Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Nacre Extract
2.3. Purification of the Bioactive Substance from the Nacre Extract
2.4. Animals
2.5. Short-Term Memory Evaluation Using the Y-maze Test
2.6. The Novel Object Recognition Test
2.7. Monosaccharide Composition Analysis
2.8. SDS-PAGE and Western Bot Analysis
2.9. Real-Time Polymerase Chain Reaction (PCR)
2.10. FT-IR ATR Spectroscopy
2.11. MALDI-TOF MS Analysis
2.12. Antioxidative Activities
2.13. Statistical Analysis
3. Results
3.1. Isolation of a Substance That Improves Scopolamine-Induced Memory Impairment from the Nacre Extract
3.2. Identification of the Memory-Improving Substance
3.3. The Nacre Polysaccharide Reduces Oxidative Stress and Inflammation
3.4. Nacre Polysaccharides Increase mRNA Levels of Memory-Related Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinoshita, S.; Wang, N.; Inoue, H.; Maeyama, K.; Okamoto, K.; Nagai, K.; Kondo, H.; Hirono, I.; Asakawa, S.; Watabe, S. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation- related genes in the pearl oyster. PLoS ONE 2011, 6, e21238. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, S.R.; Yao, S.; Bi, Q.R.; Hou, J.J.; Cai, L.Y.; Han, S.M.; Wu, W.Y.; Guo, D.A. Anticonvulsant and sedative–hypnotic activity screening of pearl and nacre (mother of pearl). J. Ethnopharmacol. 2016, 181, 229–235. [Google Scholar] [CrossRef]
- Xu, H.; Huang, K.; Gao, Q.; Gao, Z.; Han, X. A study on the prevention and treatment of myopia with nacre on chicks. Pharmacol. Res. 2001, 44, 1–6. [Google Scholar] [CrossRef]
- Mangrulkar, R.S.; Saint, S.; Chu, S.; Tierney, L.M. What is the role of the clinical “pearl”? Am. J. Med. 2002, 113, 617–624. [Google Scholar] [CrossRef]
- Morris, J.P.; Backeljau, T.; Chapelle, G. Shells from aquaculture: A valuable biomaterial, not a nuisance waste product. Aquaculture 2019, 11, 42–57. [Google Scholar] [CrossRef]
- Rousseau, M.; Pereira-Mouriès, L.; Almeida, M.J.; Milet, C.; Lopez, E. The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp. Biochem. Physiol. B 2003, 135, 1–7. [Google Scholar] [CrossRef]
- Brion, A.; Zhang, G.; Dossot, M.; Moby, V.; Dumas, D.; Hupont, S.; Piet, M.H.; Bianchi, A.; Mainard, D.; Galois, L.; et al. Nacre extract restores the mineralization capacity of subchondral osteoarthritis osteoblasts. J. Struct. Biol. 2015, 192, 500–509. [Google Scholar] [CrossRef]
- Atlan, G.; Delattre, O.; Berland, S.; LeFaou, A.; Nabias, G.; Cot, D.; Lopez, E. Interface between bone and nacre implants in sheep. Biomaterials 1999, 20, 1017–1022. [Google Scholar] [CrossRef]
- Westbroek, P.; Marin, F. A marriage of bone and nacre. Nature 1998, 392, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Atlan, G.; Balmain, N.; Berland, S.; Vidal, B.; Lopez, E. Reconstruction of human maxillary defects with nacre powder: Histological evidence for bone regeneration. C. R. Acad. Sci. III 1997, 320, 253–258. [Google Scholar] [CrossRef]
- Almeida, M.J.; Pereira, L.; Milet, C.; Haigle, J.; Barbosa, M.; Lopez, E. Comparative effects of nacre water-soluble matrix and dexamethasone on the alkaline phosphatase activity of MRC-5 fibroblasts. J. Biomed. Mater. Res. 2001, 57, 306–312. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Singha, P.K.; Dey, S. Water Soluble Bioactives of Nacre Mediate Antioxidant Activity and Osteoblast Differentiation. PLoS ONE 2013, 8, e84584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, S.; Ma, Z.; Xie, L.; Zhang, R. A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar. Biotechnol. 2006, 8, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Lao, Y.; Zhang, X.; Zhou, J.; Su, W.; Chen, R.; Wang, Y.; Zhou, W.; Xu, Z.F. Characterization and in vitro mineralization function of a soluble protein complex P60 from the nacre of Pinctada fucata. Comp. Biochem. Physiol. B 2007, 148, 201–208. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Xie, L.; Zhang, R.; Wang, Z. Pinctada fucata mantle gene 3 (PFMG3) promotes differentiation in mouseo steoblasts (MC3T3-E1). Comp. Biochem. Physiol. B 2011, 158, 173–180. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.; Kim, J.M.; Chung, Y.H.; Lee, T.Y.; Lim, H.; Lim, J.H.; Kim, T.; Bae, J.S.; Woo, C.H.; et al. Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function. Mol. Biol. Rep. 2012, 39, 3211–3218. [Google Scholar] [CrossRef] [PubMed]
- Lopez, E.; Le Faou, A.; Borzeix, S.; Berland, S. Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl). Tissue Cell 2000, 32, 95–101. [Google Scholar] [CrossRef]
- Chen, X.; Peng, L.H.; Chee, S.S.; Shan, Y.H.; Liang, W.Q.; Gao, J.Q. Nanoscaled pearl powder accelerates wound repair and regeneration in vitro and in vivo. Drug Dev. Ind. Pharm. 2019, 45, 1009–1016. [Google Scholar] [CrossRef]
- Chiu, H.F.; Hsiao, S.C.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Venkatakrishnan, K.; Wang, C.K. Efficacy of protein rich pearl powder on antioxidant status in a randomized placebo-controlled trial. J. Food Drug Anal. 2018, 26, 309–317. [Google Scholar] [CrossRef]
- Fuji, T.; Inoue, T.; Hasegawa, Y. Nacre extract prevents scopolamine-induced memory deficits in rodents. Asian Pac. J. Trop. Med. 2018, 11, 202–208. [Google Scholar]
- Hasegawa, Y.; Inoue, T.; Kawaminami, S.; Fujita, M. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity. Asian Pac. J. Trop. Med. 2016, 9, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Ma, Y.; Zhang, Y.; Meng, Q.; Yang, J.; Wang, B.; Liu, Q.; Cai, L.; Gong, W.; Yang, Y.; et al. Increased antioxidant activity and improved structural characterization of sulfuric acid-treated stepwise degraded polysaccharides from Pholiota nameko PN-01. Int. J. Biol. Macromol. 2021, 166, 1220–1229. [Google Scholar] [CrossRef]
- Mi, Y.; Chin, Y.X.; Cao, W.X.; Chang, Y.G.; Lim, P.E.; Xue, C.H.; Tang, Q.J. Native κ-carrageenan induced-colitis is related to host intestinal microecology. Int. J. Biol. Macromol. 2020, 147, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Kariya, T.; Hasegawa, Y. Scallop mantle toxin induces apoptosis in liver tissues of mice. Food Sci. Nutr. 2020, 8, 3308–3316. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assem-bly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Fang, B.; Jiang, T. Study on the preparation of hydroxy ethylchitosan sulfate. Chin. J. Biochem. Pharm. 1998, 19, 163–166. [Google Scholar]
- Zhao, X.; Li, J.; Liu, Y.; Wu, D.; Cai, P.; Pan, Y. Structural characterization and immunomodulatory activity of awater soluble polysaccharide isolated from Botrychium ternatum. Carbohydr. Polym. 2017, 171, 136–142. [Google Scholar] [CrossRef]
- Pannakal, S.T.; JaÈger, S.; Duranton, A.; Tewari, A.; Saha, S.; Radhakrishnan, A.; Roy, N.; Kuntz, J.F.; Fermas, S.; James, D.; et al. Longevity effect of a polysaccharide from Chlorophytum borivilianum on Caenorhabditis elegans and Saccharomyces cerevisiae. PLoS ONE 2017, 12, e0179813. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.; Huang, Y.; Liao, J.; Liu, Y.; Pan, Y. Rapid quality control of medicine and food dual purpose plant polysaccharides by matrix assisted laser desorption/ionization mass spectrometry. Analyst 2020, 145, 2168–2175. [Google Scholar] [CrossRef]
- Keene, E.C.; Evans, J.S.; Estroff, L.A. Matrix interactions in biomineralization: Aragonite nucleation by an intrinsically disordered nacre polypeptide, n16N, associated with a β-chitin substrate. Cryst. Growth Des. 2010, 10, 1383–1389. [Google Scholar] [CrossRef]
- Crenshaw, M.A. The soluble matrix of Mercenaria mercenaria shell. Biominer. Res. Rep. 1972, 6, 6–11. [Google Scholar]
- Worms, D.; Weiner, S. Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules. J. Exp. Zool. 1986, 237, 11–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Pan, Y.; Wang, G.; Mao, G. The degraded polysaccharide from Pyropia haitanensis represses amyloid beta peptide-induced neurotoxicity and memory in vivo. Int. J. Biol. Macromol. 2020, 146, 725–729. [Google Scholar] [CrossRef]
- Du, Q.; Zhu, X.; Si, J. Angelica polysaccharide ameliorates memory impairment in Alzheimer’s disease rat through activating BDNF/TrkB/CREB pathway. Exp. Biol. Med. 2020, 245, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Chen, L.; Chen, Y.; Chen, X.; Dong, Y.; Zheng, S.; Zhang, L.; Li, W.; Du, J.; Li, H.; et al. (Grifola frondosa) polysaccharide ameliorates Alzheimer’s disease-like pathology and cognitive impairments by enhancing microglial amyloid-b clearance. RSC Adv. 2019, 9, 37127–37135. [Google Scholar] [CrossRef]
- Lee, S.; Yun, H.S.; Oh, J.; Kim, J.S.; Jisun, O.H. Attenuation of scopolamine-Induced Learning and Memory Impairment by Ceriporia lacerata Mycelial Culture in C57BL/6 Mouse Model. FASEB J. 2020, 34 (Suppl. 1), 1. [Google Scholar] [CrossRef]
- Murphy, K.; Llewellyn, K.; Wakser, S.; Pontasch, J.; Samanich, N.; Flemer, M.; Hensley, K.; Kim, D.S.; Park, J. Mini-GAGR, an intranasally applied polysaccharide, activates the neuronal Nrf2-mediated antioxidant defense system. J. Biol. Chem. 2018, 293, 18242–18269. [Google Scholar] [CrossRef]
- Zhu, L.; Li, R.; Jiao, S.; Wei, J.; Yan, Y.; Wang, Z.A.; Li, J.; Du, Y. Blood-brain Barrier Permeable chitosan Oligosaccharides Interfere with β-amyloid Aggregation and Alleviate β-amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of PolymerizationDependent Manner. Mar. Drugs 2020, 18, 488. [Google Scholar] [CrossRef]
- Biase, E.D.; Lunghi, G.; Maggioni, M.; Fazzari, M.; Pomè, D.Y.; Loberto, N.; Ciampa, M.G.; Fato, P.; Mauri, L.; Sevin, E.; et al. GM1 oligosaccharide crosses the human blood-brain Barrier in vitro by a paracellular route. Int. J. Mol. Sci. 2020, 21, 2858. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Lu, C.; Jiang, N.; Wang, H.; Huang, H.; Chen, Y.; Li, Y.; Liu, X. Protective effect of ginsenoside Rh2 on scopolamine-induced memory deficits through regulation of cholinergic transmission, oxidative stress and the ERK-CREB-BDNF signaling pathway. Phytoter. Res. 2020, 35, 337–345. [Google Scholar] [CrossRef]
- Ko, Y.H.; Shim, K.Y.; Kim, S.K.; Seo, J.Y.; Lee, B.R.; Hur, K.H.; Kim, Y.J.; Kim, S.E.; Do, M.H.; Parveen, A.; et al. Lespedeza bicolor extract improves amyloid beta25-35-induced memory impairments by upregulating BDNF and activating Akt, ERK, an CREB signaling in mice. Planta Med. 2019, 85, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Um, M.Y.; Lim, D.W.; Son, H.J.; Cho, S.; Lee, C. Phlorotannin-rich fraction from Ishige foliacea brown seaweed prevents the scopolamine-induced memory impairment via regulation of ERK-CREB BDNF pathway. J. Funct. Foods 2018, 40, 110–116. [Google Scholar] [CrossRef]
- Tao, X.; Finkbeiner, S.; Arnold, D.B.; Shaywitz, A.J.; Greenberg, M.E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 1998, 20, 709–726. [Google Scholar] [CrossRef]
- McCauslin, C.S.; Heath, V.; Colangelo, A.M.; Malik, R.; Lee, S.; Mallei, A.; Mocchetti, I.; Johnson, P.F. CAAT/Enhancer-binding Protein and cAMP-response Element-binding Protein Mediate Inducible Expression of the Nerve Growth Factor Gene in the central nervous system. J. Biol. Chem. 2006, 281, 17681–17688. [Google Scholar] [CrossRef]
- Houeland, G.; Romani, A.; Marchetti, C.; Amato, G.; Capsoni, S.; Cattaneo, A.; Marie, H. Transgenic mice with chronic NGF deprivation and Alzheimer’s disease-like pathology display hippocampal region-specific impairments in short- and long-term plasticities. J. Neurosci. 2010, 30, 13089–13094. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Rivera-Olvera, A.; Escobar, M.L. BDNF induces in vivo long-lasting enhancement of synaptic transmission and structural reorganization at the hippocampal mossy fibers in a transcription and translation-independent manner. Neurobiol. Learn. Mem. 2020, 167, 107125. [Google Scholar] [CrossRef]
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hong, S.S.; Kim, H.G.; Lee, H.W.; Kim, W.Y.; Lee, S.K.; Son, C.G. Gongjin-Dan enhances hippocampal memory in a mouse model of scopolamine-induced amnesia. PLoS ONE 2016, 11, e0159823. [Google Scholar] [CrossRef]
- Zhang, R.R.; Lin, Z.X.; Lu, X.Y.; Xia, X.; Jiang, R.W.; Chen, Q.B. CGY-1, a biflavonoid isolated from Cardiocrinum giganteum seeds, improves memory deficits by modulating the cholinergic system in scopolamine treated mice. Biomed. Pharmacother. 2019, 111, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Luo, D.; Li, L.; Tan, R.R.; Xu, Q.Q.; Qin, J.; Zhang, R.R.; Lind, Z.X.; Luc, X.Y.; Xiab, X.; et al. Ethyl acetate Extract Components Bushen-Yizhi Formula Provides Neuroprotection against scopolamine-induced Cognitive Impairment. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadegan, M.; Soodi, M. Comparison of memory impairment and oxidative stress following single or repeated doses administration of scopolamine in rat hippocampus. Basic Clin. Neurosci. 2018, 9, 5–14. [Google Scholar] [CrossRef]
- Muhammad, T.; Ali, T.; Ikram, M.; Khan, A.; Alam, S.I.; Kim, M.O. Melatonin rescue oxidative stress-mediated neuroinflammation/ neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J. Neuroimmune Pharmacol. 2019, 14, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Shah, F.A.; Naeem, K.; Nadeem, H.; Sarwar, S.; Ashraf, Z.; Imran, M.; Khan, T.; Anwar, T.; Li, S. Succinamide derivatives ameliorate neuroinflammation and oxidative stress in scopolamine-induced neurodegeneration. Biomolecular 2020, 10, 443. [Google Scholar] [CrossRef]
Gene Name | Accession Number | Primer | Sequence |
---|---|---|---|
Gapdh | BC023196.2 | GAPDH-F | 5′-TGACCTTGCCCACAGCCTTG-3′ |
GAPDH-R | 5′-CATCACCATCTTCCAGGAGCG-3′ | ||
Bdnf | EF125669.1 | BDNF-F | 5′-AGAGCTGCTGGATGAGGACCAG-3′ |
BDNF-R | 5′-CAAAGGCACTTGACTACTGAGCA-3′ | ||
Cas | NM_009804.2 | Catalase-F | 5′-AGGTGTTGAACGAGGAGGAG-3′ |
Catalase-R | 5′-TGCGTGTAGGTGTGAATTGC-3′ | ||
CuZnSOD | NM_011434.2 | CuZn-SOD-F | 5′-CGGATGAAGAGAGGCATGTT-3′ |
CuZn-SOD-R | 5′-CACCTTTGCCCAAGTCATCT-3′ | ||
IL-1beta | NM_008361.4 | IL-1β-F | 5′-GGGCCTCAAAGGAAAGAATC-3′ |
IL-1β-R | 5′-TACCAGTTGGGGAACTCTGC-3′ | ||
Il-6 | X54542.1 | IL-6-F | 5′-AGACTTCCATCCAGTTGCCT-3′ |
IL-6-R | 5′-CAGGTCTGTTGGGAGTGGTA-3′ | ||
Ngf | V00836.1 | NGF-F | 5′-CAGTGTCAGTGTGTGGGTTG-3′ |
NGF-R | 5′-TGTGAGTCGTGGTGCAGTAT-3′ | ||
TNF-alpha | BC137720.1 | TNF-α-F | 5′-ACGGCATGGATCTCAAAGAC-3′ |
TNF-α-R | 5′-GTGGGTGAGGAGCACGTAGT-3′ |
Monosaccharide | Composition [%] |
---|---|
D-Galactose | 23.6 |
D-Mannose | 12.0 |
D-Glucose | 26.0 |
D-Ribose | 5.6 |
N-Acetyl-D-Mannosamine | 3.9 |
N-Acetyl-D-Glucosamine | 6.8 |
Fucose | 3.8 |
Rhamnose | 7.9 |
N-Acetyl-D-Galactosamine | 2.6 |
Uronic Acid | 7.8 |
Sulfate Group | 10.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamagami, H.; Fuji, T.; Wako, M.; Hasegawa, Y. Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment. Antioxidants 2021, 10, 505. https://doi.org/10.3390/antiox10040505
Yamagami H, Fuji T, Wako M, Hasegawa Y. Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment. Antioxidants. 2021; 10(4):505. https://doi.org/10.3390/antiox10040505
Chicago/Turabian StyleYamagami, Hikaru, Tatsuya Fuji, Mayumi Wako, and Yasushi Hasegawa. 2021. "Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment" Antioxidants 10, no. 4: 505. https://doi.org/10.3390/antiox10040505
APA StyleYamagami, H., Fuji, T., Wako, M., & Hasegawa, Y. (2021). Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment. Antioxidants, 10(4), 505. https://doi.org/10.3390/antiox10040505