Associations of Human Colorectal Adenoma with Serum Biomarkers of Body Iron Stores, Inflammation and Antioxidant Protein Thiols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Definition of Key Variables
2.3. Laboratory Measurements
2.3.1. SHP
2.3.2. hs-CRP
2.3.3. Ferritin
2.3.4. Transferrin
2.3.5. Total Serum Iron
2.3.6. Transferrin Saturation
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN es-timates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 490–502. [Google Scholar] [CrossRef]
- Brenner, H.; Chen, C. The colorectal cancer epidemic: Challenges and opportunities for primary, secondary and tertiary prevention. Br. J. Cancer 2018, 119, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer inci-dence: Meta-analysis of prospective studies. PLoS ONE 2011, 6, 6e20456. [Google Scholar] [CrossRef] [Green Version]
- Navab, M.; Gharavi, N.; Watson, A.D. Inflammation and metabolic disorders. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 459–464. [Google Scholar] [CrossRef]
- Anusruti, A.; Xuan, Y.; Gào, X.; Jansen, E.H.J.M.; Laetsch, D.C.; Brenner, H.; Schöttker, B. Factors associated with high oxidative stress in patients with type 2 diabetes: A meta-analysis of two cohort studies. BMJ Open Diabetes Res. Care 2020, 8, e000933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahechu, P.; Zozaya, G.; Martí, P.; Hernández-Lizoáin, J.L.; Baixauli, J.; Unamuno, X.; Frühbeck, G.; Catalán, V. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Kondo, S.; Toyokuni, S.; Iwasa, Y.; Tanaka, T.; Onodera, H.; Hiai, H.; Imamura, M. Persistent oxidative stress in human colorectal carcino-ma, but not in adenoma. Free Radic. Biol. Med. 1999, 27, 401–410. [Google Scholar] [CrossRef]
- Cottone, S.; Mule’, G.; Nardi, E.; Vadalà, A.; Guarneri, M.; Briolotta, C.; Arsena, R.; Palermo, A.; Riccobene, R.; Cerasola, G. Relation of C-Reactive Protein to Oxidative Stress and to Endothelial Activation in Essential Hypertension. Am. J. Hypertens. 2006, 19, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowska, C.; Romuk, E. Oxidative stress markers and C-reactive protein are related to severity of heart failure in pa-tients with dilated cardiomyopathy. Mediat. Inflamm. 2014, 2014, 147040. [Google Scholar] [CrossRef] [Green Version]
- Rajeshwar, K.; Kaul, S.; Al-Hazzani, A.; Babu, M.S.; Balakrishna, N.; Sharma, V.; Jyothy, A.; Munshi, A. C-Reactive Protein and Nitric Oxide Levels in Ischemic Stroke and Its Subtypes: Correlation with Clinical Outcome. Inflammation 2011, 35, 978–984. [Google Scholar] [CrossRef]
- Yousuf, O.; Mohanty, B.D.; Martin, S.S.; Joshi, P.H.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Budoff, M.J. High-sensitivity C-reactive protein and cardiovascu-lar disease: A resolute belief or an elusive link? J. Am. Coll. Cardiol. 2013, 62, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.P. Redefining Oxidative Stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.H.J.M.; Beekhof, P.K.; Viezeliene, D.; Muzakova, V.; Skalicky, J. Long-term stability of oxidative stress biomarkers in human serum. Free Radic. Res. 2017, 51, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Turell, L.; Radi, R.; Alvarez, B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 2013, 65, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gào, X.; Brenner, H.; Holleczek, B.; Cuk, K.; Zhang, Y.; Anusruti, A.; Xuan, Y.; Xu, Y.; Schöttker, B. Urinary 8-isoprostane levels and occurrence of lung, col-orectal, prostate, breast and overall cancer: Results from a large, population-based cohort study with 14 years of follow-up. Free Radic. Biol. Med. 2018, 123, 20–26. [Google Scholar] [CrossRef]
- Jaganjac, M.; Milkovic, L.; Sunjic, S.B.; Zarkovic, N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants 2020, 9, 1151. [Google Scholar] [CrossRef]
- Gào, X.; Wilsgaard, T.; Jansen, E.H.; Holleczek, B.; Zhang, Y.; Xuan, Y.; Anusruti, A.; Brenner, H.; Schöttker, B. Pre-diagnostic derivatives of reactive oxygen metabo-lites and the occurrence of lung, colorectal, breast and prostate cancer: An individual participant data meta-analysis of two large population-based studies. Int. J. Cancer 2019, 145, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Gào, X.; Holleczek, B.; Cuk, K.; Zhang, Y.; Anusruti, A.; Xuan, Y.; Xu, Y.; Brenner, H.; Schöttker, B. Investigation on potential associations of oxidatively gener-ated DNA/RNA damage with lung, colorectal, breast, prostate and total cancer incidence. Sci. Rep. 2019, 9, 7109. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.J.; Pollock, J.R.; Bingham, S.A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003, 63, 2358–2360. [Google Scholar]
- Abid, Z.; Cross, A.J.; Sinha, R. Meat, dairy, and cancer. Am. J. Clin. Nutr. 2014, 100, 386S–393S. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Nunes, A.; Jakszyn, P.; Agudo, A. Iron and cancer risk--a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol. Biomark. Prev. 2014, 23, 12–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, C.L.; Witte, J.S.; Swendseid, M.E.; Shikany, J.M.; Hunt, I.F.; Frankl, H.D.; Lee, E.R.; Longnecker, M.P.; Haile, R.W. Plasma ferritin, iron intake, and the risk of colorec-tal polyps. Am. J. Epidemiol. 1996, 144, 34–41. [Google Scholar] [CrossRef]
- Chan, A.T.; Ma, J.; Tranah, G.J.; Giovannucci, E.L.; Rifai, N.; Hunter, D.J.; Fuchs, C.S. Hemochromatosis Gene Mutations, Body Iron Stores, Dietary Iron, and Risk of Colorectal Adenoma in Women. J. Natl. Cancer Inst. 2005, 97, 917–926. [Google Scholar] [CrossRef]
- Cross, A.J.; Sinha, R.; Wood, R.J.; Xue, X.; Huang, W.-Y.; Yeager, M.; Hayes, R.; Gunter, M.J. Iron Homeostasis and Distal Colorectal Adenoma Risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer Prev. Res. 2011, 4, 1465–1475. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.L.; Davis, F.G.; Sutter, E.; Sobin, L.H.; Kikendall, J.W.; Bowen, P. Body Iron Stores and Risk of Colonic Neoplasia. J. Natl. Cancer Inst. 1994, 86, 455–460. [Google Scholar] [CrossRef]
- Cao, H.; Wang, C.; Chai, R.; Dong, Q.; Tu, S. Iron intake, serum iron indices and risk of colorectal adenomas: A meta-analysis of observational studies. Eur. J. Cancer Care 2016, 26, e12486. [Google Scholar] [CrossRef]
- Hundt, S.; Haug, U.; Brenner, H. Comparative evaluation of immunochemical fecal occult blood tests for colorectal adenoma detection. Ann. Intern. Med. 2009, 150, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Tao, S.; Haug, U. Low-Dose Aspirin Use and Performance of Immunochemical Fecal Occult Blood Tests. JAMA 2010, 304, 2513–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gies, A.; Cuk, K.; Schrotz-King, P.; Brenner, H. Direct Comparison of Diagnostic Performance of 9 Quantitative Fecal Immu-nochemical Tests for Colorectal Cancer Screening. Gastroenterology 2018, 154, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Kasvosve, I.; Delanghe, J. Total Iron Binding Capacity and Transferrin Concentration in the Assessment of Iron Status. Clin. Chem. Lab. Med. 2002, 40, 1014–1018. [Google Scholar] [CrossRef]
- Godos, J.; Biondi, A.; Galvano, F.; Basile, F.; Sciacca, S.; Giovannucci, E.L.; Grosso, G. Markers of systemic inflammation and colorectal adenoma risk: Meta-analysis of observational studies. World J. Gastroenterol. 2017, 23, 1909–1919. [Google Scholar] [CrossRef]
- Kong, S.Y.J.; Bostick, R.M.; Flanders, W.D.; McClellan, W.M.; Thyagarajan, B.; Gross, M.D.; Judd, S.; Goodman, M. Oxidative Balance Score, Colorectal Adenoma, and Markers of Oxidative Stress and Inflammation. Cancer Epidemiol. Biomark. Prev. 2014, 23, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Obtułowicz, T.; Swoboda, M.; Speina, E.; Gackowski, D.; Rozalski, R.; Siomek-Górecka, A.; Janik, J.; Janowska, B.; Cieśla, J.; Jawien, A.; et al. Oxidative stress and 8-oxoguanine repair are enhanced in colon adenoma and carcinoma patients. Mutagen 2010, 25, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, R.C.; Goodman, M.; Bostick, R.M.; Fedirko, V.; Gross, M.; Thyagarajan, B.; Flanders, W.D. A Novel Application of Structural Equa-tion Modeling Estimates the Association between Oxidative Stress and Colorectal Adenoma. Cancer Prev. Res. 2018, 11, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anusruti, A.; Jansen, E.H.; Gào, X.; Xuan, Y.; Brenner, H.; Schöttker, B. Longitudinal Associations of Body Mass Index, Waist Circumference, and Waist-to-Hip Ratio with Biomarkers of Oxidative Stress in Older Adults: Results of a Large Cohort Study. Obes. Facts 2020, 13, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Alaniz, M.H.; Takada, J.; Alonso-Vale, M.I.C.; Lima, F. Adipose tissue as an endocrine organ: From theory to practice. J. de Pediatr. 2007, 83, S192–S203. [Google Scholar] [CrossRef]
- Hauck, A.K.; Huang, Y.; Hertzel, A.V.; Bernlohr, D.A. Adipose oxidative stress and protein carbonylation. J. Biol. Chem. 2019, 294, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Ceranowicz, P.; Warzecha, Z.; Dembinski, A. Peptidyl hormones of endocrine cells origin in the gut--their discovery and physi-ological relevance. J. Physiol. Pharmacol. 2015, 66, 11–27. [Google Scholar]
- Korbonits, M.; Goldstone, A.P.; Gueorguiev, M.; Grossmann, A.B. Ghrelin—A hormone with multiple functions. Front. Neuroendocrinol. 2004, 25, 27–68. [Google Scholar] [CrossRef]
- Warzecha, Z.; Dembinski, A. Protective and therapeutic effects of ghrelin in the gut. Curr. Med. Chem. 2012, 19, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.; Cross, A.J.; Dawsey, S.M.; Stanczyk, F.Z.; Kamangar, F.; Weinstein, S.J.; Taylor, P.R.; Männistö, S.; Albanes, D.; Abnet, C.C.; et al. Serum ghrelin is associated with risk of col-orectal adenocarcinomas in the ATBC study. Gut 2018, 67, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Kanemaru, A.; Fukushima, T.; Yamamoto, K.; Tanaka, H.; Haruyama, Y.; Itoh, H.; Matsumoto, N.; Kangawa, K.; Nakazato, M.; et al. Ghrelin administration suppresses inflammation-associated colorectal carcinogenesis in mice. Cancer Sci. 2015, 106, 1130–1136. [Google Scholar] [CrossRef] [Green Version]
- Matuszyk, A.; Ceranowicz, D.; Warzecha, Z.; Ceranowicz, P.; Fyderek, K.; Gałązka, K.; Cieszkowski, J.; Bonior, J.; Jaworek, J.; Pihut, M.; et al. The Influence of Ghrelin on the De-velopment of Dextran Sodium Sulfate-Induced Colitis in Rats. Biomed. Res. Int. 2015, 2015, 718314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matuszyk, A.; Ceranowicz, P.; Warzecha, Z.; Cieszkowski, J.; Ceranowicz, D.; Gałązka, K.; Bonior, J.; Jaworek, J.; Bartuś, K.; Gil, K.; et al. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats. Int. J. Mol. Sci. 2016, 17, 1455. [Google Scholar] [CrossRef] [Green Version]
- Cherkas, A.; Zarkovic, N. 4-Hydroxynonenal in Redox Homeostasis of Gastrointestinal Mucosa: Implications for the Stomach in Health and Diseases. Antioxidants 2018, 7, 118. [Google Scholar] [CrossRef]
- Gasparovic, A.C.; Milkovic, L.; Sunjic, S.B.; Zarkovic, N. Cancer growth regulation by 4-hydroxynonenal. Free Radic. Biol. Med. 2017, 111, 226–234. [Google Scholar] [CrossRef]
- Jaganjac, M.; Milkovic, L.; Gegotek, A.; Cindric, M.; Zarkovic, K.; Skrzydlewska, E.; Zarkovic, N. The relevance of pathophysiologi-cal alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic. Biol. Med. 2020, 157, 128–153. [Google Scholar] [CrossRef]
- Jaganjac, M.; Glavan, T.M.; Zarkovic, N. The Role of Acrolein and NADPH Oxidase in the Granulocyte-Mediated Growth-Inhibition of Tumor Cells. Cells 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Žarković, K.; Uchida, K.; Kolenc, D.; Hlupic, L.; Zarkovic, N. Tissue distribution of lipid peroxidation product acrolein in human colon carcinogenesis. Free Radic. Res. 2006, 40, 543–552. [Google Scholar] [CrossRef]
- Gào, X.; Schöttker, B. Reduction-oxidation pathways involved in cancer development: A systematic review of literature re-views. Oncotarget 2017, 8, 51888–51906. [Google Scholar] [CrossRef] [Green Version]
- Hallberg, L.; Hultén, L.; Gramatkovski, E. Iron absorption from the whole diet in men: How effective is the regulation of iron absorption? Am. J. Clin. Nutr. 1997, 66, 347–356. [Google Scholar] [CrossRef]
- Pilling, L.; Tamosauskaite, J.; Jones, G.; Wood, A.R.; Jones, L.; Kuo, C.-L.; Kuchel, G.; Ferrucci, L.; Melzer, D. Common conditions associated with hereditary haemochromatosis genetic variants: Cohort study in UK Biobank. BMJ 2019, 364, k5222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.; Eze, O.P.; Xu, R. A Brief Review of the Controversial Role of Iron in Colorectal Carcinogenesis. J. Clin. Exp. Pathol. 2013, 3. [Google Scholar] [CrossRef]
- Kovac, S.; Anderson, G.; Baldwin, G.S. Gastrins, iron homeostasis and colorectal cancer. Biochim. Biophys. Acta BBA Bioenerg. 2011, 1813, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Kovac, S.; Smith, K.; Anderson, G.J.; Burgess, J.R.; Shulkes, A.; Baldwin, G.S. Interrelationships between circulating gastrin and iron status in mice and humans. Am. J. Physiol. Liver Physiol. 2008, 295, G855–G861. [Google Scholar] [CrossRef]
- Siddheshwar, R.K.; Gray, J.C.; Kelly, S.B. Plasma levels of progastrin but not amidated gastrin or glycine extended gastrin are ele-vated in patients with colorectal carcinoma. Gut 2001, 48, 47–52. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Controls | Overall CRA Cases | Advanced CRA Cases | ||||||
---|---|---|---|---|---|---|---|---|---|
n | Median (IQR) | % | n | Median (IQR) | % | n | Median (IQR) | % | |
Age (years) | 100 | 60 (57–67) | - | 100 | 60 (57–67) | - | 71 | 60 (56–67) | - |
Sex | |||||||||
Female | 55 | - | 55.0 | 55 | - | 55.0 | 43 | - | 60.6 |
Male | 45 | - | 45.0 | 45 | - | 45.0 | 28 | - | 39.4 |
BMI (kg/m2) | |||||||||
<25 | 34 | - | 34.7 | 31 | - | 32.3 | 26 | - | 38.8 |
25–< 30 | 46 | - | 46.9 | 48 | - | 50.0 | 30 | - | 44.8 |
≥30 | 18 | - | 18.4 | 17 | - | 17.7 | 11 | - | 16.4 |
Smoking status | |||||||||
Never smoker | 58 | - | 58.6 | 42 | - | 42.4 | 30 | - | 42.3 |
Former smoker | 33 | - | 33.3 | 45 | - | 45.5 | 31 | - | 43.7 |
Current smoker | 8 | - | 8.1 | 12 | - | 12.1 | 10 | - | 14.1 |
Physical activity | |||||||||
Inactive | 44 | - | 47.3 | 42 | - | 45.7 | 31 | - | 47.7 |
Sedentary | 33 | - | 35.5 | 28 | - | 30.4 | 23 | - | 35.4 |
Vigorously | 16 | - | 17.2 | 22 | - | 23.9 | 11 | - | 16.9 |
Red and processed meat consumption a | |||||||||
Low | 12 | - | 12.2 | 14 | - | 14.0 | 12 | - | 16.9 |
Intermediate | 70 | - | 71.4 | 80 | - | 80.0 | 54 | - | 76.1 |
High | 16 | - | 16.3 | 6 | - | 6.0 | 5 | - | 7.0 |
SHP (μmol/L) | 100 | 258 (205–290) | - | 100 | 228 (200–275) | - | 71 | 218 (188–265) | - |
hs-CRP (mg/L) | 91 | 1.44 (0.59–3.26) | - | 97 | 1.21 (0.64–1.99) | - | 70 | 1.16 (0.54–1.96) | - |
Ferritin (ng/mL) | 68 | 86.2 (45.6–190.4) | - | 70 | 78.7 (52.4–140.9) | - | 51 | 73.4 (52.4–133.9) | - |
Transferrin (mg/dL) | 97 | 224 (207–251) | - | 96 | 229 (205–262) | - | 67 | 221 (203–253) | - |
Total serum iron (μmol/L) | 99 | 13.9 (11.0–18.1) | - | 100 | 15.2 (11.3–19.7) | - | 71 | 15.2 (11.0–19.5) | - |
Transferrin saturation (%) | 97 | 23.9 (18.8–30.1) | - | 96 | 26.7 (21.6–34.7) | - | 67 | 27.2 (21.6–35.2) | - |
Biomarker | Red and Processed Meat Consumption a | |||
---|---|---|---|---|
Low | Intermediate | High | p Value b | |
(N = 26) | (N = 150) | (N = 22) | ||
Median (IQR) | Median (IQR) | Median (IQR) | ||
SHP (μmol/L) | 254 (211–306) | 239 (200–281) | 246 (215–285) | 0.419 |
hs-CRP (mg/L) | 0.94 (0.51–2.12) | 1.30 (0.65–2.37) | 1.71 (0.81–2.06) | 0.340 |
Ferritin (ng/mL) | 54.8 (42.3–84.5) | 84.0 (52.4–160.6) | 158.5 (99.0–226.9) | 0.006 |
Transferrin (mg/dL) | 240 (219–263) | 222 (202–253) | 228 (215–240) | 0.162 |
Total serum iron (μmol/L) | 16.4 (13.4–19.0) | 14.1 (11.0–18.2) | 15.0 (12.2–20.2) | 0.308 |
Transferrin saturation (%) | 25.6 (20.1–32.4) | 24.5 (20.1–33.1) | 28.8 (21.3–34.8) | 0.546 |
Biomarker | Body Mass Index | |||
---|---|---|---|---|
<25 kg/m2 | 25–<30 kg/m2 | ≥30 kg/m2 | p Value a | |
(N = 65) | (N = 94) | (N = 35) | ||
Median (IQR) | Median (IQR) | Median (IQR) | ||
SHP (μmol/L) | 258 (206–285) | 251 (207–287) | 215 (163–266) | 0.044 |
hs-CRP (mg/L) | 0.87 (0.41–1.81) | 1.40 (0.78–2.14) | 3.69 (1.10–5.54) | <0.001 |
Ferritin (ng/mL) | 84.1 (51.0–140.9) | 76.7 (48.1–154.2) | 108.6 (45.2–226.9) | 0.601 |
Transferrin (mg/dL) | 224 (212–251) | 228 (201–253) | 226 (212–264) | 0.501 |
Total serum iron (μmol/L) | 15.2 (12.2–19.0) | 14.3 (11.3–18.7) | 12.9 (9.8–17.6) | 0.246 |
Transferrin saturation (%) | 25.6 (21.6–34.1) | 25.6 (21.3–34.7) | 20.6 (17.1–29.3) | 0.087 |
SHP | Hs-CRP | Ferritin | Transferrin | Total Serum Iron | TS % | |
---|---|---|---|---|---|---|
SHP | - | r = −0.067 p = 0.359 N = 188 | r = −0.041 p = 0.634 N = 138 | r= 0.216 p= 0.003 N = 193 | r= 0.223 p= 0.002 N = 199 | r = 0.082 p = 0.257 N = 193 |
Hs-CRP | - | - | r = 0.078 p = 0.374 N = 131 | r = 0.053 p = 0.475 N = 184 | r = −0.066 p = 0.367 N = 188 | r= −0.191 p= 0.009 N = 184 |
Ferritin | - | - | - | r= −0.186 p= 0.031 N = 134 | r = 0.075 p = 0.380 N = 138 | r= 0.175 p= 0.043 N = 134 |
Transferrin | - | - | - | - | r= 0.266 p< 0.001 N = 193 | r= −0.180 p= 0.013 N = 193 |
Total serum iron | - | - | - | - | - | r= 0.861 p< 0.001 N = 193 |
Biomarker | Categories | Concentrations | ncontrol | Overall Colorectal Adenoma | Advanced Colorectal Adenoma | ||||
---|---|---|---|---|---|---|---|---|---|
ncase | Model 1 OR (95%CI) a | Model 2 OR (95%CI) b | ncase | Model 1 OR (95%CI) a | Model 2 OR (95%CI) b | ||||
SHP (μmol/L) | Tertile 1 | ≤216 | 34 | 40 | Ref. | Ref. | 33 | Ref. | Ref. |
Tertile 2 | >216–≤280 | 33 | 37 | 1.07 (0.52–2.22) | 0.86 (0.40–1.87) | 25 | 0.76 (0.34–1.68) | 0.58 (0.25–1.40) | |
Tertile 3 | >280 | 33 | 23 | 0.73 (0.32–1.69) | 0.65 (0.27–1.56) | 13 | 0.32 (0.12–0.89) | 0.29 (0.10–0.84) | |
hs-CRP (mg/L) | Tertile 1 | ≤0.83 | 30 | 33 | Ref. | Ref. | 26 | Ref. | Ref. |
Tertile 2 | >0.83–≤2.02 | 30 | 41 | 1.22 (0.58–2.54) | 1.37 (0.65–2.92) | 29 | 1.12 (0.50–2.52) | 1.50 (0.63–3.56) | |
Tertile 3 | >2.02 | 31 | 23 | 0.65 (0.28–1.51) | 0.77 (0.32–1.91) | 15 | 0.46 (0.17–1.24) | 0.64 (0.22–1.87) | |
Ferritin (ng/mL) | Tertile 1 | ≤56.2 | 23 | 21 | Ref. | Ref. | 15 | Ref. | Ref. |
Tertile 2 | >56.2–≤138.6 | 23 | 31 | 1.36 (0.55–3.31) | 1.81 (0.74–4.39) | 25 | 1.86 (0.67–5.13) | 1.87 (0.67–5.25) | |
Tertile 3 | >138.6 | 22 | 18 | 0.88 (0.32–2.41) | 0.93 (0.32–2.74) | 11 | 0.77 (0.24–2.49) | 0.72 (0.21–2.51) | |
Transferrin (mg/dL) | Tertile 1 | ≤212 | 33 | 29 | Ref. | Ref. | 22 | Ref. | Ref. |
Tertile 2 | >212–≤241 | 33 | 27 | 1.26 (0.57–2.78) | 0.97 (0.44–2.16) | 20 | 1.07 (0.45–2.54) | 0.79 (0.32–1.96) | |
Tertile 3 | >241 | 32 | 40 | 1.45 (0.68–3.10) | 1.14 (0.51–2.50) | 25 | 1.03 (0.44–2.42) | 0.84 (0.34–2.05) | |
Total serum iron (μmol/L) | Tertile 1 | ≤11.9 | 33 | 28 | Ref. | Ref. | 21 | Ref. | Ref. |
Tertile 2 | >11.9–≤15.9 | 33 | 27 | 1.12 (0.50–2.49) | 1.07 (0.47–2.45) | 19 | 0.94 (0.38–2.28) | 0.99 (0.39–2.53) | |
Tertile 3 | >15.9 | 33 | 45 | 2.04 (0.95–4.39) | 2.07 (0.91–4.70) | 31 | 1.63 (0.71–3.75) | 2.10 (0.82–5.40) | |
Transferrin saturation (%) | Tertile 1 | ≤20.7 | 33 | 19 | Ref. | Ref. | 15 | Ref. | Ref. |
Tertile 2 | >20.7–≤27.4 | 32 | 31 | 2.24 (0.95–5.28) | 2.07 (0.86–5.01) | 19 | 1.56 (0.59–4.10) | 1.56 (0.54–4.48) | |
Tertile 3 | >27.4 | 32 | 46 | 3.98 (1.70–9.32) | 3.05 (1.30–7.19) | 33 | 3.48 (1.38–8.75) | 2.71 (1.03–7.13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schöttker, B.; Gào, X.; Jansen, E.H.; Brenner, H. Associations of Human Colorectal Adenoma with Serum Biomarkers of Body Iron Stores, Inflammation and Antioxidant Protein Thiols. Antioxidants 2021, 10, 1195. https://doi.org/10.3390/antiox10081195
Schöttker B, Gào X, Jansen EH, Brenner H. Associations of Human Colorectal Adenoma with Serum Biomarkers of Body Iron Stores, Inflammation and Antioxidant Protein Thiols. Antioxidants. 2021; 10(8):1195. https://doi.org/10.3390/antiox10081195
Chicago/Turabian StyleSchöttker, Ben, Xīn Gào, Eugène HJM Jansen, and Hermann Brenner. 2021. "Associations of Human Colorectal Adenoma with Serum Biomarkers of Body Iron Stores, Inflammation and Antioxidant Protein Thiols" Antioxidants 10, no. 8: 1195. https://doi.org/10.3390/antiox10081195
APA StyleSchöttker, B., Gào, X., Jansen, E. H., & Brenner, H. (2021). Associations of Human Colorectal Adenoma with Serum Biomarkers of Body Iron Stores, Inflammation and Antioxidant Protein Thiols. Antioxidants, 10(8), 1195. https://doi.org/10.3390/antiox10081195