Kinetics Drying of Blackberry Bagasse and Degradation of Anthocyanins and Bioactive Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Drying Process of Blackberry Bagasse
2.3. Anthocyanin Quantification
2.4. Determination of Total Phenolic Content
2.5. Antioxidant Capacity
2.6. Mathematical Modeling of the Blackberry Bagasse Drying Kinetics
2.7. Kinetic Model for the Anthocyanin Degradation
2.8. Anthocyanin Content Degradation
2.9. Statistical Analysis
3. Results
3.1. Kinetics Drying Process
3.2. Kinetics of Anthocyanin Degradation
3.3. Total Phenolic Content and Antioxidant Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correa, M.S.; Fetzer, D.L.; Hamerski, F.; Corazza, M.L.; Scheer, A.P.; Ribani, R.H. Pressurized Extraction of High-Quality Blackberry (Rubus Spp. Xavante Cultivar) Seed Oils. J. Supercrit. Fluids 2021, 169, 105101. [Google Scholar] [CrossRef]
- Mokhtar, S.M.; Swailam, H.M.; Embaby, H.E.-S. Physicochemical Properties, Nutritional Value and Techno-Functional Properties of Goldenberry (Physalis peruviana) Waste Powder Concise Title: Composition of Goldenberry Juice Waste. Food Chem. 2018, 248, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Li, D.; Siong Chai, W.; Show, P.L.; Yang, X.; Manickam, S.; Xie, G.; Han, Y. Comparison between Airborne Ultrasound and Contact Ultrasound to Intensify Air Drying of Blackberry: Heat and Mass Transfer Simulation, Energy Consumption and Quality Evaluation. Ultrason. Sonochem. 2021, 72, 105410. [Google Scholar] [CrossRef] [PubMed]
- Gowd, V.; Bao, T.; Chen, W. Antioxidant Potential and Phenolic Profile of Blackberry Anthocyanin Extract Followed by Human Gut Microbiota Fermentation. Food Res. Int. 2019, 120, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Brandão, E.; Raposo, F.; Maricato, É.; Oliveira, J.; Mateus, N.; Coimbra, M.A.; de Freitas, V. Impact of Grape Pectic Polysaccharides on Anthocyanins Thermostability. Carbohydr. Polym. 2020, 239, 116240. [Google Scholar] [CrossRef] [PubMed]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of Thermal Processing on Anthocyanin Stability in Foods; Mechanisms and Kinetics of Degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Tarone, A.G.; Cazarin, C.B.B.; Marostica Junior, M.R. Anthocyanins: New Techniques and Challenges in Microencapsulation. Food Res. Int. 2020, 133, 109092. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.A.; DeLury, N.; Fukumoto, L.; Diarra, M.S. Dried Berry Pomace as a Source of High Value-Added Bioproduct: Drying Kinetics and Bioactive Quality Indices. Int. J. Food Prop. 2020, 23, 2123–2143. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Liu, L.; Deng, Y.; Wei, Z.; Zhang, Y.; Ma, Y.; Zhang, M. Different Thermal Drying Methods Affect the Phenolic Profiles, Their Bioaccessibility and Antioxidant Activity in Rhodomyrtus Tomentosa (Ait.) Hassk Berries. LWT-Food Sci. Technol. 2017, 79, 260–266. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Influence of Drying Processes on Anthocyanin Profiles, Total Phenolic Compounds and Antioxidant Activities of Blueberry (Vaccinium corymbosum). LWT 2020, 120, 108931. [Google Scholar] [CrossRef]
- Blank, D.E.; Bellaver, M.; Fraga, S.; Lopes, T.J.; de Moura, N.F. Drying Kinetics and Bioactive Compounds of Bunchosia Glandulifera. J. Food Process Eng. 2018, 41, e12676. [Google Scholar] [CrossRef]
- López-Vidaña, E.C.; Pilatowsky Figueroa, I.; Antonio Marcos, E.G.; Navarro-Ocaña, A.; Hernández-Vázquez, L.; Santiago-Urbina, J.A. Solar Drying Kinetics and Bioactive Compounds of Blackberry (Rubus fruticosus). J. Food Process Eng. 2019, 42. [Google Scholar] [CrossRef]
- Costa, H.C.B.; Silva, D.O.; Vieira, L.G.M. Physical Properties of Açai-Berry Pulp and Kinetics Study of Its Anthocyanin Thermal Degradation. J. Food Eng. 2018, 239, 104–113. [Google Scholar] [CrossRef]
- Ferreira, L.F.; Minuzzi, N.M.; Rodrigues, R.F.; Pauletto, R.; Rodrigues, E.; Emanuelli, T.; Bochi, V.C. Citric Acid Water-Based Solution for Blueberry Bagasse Anthocyanins Recovery: Optimization and Comparisons with Microwave-Assisted Extraction (MAE). LWT 2020, 133, 110064. [Google Scholar] [CrossRef]
- Singh, R.P.; Heldman, D.R. Introduction to Food Engineering, 4th ed.; Food Science and Technology International Series; Elsevier/Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2009; ISBN 978-0-12-370900-4. [Google Scholar]
- Méndez-Lagunas, L.; Rodríguez-Ramírez, J.; Cruz-Gracida, M.; Sandoval-Torres, S.; Barriada-Bernal, G. Convective Drying Kinetics of Strawberry (Fragaria ananassa): Effects on Antioxidant Activity, Anthocyanins and Total Phenolic Content. Food Chem. 2017, 230, 174–181. [Google Scholar] [CrossRef]
- Jiang, T.; Mao, Y.; Sui, L.; Yang, N.; Li, S.; Zhu, Z.; Wang, C.; Yin, S.; He, J.; He, Y. Degradation of Anthocyanins and Polymeric Color Formation during Heat Treatment of Purple Sweet Potato Extract at Different PH. Food Chem. 2019, 274, 460–470. [Google Scholar] [CrossRef]
- Wang, W.-D.; Xu, S.-Y. Degradation Kinetics of Anthocyanins in Blackberry Juice and Concentrate. J. Food Eng. 2007, 82, 271–275. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Xie, P.; Zhang, L.; Li, Y.; Zhou, J. Copigmentation Effects of Phenolics on Color Enhancement and Stability of Blackberry Wine Residue Anthocyanins: Chromaticity, Kinetics and Structural Simulation. Food Chem. 2019, 275, 299–308. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant Capacity, Phenol, Anthocyanin and Ascorbic Acid Contents in Raspberries, Blackberries, Red Currants, Gooseberries and Cornelian Cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Ángeles Varo, M.; Mérida, J.; Serratosa, M.P. The Influence of Berry Perforation on Grape Drying Kinetics and Total Phenolic Compounds. J. Sci. Food Agric. 2019, 99, 4260–4266. [Google Scholar] [CrossRef]
- Moura, M.; Alves, R.; Sousa, E.; Maia, S.; de Goes, C.; Pérez, J.; Saura, F. Metodologia Científica: Determinação Da Atividade Antioxidante Total Em Frutas Pela Captura Do Radical Livre; ABTS: Fortaleza, Brazil, 2007. [Google Scholar]
- da Silva, A.R. Seedwater: Models for Drying and Soaking Kinetics of Seeds. Agron. J. 2020, 110, 164–170. [Google Scholar] [CrossRef]
- Mercali, G.D.; Jaeschke, D.P.; Tessaro, I.C.; Marczak, L.D.F. Degradation Kinetics of Anthocyanins in Acerola Pulp: Comparison between Ohmic and Conventional Heat Treatment. Food Chem. 2013, 136, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Romero, E.; Chavez-Quintana, S.G.; Siche, R.; Castro-Alayo, E.M.; Cardenas-Toro, F.P. The Kinetics of Total Phenolic Content and Monomeric Flavan-3-Ols during the Roasting Process of Criollo Cocoa. Antioxidants 2020, 9, 146. [Google Scholar] [CrossRef] [Green Version]
- Martins, L.M.; Sant’Ana, A.S.; Iamanaka, B.T.; Berto, M.I.; Pitt, J.I.; Taniwaki, M.H. Kinetics of Aflatoxin Degradation during Peanut Roasting. Food Res. Int. 2017, 97, 178–183. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Mujumdar, A. Berry Drying: Mechanism, Pretreatment, Drying Technology, Nutrient Preservation, and Mathematical Models. Food Eng. Rev. 2019, 11, 61–77. [Google Scholar] [CrossRef]
- Rodríguez, K.; Ah-Hen, K.S.; Vega-Gálvez, A.; Vásquez, V.; Quispe-Fuentes, I.; Rojas, P.; Lemus-Mondaca, R. Changes in Bioactive Components and Antioxidant Capacity of Maqui, Aristotelia Chilensis [Mol] Stuntz, Berries during Drying. LWT-Food Sci. Technol. 2016, 65, 537–542. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Zhang, H.; Mai, Q.; Zhang, B.; Li, H.; Deng, Z. The Degradation Rules of Anthocyanins from Eggplant Peel and Antioxidant Capacity in Fortified Model Food System during the Thermal Treatments. Food Biosci. 2020, 38, 100701. [Google Scholar] [CrossRef]
- Elisia, I.; Hu, C.; Popovich, D.G.; Kitts, D.D. Antioxidant Assessment of an Anthocyanin-Enriched Blackberry Extract. Food Chem. 2007, 101, 1052–1058. [Google Scholar] [CrossRef]
- Coklar, H.; Akbulut, M. Anthocyanins and Phenolic Compounds of Mahonia Aquifolium Berries and Their Contributions to Antioxidant Activity. J. Funct. Foods 2017, 35, 166–174. [Google Scholar] [CrossRef]
- Yuan, J.; Li, H.; Tao, W.; Han, Q.; Dong, H.; Zhang, J.; Jing, Y.; Wang, Y.; Xiong, Q.; Xu, T. An Effective Method for Extracting Anthocyanins from Blueberry Based on Freeze-Ultrasonic Thawing Technology. Ultrason. Sonochem. 2020, 68, 105192. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Q.; Bi, J.; Wang, Y.; Wu, X. Degradation Kinetics of Cyanidin 3-O-Glucoside and Cyanidin 3-O-Rutinoside during Hot Air and Vacuum Drying in Mulberry (Morus Alba L.) Fruit: A Comparative Study Based on Solid Food System. Food Chem. 2017, 229, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Du, J.; Li, M.; Li, C. Degradation Kinetics and Pathways of Red Raspberry Anthocyanins in Model and Juice Systems and Their Correlation with Color and Antioxidant Changes during Storage. LWT 2020, 128, 109448. [Google Scholar] [CrossRef]
- Qiu, G.; Wang, D.; Song, X.; Deng, Y.; Zhao, Y. Degradation Kinetics and Antioxidant Capacity of Anthocyanins in Air-Impingement Jet Dried Purple Potato Slices. Food Res. Int. 2018, 105, 121–128. [Google Scholar] [CrossRef] [PubMed]
- López-Ortiz, A.; Méndez-Lagunas, L.L.; Delesma, C.; Longoria, A.; Escobar, J.; Muñiz, J. Understanding the Drying Kinetics of Phenolic Compounds in Strawberries: An Experimental and Density Functional Theory Study. Innov. Food Sci. Emerg. Technol. 2020, 60, 102283. [Google Scholar] [CrossRef]
- de Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the Bioactive Compounds, Antioxidant Activity and Chemical Composition of Brazilian Blackberry, Red Raspberry, Strawberry, Blueberry and Sweet Cherry Fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Rugină, D.; Stanilă, A.; Dulf, F.; Bunea, A.; Socaci, S.A.; Socaciu, C.; Pintea, A. Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants 2019, 8, 540. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Ke, Z.; Chai, D.; Miao, Y.; Luo, K.; Li, W. Lycopene, Polyphenols and Antioxidant Activities of Three Characteristic Tomato Cultivars Subjected to Two Drying Methods. Food Chem. 2021, 338, 128062. [Google Scholar] [CrossRef]
- Zielinska, M.; Michalska, A. Microwave-Assisted Drying of Blueberry (Vaccinium Corymbosum L.) Fruits: Drying Kinetics, Polyphenols, Anthocyanins, Antioxidant Capacity, Colour and Texture. Food Chem. 2016, 212, 671–680. [Google Scholar] [CrossRef]
- Sariburun, E.; Şahin, S.; Demir, C.; Türkben, C.; Uylaşer, V. Phenolic Content and Antioxidant Activity of Raspberry and Blackberry Cultivars. J. Food Sci. 2010, 75, C328–C335. [Google Scholar] [CrossRef]
Model | Drying Temperature (°C) | Constants | RMSE | R2 |
---|---|---|---|---|
Page | 50 | k = 0.224; n = 0.988 | 0.086 | 0.925 |
60 | k = 0.249; n = 0.938 | 0.088 | 0.919 | |
70 | k = 0.223; n = 1.066 | 0.111 | 0.889 | |
80 | k = 0.314; n = 1.082 | 0.090 | 0.938 | |
90 | k = 0.537; n = 0.854 | 0.076 | 0.959 | |
Henderson and Pabis | 50 | k = 0.211; a = 0.964 | 0.085 | 0.928 |
60 | k = 0.214; a = 0.953 | 0.087 | 0.923 | |
70 | k = 0.239; a = 0.970 | 0.114 | 0.889 | |
80 | k = 0.346; a = 0.984 | 0.090 | 0.937 | |
90 | k = 0.434; a = 0.953 | 0.068 | 0.956 | |
Newton | 50 | k = 0.220 | 0.081 | 0.925 |
60 | k = 0.226 | 0.084 | 0.918 | |
70 | k = 0.247 | 0.108 | 0.888 | |
80 | k = 0.351 | 0.085 | 0.936 | |
90 | k = 0.454 | 0.069 | 0.953 | |
Logarithmic | 50 | k = 0.047; a = 2.519; c = −1.623 | 0.068 | 0.959 |
60 | k = 0.061; a = 2.025; c = −1.134 | 0.075 | 0.949 | |
70 | k = 0.042; a = 2.956; c = −2.064 | 0.091 | 0.938 | |
80 | k = 0.231; a = 1.129; c = −0.181 | 0.082 | 0.955 | |
90 | k = 0.378; a = 0.985; c = −0.045 | 0.074 | 0.956 | |
Wang and Singh | 50 | a = −0.158; b = 0.006 | 0.081 | 0.934 |
60 | a = −0.164; b = 0.007 | 0.088 | 0.920 | |
70 | a = −0.167; b = 0.006 | 0.098 | 0.916 | |
80 | a = −0.244; b = 0.015 | 0.081 | 0.949 | |
90 | a = −0.287; b = 0.020 | 0.113 | 0.920 |
Temperature | Present Work | Data from Costa et al. [13] * | ||||
---|---|---|---|---|---|---|
k (h−1) | R2 | Error | k (min−1) | |||
50 | 5.45 × 10−2 ± 4.68 × 10−3 | 0.946 | 0.028 | 12.72 | 4.47 × 10−4 | 25.8 |
60 | 4.71 × 10−2 ± 1.25 × 10−2 | 0.648 | 0.073 | 14.72 | 6.95 × 10−4 | 16.6 |
70 | 8.54 × 10−2 ± 1.73 × 10−2 | 0.771 | 0.087 | 8.12 | 8.67 × 10−4 | 13.3 |
80 | 1.26 × 10−1 ± 1.89 × 10−2 | 0.861 | 0.079 | 5.50 | 1.08 × 10−3 | 10.7 |
90 | 1.21 × 10−1 ± 2.31 × 10−2 | 0.779 | 0.090 | 5.73 | ---- | ---- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grández-Yoplac, D.E.; Mori-Mestanza, D.; Muñóz-Astecker, L.D.; Cayo-Colca, I.S.; Castro-Alayo, E.M. Kinetics Drying of Blackberry Bagasse and Degradation of Anthocyanins and Bioactive Properties. Antioxidants 2021, 10, 548. https://doi.org/10.3390/antiox10040548
Grández-Yoplac DE, Mori-Mestanza D, Muñóz-Astecker LD, Cayo-Colca IS, Castro-Alayo EM. Kinetics Drying of Blackberry Bagasse and Degradation of Anthocyanins and Bioactive Properties. Antioxidants. 2021; 10(4):548. https://doi.org/10.3390/antiox10040548
Chicago/Turabian StyleGrández-Yoplac, Dorila E., Diner Mori-Mestanza, Lucas D. Muñóz-Astecker, Ilse S. Cayo-Colca, and Efraín M. Castro-Alayo. 2021. "Kinetics Drying of Blackberry Bagasse and Degradation of Anthocyanins and Bioactive Properties" Antioxidants 10, no. 4: 548. https://doi.org/10.3390/antiox10040548
APA StyleGrández-Yoplac, D. E., Mori-Mestanza, D., Muñóz-Astecker, L. D., Cayo-Colca, I. S., & Castro-Alayo, E. M. (2021). Kinetics Drying of Blackberry Bagasse and Degradation of Anthocyanins and Bioactive Properties. Antioxidants, 10(4), 548. https://doi.org/10.3390/antiox10040548