the duration of the incubation period, about 10 min |
Calibration type | Linear (Human CP was used as the calibrator for the assay) |
Intra-Day Precision | Mean (n = 30) | Standard Deviation | CV % |
---|---|---|---|
High | 1237 | 51.2 | 4.1 |
Medium | 724 | 23.7 | 3.3 |
Low | 273 | 13.1 | 4.8 |
Inter-day precision | |||
High | 1293 | 58.6 | 5.5 |
Medium | 701 | 27.8 | 4.0 |
Low | 297 | 14.3 | 4.8 |
p-Phenylenediamine Oxidase Method | o-Dianisidine Oxidase Method | Immunoturbidimetric Method | |
---|---|---|---|
The new method | r = 0.955 | r = 0.981 | r = 0.962 |
p < 0.001 | p < 0.001 | p < 0.001 | |
p-Phenylenediamine oxidase method | r = 0.976 | r = 0.963 | |
p < 0.001 | p < 0.001 | ||
o-Dianisidine oxidase method | r = 0.972 | ||
p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neşelioğlu, S.; Fırat Oğuz, E.; Erel, Ö. Development of a New Colorimetric, Kinetic and Automated Ceruloplasmin Ferroxidase Activity Measurement Method. Antioxidants 2022, 11, 2187. https://doi.org/10.3390/antiox11112187
Neşelioğlu S, Fırat Oğuz E, Erel Ö. Development of a New Colorimetric, Kinetic and Automated Ceruloplasmin Ferroxidase Activity Measurement Method. Antioxidants. 2022; 11(11):2187. https://doi.org/10.3390/antiox11112187
Chicago/Turabian StyleNeşelioğlu, Salim, Esra Fırat Oğuz, and Özcan Erel. 2022. "Development of a New Colorimetric, Kinetic and Automated Ceruloplasmin Ferroxidase Activity Measurement Method" Antioxidants 11, no. 11: 2187. https://doi.org/10.3390/antiox11112187
APA StyleNeşelioğlu, S., Fırat Oğuz, E., & Erel, Ö. (2022). Development of a New Colorimetric, Kinetic and Automated Ceruloplasmin Ferroxidase Activity Measurement Method. Antioxidants, 11(11), 2187. https://doi.org/10.3390/antiox11112187