Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score
Abstract
:1. Introduction
2. Antioxidant Properties of Individual Amino Acids
3. Production, Characterization, and Health Impact of Soybean-Derived Antioxidant Peptides
4. Production, Characterization, and Health Impact of Chickpea-Derived Antioxidant Peptides
5. Production, Characterization, and Health Impact of Lentil-Derived Antioxidant Peptides
6. Production, Characterization, and Health Impact of Cowpea-Derived Antioxidant Peptides
Source of Peptides | Preparation Method/s | Antioxidative Cowpea Peptides | Antioxidant Properties (in vitro or in vivo) | Reference |
---|---|---|---|---|
Cowpea seeds | Alcalase, Flavourzyme, Pepsin, pancreatin, UF | <1 kDa hydrolysate | ABTS | [101] |
Cowpea protein | Pepsin, pancreatin, UF | >1 kDa hydrolysate | FRAP, ORAC, SRSA | [107] |
Cowpea isolate | Pepsin | Hydrolysates | DPPH | [100] |
Cowpea seed protein | Pepsin, trypsin | Hydrolysates | H2O2 scavenging, FRAP | [106] |
7. Production, Characterization, and Health Impact of Mung Bean-Derived Antioxidant Peptides
Source of Peptides | Preparation Method/s | Antioxidative Mung Bean Peptides | Antioxidant Properties (in vitro or in vivo) | Reference |
---|---|---|---|---|
Mung bean meal | Virgibacillus sp. SK37 proteinases, Alcalase, Neutrase, UF, IEC, SEC | FLGSFLYEYSR (1380.6Da), AVKPEPAR (866.5 Da), GVGLFVR (746.4 Da), HNVAMER (855.4 Da), LGSFLYEYSR (1233.6Da), LLPHLR (903.5Da), FNVPATK (775.4Da), SGVVPGY (677.3 Da) | ABTS, FRAP, Fe2+ chelation | [111] |
Mung bean protein | UF, Alcalase, Neutrase, Protamex, papain | Fraction I (<3 kDa), II (3–10 kDa), III (>10 kDa) | DPPH, HRSA, Fe2+ chelation, SRSA, reducing power | [112] |
Mung bean | Mardi Rhizopus sp. strain 5351 | Fermentates | MDA in alloxan-treated mice | [117] |
Mung bean | Alcalase, UF | Fraction I (<3 kDa), II (3–10 kDa), III (>10 kDa) | MDA, GSH, SOD, and LDH in injured NCTC-1469 cells, inhibition of ROS generation in NCTC-1469 cells | [108] |
Mung bean protein | Ficain, Bromelain | Hydrolysates | DPPH, Fe2+ chelation, inhibition of lipid oxidation | [120] |
Mung bean | Germination, Rhizopus sp. strain 5351 | Germinated and fermented mung bean aqueous extracts | SOD, MDA, FRAP, NO | [116] |
Mung bean seedling | IEC, UF, HPLC | Low molecular weight peptides (0.5–3 kDa, 3–10 kDa) | DPPH, ABTS | [121] |
Mung bean | Rhizopus sp. strain 5351 | Fermentates | DPPH, FRAP | [71] |
Mung bean vicilin protein | Alcalase, trypsin, IEC | Hydrolysates | DPPH, ABTS, FRAP, reducing power, Fe2+ chelation | [119] |
Mung bean meal | Bromelain, UF | <1 kDa fraction | DPPH, ABTS, SRSA, FRAP, Fe2+ chelation | [122] |
Mung bean | Trypsin | Hydrolysates | ORAC, ABTS, attenuation of H2O2-induced oxidative stress in HepG2 | [118] |
Peeled and split raw Mung bean dry seeds | UF, pepsin, pancreatin, Thermolysin | KK, DM, SY, W (204–274 Da) | ABTS, Fe2+ chelation, ORAC | [123] |
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bessada, S.M.; Barreira, J.C.; Oliveira, M.B.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Singh, U.; Singh, B. Tropical grain legumes as important human foods. Econ. Bot. 1992, 46, 310–321. [Google Scholar] [CrossRef] [Green Version]
- García-Nebot, M.J.; Recio, I.; Hernández-Ledesma, B. Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food Chem. Toxicol. 2014, 65, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.F.; Correa, A.P.F.; Coletto, D.; Daroit, D.J.; Cladera-Olivera, F.; Brandelli, A. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. J. Food Sci. Technol. 2015, 52, 2668–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Wang, F.; Yuan, L.; Liu, J.; Sun, D.; Li, X. Physicochemical property, antioxidant activity, and cytoprotective effect of the germinated soybean proteins. Food Sci. Nutr. 2019, 7, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Munekata, P.E.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products: A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gleddie, S.; Xiao, C.-W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [Green Version]
- De Mejia, E.; Ben, O. Soybean bioactive peptides: A new horizon in preventing chronic diseases. Sex Reprod. Menopause 2006, 4, 91–95. [Google Scholar] [CrossRef]
- Wang, W.; De Mejia, E.G. A New Frontier in Soy Bioactive Peptides that May Prevent Age-Related Chronic Diseases. Compr. Rev. Food Sci. Food Saf. 2005, 4, 63–78. [Google Scholar] [CrossRef]
- Marcela, G.-M.; Eva, R.-G.; Del Carmen, R.-R.M.; Rosalva, M.-E. Evaluation of the Antioxidant and Antiproliferative Effects of Three Peptide Fractions of Germinated Soybeans on Breast and Cervical Cancer Cell Lines. Plant Foods Hum. Nutr. 2016, 71, 368–374. [Google Scholar] [CrossRef]
- Samaranayaka, A.G.; Li-Chan, E.C. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods 2011, 3, 229–254. [Google Scholar] [CrossRef]
- Lee, W.T.K.; Weisell, R.; Albert, J.; Tomé, D.; Kurpad, A.V.; Uauy, R. Research Approaches and Methods for Evaluating the Protein Quality of Human Foods Proposed by an FAO Expert Working Group in. J. Nutr. 2016, 146, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Tessari, P.; Lante, A.; Mosca, G. Essential amino acids: Master regulators of nutrition and environmental footprint? Sci. Rep. 2016, 6, 26074. [Google Scholar] [CrossRef] [Green Version]
- Roy, F.; Boye, J.; Simpson, B. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010, 43, 432–442. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; Van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Ateeq, N.; Khalil, I.A.; Perveen, S.; Saleemullah, S. Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. J. Foodserv. 2006, 17, 94–101. [Google Scholar] [CrossRef]
- Young, V.R.; Pellett, P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S. [Google Scholar] [CrossRef]
- Iqbal, A.; Khalil, I.A.; Ateeq, N.; Khan, M.S. Nutritional quality of important food legumes. Food Chem. 2006, 97, 331–335. [Google Scholar] [CrossRef]
- Aryee, A.N.; Boye, J.I. Comparative Study of the Effects of Processing on the Nutritional, Physicochemical and Functional Properties of Lentil. J. Food Process. Preserv. 2017, 41, e12824. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Montone, C.M.; Chiozzi, R.Z.; Laganà, A. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal. Bioanal. Chem. 2018, 410, 3425–3444. [Google Scholar] [CrossRef]
- Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int. J. Pept. Res. Ther. 2020, 26, 139–150. [Google Scholar] [CrossRef]
- Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T.; Ikemoto, N.; Terashima, M. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018, 245, 750–755. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; del Mar Contreras, M.; Recio, I.; Alaiz, M.; Vioque, J. Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem. 2015, 180, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Kou, X.; Gao, J.; Xue, Z.; Zhang, Z.; Wang, H.; Wang, X. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT Food Sci. Technol. 2013, 50, 591–598. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Miao, M.; Jiang, B. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem. 2011, 128, 28–33. [Google Scholar] [CrossRef]
- Zhao, J.; Xiong, Y.L.; McNear, D.H. Changes in Structural Characteristics of Antioxidative Soy Protein Hydrolysates Resulting from Scavenging of Hydroxyl Radicals. J. Food Sci. 2013, 78, C152–C159. [Google Scholar] [CrossRef] [PubMed]
- Penta-Ramos, E.; Xiong, Y. Antioxidant Activity of Soy Protein Hydrolysates in a Liposomal System. J. Food Sci. 2002, 67, 2952–2956. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Lule, V.K.; Garg, S.; Pophaly, S.D.; Hitesh; Tomar, S.K. Potential Health Benefits of Lunasin: A Multifaceted Soy-Derived Bioactive Peptide. J. Food Sci. 2015, 80, R485–R494. [Google Scholar] [CrossRef]
- Sun, X.D. Enzymatic hydrolysis of soy proteins and the hydrolysates utilisation. Int. J. Food Sci. Technol. 2011, 46, 2447–2459. [Google Scholar] [CrossRef]
- Miri, S.; Hajihosseini, R.; Saedi, H.; Vaseghi, M.; Rasooli, A. Fermented soybean meal extract improves oxidative stress factors in the lung of inflammation/infection animal model. Ann. Microbiol. 2019, 69, 1507–1515. [Google Scholar] [CrossRef]
- Aguirre, L.; Garro, M.S.; De Giori, G.S. Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chem. 2008, 111, 976–982. [Google Scholar] [CrossRef]
- Mamilla, R.K.; Mishra, V.K. Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT 2017, 75, 51–58. [Google Scholar] [CrossRef]
- Fouad, A.A.; Rehab, F.M.A. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.A. Production, Fractionation, and Evaluation of Antioxidant Potential of Peptides Derived from Soy Protein Digests. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2010. [Google Scholar]
- Moure, A.; Domínguez, H.; Parajó, J.C. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process. Biochem. 2006, 41, 447–456. [Google Scholar] [CrossRef]
- Sami, R. Antioxidant properties of peptides from soybean meal protein hydrolysates evaluated by electron spin resonance spectrometry. Adv. Environ. Biol. 2017, 11, 12–18. [Google Scholar]
- Gibbs, B.F.; Zougman, A.; Masse, R.; Mulligan, C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Int. 2004, 37, 123–131. [Google Scholar] [CrossRef]
- Marazza, J.A.; Nazareno, M.A.; de Giori, G.S.; Garro, M.S. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J. Funct. Foods 2012, 4, 594–601. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Yu, R.-C.; Chou, C.-C. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 2006, 23, 128–135. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930–940. [Google Scholar] [CrossRef]
- Ma, H.; Liu, R.; Zhao, Z.; Zhang, Z.; Cao, Y.; Ma, Y.; Guo, Y.; Xu, L. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress. PLoS ONE 2016, 11, e0159938. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, J.; Zhu, H.; Xiong, Y.L. Mass Spectrometric Evidence of Malonaldehyde and 4-Hydroxynonenal Adductions to Radical-Scavenging Soy Peptides. J. Agric. Food Chem. 2012, 60, 9727–9736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Ledesma, B.; Hsieh, C.-C.; De Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 2009, 390, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tong, X.; Qi, B.; Wang, Z.; Li, Y.; Sui, X.; Jiang, L. Changes in antioxidant activity of Alcalase-hydrolyzed soybean hydrolysate under simulated gastrointestinal digestion and transepithelial transport. J. Funct. Foods 2018, 42, 298–305. [Google Scholar] [CrossRef]
- Wang, H.; Jenner, A.M.; Lee, C.-Y.J.; Shui, G.; Tang, S.Y.; Whiteman, M.; Wenk, M.R.; Halliwell, B.; Lee, J.C.-Y. The identification of antioxidants in dark soy sauce. Free. Radic. Res. 2007, 41, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Ji, X.; Canning, C.; Sun, S.; Zhou, K. Comparison of Different Strategies for Soybean Antioxidant Extraction. J. Agric. Food Chem. 2010, 58, 4508–4512. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, M.; Jiang, F.; Jiang, W.; Wang, H.; Du, S.K. Protein quality and antioxidant properties of soymilk derived from black soybean after in vitro simulated gastrointestinal digestion. Int. J. Food Sci. Technol. 2020, 55, 720–728. [Google Scholar] [CrossRef]
- Singh, B.P.; Bhushan, B.; Vij, S. Antioxidative, ACE inhibitory and antibacterial activities of soy milk fermented by indigenous strains of lactobacilli. Legume Sci. 2020, 2. [Google Scholar] [CrossRef]
- Yamamoto, N.; Shoji, M.; Hoshigami, H.; Watanabe, K.; Takatsuzu, T.; Yasuda, S.; Igoshi, K.; Kinoshita, H. Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. Biosci. Microbiota, Food Health 2019, 38, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Subrota, H.; Shilpa, V.; Brij, S.; Vandna, K.; Surajit, M. Antioxidative activity and polyphenol content in fermented soy milk supplemented with WPC-70 by probiotic Lactobacilli. Int. Food Res. J. 2013, 20, 2125. [Google Scholar]
- Seo, K.-C.; Kim, M.-J.; Kwon, M.-J.; Kim, H.-J.; Noh, J.-S.; Song, Y.-O. Antioxidative activities of soymilk fermented with Bacillus subtilis. Food Sci. Biotechnol. 2009, 18, 1298–1300. [Google Scholar]
- Li, G.; Long, X.; Pan, Y.; Zhao, X.; Song, J.L. Study on soybean milk fermented by Lactobacillus plantarum YS-1 reduced the H2O2-induced oxidative damage in Caco-2 cells. Biomed. Res. 2018, 29, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Mesa, M.D.; Silván, J.M.; Olza, J.; Gil, Á.; del Castillo, M.D. Antioxidant properties of soy protein–fructooligosaccharide glycation systems and its hydrolyzates. Food Res. Int. 2008, 41, 606–615. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Om, A.-S. Specially-treated soy sauces regulate antioxidant activity and ROS in human astrocyte U373MG cells. Cancer Prev. Res. 2007, 12, 296–302. [Google Scholar]
- Rizzo, G. The Antioxidant Role of Soy and Soy Foods in Human Health. Antioxidants 2020, 9, 635. [Google Scholar] [CrossRef] [PubMed]
- Imai, S. Soybean and Processed Soy Foods Ingredients, and Their Role in Cardiometabolic Risk Prevention. Recent Patents Food Nutr. Agric. 2015, 7, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Schaich, K.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Yimit, D.; Hoxur, P.; Amat, N.; Uchikawa, K.; Yamaguchi, N. Effects of soybean peptide on immune function, brain function, and neurochemistry in healthy volunteers. Nutrition 2012, 28, 154–159. [Google Scholar] [CrossRef]
- Yamada, Y.; Muraki, A.; Kawada, T.; Ohinata, K.; Oie, M.; Kanegawa, N.; Oda, A.; Sawashi, Y.; Kaneko, K.; Yoshikawa, M.; et al. Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E433–E440. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.M.; Yeap, S.-K.; Yusof, H.M.; Beh, B.-K.; Ho, W.-Y.; Koh, S.-P.; Abdullah, M.P.; Alitheen, N.B.; Long, K. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. J. Sci. Food Agric. 2016, 96, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Vega, E.; Kotkowska, O.; García, M.C.; Crego, A.L.; Marina, M.L. Fast determination of the functional peptide soymetide in different soybean derived foods by capillary-high performance liquid chromatography. J. Chromatogr. A 2011, 1218, 4928–4933. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Zanoni, C.; Arnoldi, A. IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. J. Funct. Foods 2015, 14, 469–478. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Attia, H.; Dhulster, P.; Bougatef, A.; Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods 2015, 12, 516–525. [Google Scholar] [CrossRef]
- Gupta, N.; Bhagyawant, S.S. Impact of hydrolysis on functional properties, antioxidant, ACE-I inhibitory and antiproliferative activity of Cicer arietinum and Cicer reticulatum hydrolysates. Nutrire 2019, 44. [Google Scholar] [CrossRef]
- Gupta, N.; Bhagyawant, S.S. Enzymatic treatment improves ACE-I inhibiton and antiproliferative potential of chickpea. Vegetos Int. J. Plant Res. 2019, 32, 363–369. [Google Scholar] [CrossRef]
- Clemente, A.; Vioque, J.; Sánchez-Vioque, R.; Pedroche, J.; Bautista, J.; Millán, F. Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates. Food Chem. 1999, 67, 269–274. [Google Scholar] [CrossRef]
- Paredes-López, O.; Ordorica-Falomir, C.; Olivares-Vázquez, M. Chickpea Protein Isolates: Physicochemical, Functional and Nutritional Characterization. J. Food Sci. 1991, 56, 726–729. [Google Scholar] [CrossRef]
- Shi, W.; Hou, T.; Guo, D.; He, H. Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat. J. Funct. Foods 2019, 54, 136–145. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Zhang, T.; Mu, W.; Liu, J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem. 2008, 106, 444–450. [Google Scholar] [CrossRef]
- Pedroche, J.; Yust, M.M.; Girón-Calle, J.; Alaiz, M.; Millán, F.; Vioque, J. Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. J. Sci. Food Agric. 2002, 82, 960–965. [Google Scholar] [CrossRef]
- Yust, M.M.; Pedroche, J.; Girón-Calle, J.; Alaiz, M.; Millán, F.; Vioque, J. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chem. 2003, 81, 363–369. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Alaiz, M.; Vioque, J. Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chem. 2011, 129, 485–490. [Google Scholar] [CrossRef]
- Gautam, A.K.; Gupta, N.; Narvekar, D.T.; Bhadkariya, R.; Bhagyawant, S.S. Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiol. Mol. Biol. Plants 2018, 24, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wen, H.; Zhai, L.; Yu, Y.; Li, Y.; Yu, W.; Cheng, A.; Wang, C.; Kou, X. Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Res. Int. 2015, 77, 75–81. [Google Scholar] [CrossRef]
- Xue, Z.; Gao, J.; Zhang, Z.; Yu, W.; Wang, H.; Kou, X. Antihyperlipidemic and Antitumor Effects of Chickpea Albumin Hydrolysate. Plant Foods Hum. Nutr. 2012, 67, 393–400. [Google Scholar] [CrossRef]
- Real Hernandez, L.M.; de Mejia, E.G. Enzymatic production, bioactivity, and bitterness of chickpea (Cicer arietinum) peptides. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1913–1946. [Google Scholar] [CrossRef] [Green Version]
- Wali, A.; Mijiti, Y.; Yanhua, G.; Yili, A.; Aisa, H.A.; Kawuli, A. Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. Int. J. Pept. Res. Ther. 2020, 27, 219–227. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Karaś, M.; Baraniak, B.; Rybczyńska, K.; Gmiński, J.; Gaweł-Bęben, K.; Jakubczyk, A. The influence of heat treatment of chickpea seeds on antioxidant and fibroblast growth-stimulating activity of peptide fractions obtained from proteins digested under simulated gastrointestinal conditions. Int. J. Food Sci. Technol. 2015, 50, 2097–2103. [Google Scholar] [CrossRef]
- Magro, A.E.A.; Silva, L.C.; Rasera, G.B.; De Castro, R.J.S. Solid-state fermentation as an efficient strategy for the biotransformation of lentils: Enhancing their antioxidant and antidiabetic potentials. Bioresour. Bioprocess. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Torino, M.I.; Limón, R.I.; Martínez-Villaluenga, C.; Mäkinen, S.; Pihlanto, A.; Vidal-Valverde, C.; Frias, J. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem. 2013, 136, 1030–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista-Expósito, S.; Martínez-Villaluenga, C.; Dueñas, M.; Silván, J.M.; Frias, J.; Peñas, E. Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. J. Funct. Food 2018, 48, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mora, P.; Peñas, E.; Frias, J.; Gomez, R.; Martinez-Villaluenga, C. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chem. 2015, 171, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Mora, P.; Martín-Martínez, M.; Bonache, M.A.; González-Múniz, R.; Peñas, E.; Frias, J.; Martinez-Villaluenga, C. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem. 2017, 221, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Evcan, E.; Gulec, S. The development of lentil derived protein-iron complexes and their effects on iron deficiency anemia in vitro. Food Funct. 2020, 11, 4185–4192. [Google Scholar] [CrossRef] [PubMed]
- Caccialupi, P.; Ceci, L.R.; Siciliano, R.A.; Pignone, D.; Clemente, A.; Sonnante, G. Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterisation and anti-proliferative properties in human colon cancer cells. Food Chem. 2010, 120, 1058–1066. [Google Scholar] [CrossRef]
- Awika, J.M.; Duodu, K.G. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. J. Funct. Foods 2017, 38, 686–697. [Google Scholar] [CrossRef]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef] [PubMed]
- Mune, M.M.; Saxena, D.C.; Minka, S. Antioxidant activity of cowpea protein isolate hydrolyzed by pepsin. Acta Aliment. 2014, 43, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Campos, M.R.S.; Guerrero, L.A.C.; Ancona, D.A.B. Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. J. Sci. Food Agric. 2010, 90, 2512–2518. [Google Scholar] [CrossRef]
- Marques, M.R.; Cerda, A.; Fontanari, G.G.; Pimenta, D.C.; Soares-Freitas, R.M.; Hirata, M.H.; Hirata, R.D.C.; Arêas, J.A.G. Transport of cowpea bean derived peptides and their modulator effects on mRNA expression of cholesterol-related genes in Caco-2 and HepG2 cells. Food Res. Int. 2018, 107, 165–171. [Google Scholar] [CrossRef]
- Barnes, M.J.; Uruakpa, F.; Udenigwe, C. Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. J. Nutr. Health Food Sci. 2015, 3, 1–3. [Google Scholar]
- de Souza Rocha, T.; Hernandez, L.M.R.; Chang, Y.K.; de Mejía, E.G. Impact of germination and enzymatic hydrolysis of cowpea bean (Vigna unguiculata) on the generation of peptides capable of inhibiting dipeptidyl peptidase IV. Food Res. Int. 2014, 64, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.R.; Freitas, R.A.M.S.; Carlos, A.C.C.; Siguemoto, É.S.; Fontanari, G.G.; Arêas, J.A.G. Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles. Food Chem. 2015, 168, 288–293. [Google Scholar] [CrossRef]
- Olusola, A.; Ekun, O. Alpha-amylase—Inhibitory properties and in vitro antioxidant potentials of cowpea seed protein hydrolysates. AASCIT Commun. 2019, 6, 1–12. [Google Scholar]
- Quansah, J.K.; Udenigwe, C.C.; Saalia, F.K.; Yada, R.Y. The Effect of Thermal and Ultrasonic Treatment on Amino Acid Composition, Radical Scavenging and Reducing Potential of Hydrolysates Obtained from Simulated Gastrointestinal Digestion of Cowpea Proteins. Plant Foods Hum. Nutr. 2013, 68, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Ye, H.; Du, M.; Yu, Q.; Chen, Y.; Shen, M. Mung Bean Protein Hydrolysates Protect Mouse Liver Cell Line Nctc-1469 Cell from Hydrogen Peroxide-Induced Cell Injury. Foods 2020, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Xu, B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness 2018, 7, 11–33. [Google Scholar] [CrossRef]
- Yi-Shen, Z.; Shuai, S.; Fitzgerald, R. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food Nutr. Res. 2018, 62, 62. [Google Scholar] [CrossRef]
- Lapsongphon, N.; Yongsawatdigul, J. Production and purification of antioxidant peptides from a Mung bean meal hydrolysate by Virgibacillus sp. SK37 proteinase. Food Chem. 2013, 141, 992–999. [Google Scholar] [CrossRef]
- Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 2019, 270, 243–250. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef] [Green Version]
- Sonklin, C.; Alashi, M.A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R.E. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. J. Funct. Foods 2020, 64, 103635. [Google Scholar] [CrossRef]
- Diao, J.; Chi, Z.; Guo, Z.; Zhang, L. Mung bean protein hydrolysate modulates the immune response through NF-kB pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Food Sci. 2019, 84, 2652–2657. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.M.; Yusof, H.M.; Long, K.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Koh, S.P.; Abdullah, M.P.; Alitheen, N.B. Antioxidant and Hepatoprotective Effect of Aqueous Extract of Germinated and Fermented Mung Bean on Ethanol-Mediated Liver Damage. BioMed Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeap, S.K.; Ali, N.M.; Yusof, H.M.; Alitheen, N.B.; Beh, B.K.; Ho, W.Y.; Koh, S.P.; Long, K. Antihyperglycemic Effects of Fermented and Nonfermented Mung Bean Extracts on Alloxan-Induced-Diabetic Mice. J. Biomed. Biotechnol. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongekalak, L.-O.; Sakulsom, P.; Jirasripongpun, K.; Hongsprabhas, P. Potential use of antioxidative Mung bean protein hydrolysate as an anticancer asiatic acid carrier. Food Res. Int. 2011, 44, 812–817. [Google Scholar] [CrossRef]
- Gupta, N.; Srivastava, N.; Bhagyawant, S.S. Vicilin—A major storage protein of mungbean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS ONE 2018, 13, e0191265. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, M.; Li, J.; Li, J.; Liu, Y. Comparative assessment of physicochemical and antioxidative properties of Mung bean protein hydrolysates. RSC Adv. 2020, 10, 2634–2645. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.; Ghosal, M.; Gupta, S.K.; Ghosh, A.; Mandal, P. In-vitro free-radical scavenging potential of oligopeptides derived from wheat and Mung bean. Int. J. Pharm. Pharm. Sci. 2015, 8, 428–432. [Google Scholar]
- Sonklin, C.; Laohakunjit, N.; Kerdchoechuen, O. Assessment of antioxidant properties of membrane ultrafiltration peptides from Mung bean meal protein hydrolysates. PeerJ 2018, 6, e5337. [Google Scholar] [CrossRef]
- Kusumah, J.; Hernandez, L.M.R.; De Mejia, E.G. Antioxidant Potential of Mung Bean (Vigna radiata) Albumin Peptides Produced by Enzymatic Hydrolysis Analyzed by Biochemical and In Silico Methods. Foods 2020, 9, 1241. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Kumar, S.; Das, M.; Dwivedi, P.D. A Comprehensive Review of Legume Allergy. Clin. Rev. Allergy Immunol. 2013, 45, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, L.; Yuan, D.; Zhao, X.; Cui, S.; Hu, J.; Wang, J. Reduction of the allergenic protein in soybean meal by enzymatic hydrolysis. Food Agric. Immunol. 2014, 25, 301–310. [Google Scholar] [CrossRef]
- Clemente, A.; Vioque, J.; Sanchez-Vioque, R.; Pedroche, J.; Millán, F. Production of extensive chickpea (Cicer arietinum L.) protein hydrolysates with reduced antigenic activity. J. Agric. Food Chem. 1999, 47, 3776–3781. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, B.; Pedrosa, M.M.; Rodríguez, J.; González, A.; Múzquiz, M.; Cuadrado, C.; Crespo, J.F.; Burbano, C. Effects of enzymatic hydrolysis on lentil allergenicity. Mol. Nutr. Food Res. 2010, 54, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Budseekoad, S.; Yupanqui, C.T.; Alashi, A.M.; Aluko, R.E.; Youravong, W. Anti-allergic activity of mung bean (Vigna radiata (L.) Wilczek) protein hydrolysates produced by enzymatic hydrolysis using non- gastrointestinal and gastrointestinal enzymes. J. Food Biochem. 2019, 43, e12674. [Google Scholar] [CrossRef] [Green Version]
Source of Peptides | Preparation Method/s | Antioxidative Soybean Peptides | Antioxidant Properties (in vitro or in vivo) | Reference |
---|---|---|---|---|
Lunasin | Naturally occurring | SKWQHQQSCRKQLQGVNLTPC, DDDDDDDDD, EKHIMEKIQGRGDDDDDDDDD, EKHIMEKIQ | ABTS, inhibition of ROS generation in LPS-stimulated RAW 264.7 macrophages | [54] |
SPI | Alcalase, SEC, IEC | FDPAL (561 Da) | HRSA, SRSA, inhibition of ROS generation in C. elegans, increase SOD expression, protection of H2O2-injured HeLa cells | [52] |
Full-fat soybean flakes | Alcalase, pepsin, pancreatin, SEC | GNPDIEHPE, TNDRPSIG, SVIKPPTDE, VIKPPTDE, GNPDIEHPET, LVPPQESQ, EITPEKNPQ, TLVNNDDRDS, NSQHPEL, FEEPQQPQ (823.38–1216.58 Da) | DPPH, ABTS, reducing power, Fe2+ chelation, inhibition of ROS generation in Caco-2 cells | [55] |
Soy protein fractions | UF, Flavourzyme | <10 kDa | HRSA, ABTS, inhibition of NBT, inhibition of lipid oxidation, FRAP, reducing power | [46] |
Black soy sauce | SEC | 400–4000 Da (CP1) | ABTS | [56] |
Soybean meal protein | Extrusion, Alcalase, UF | Fraction I (>3 kDa), II (3–1 kDa), III (<1 k Da) | HRSA | [47] |
Soy industrial effluents | UF, Flavourzyme | Hydrolysates | FRAP, ABTS | [46] |
Soybean | Germination, pepsin, pancreatin, UF | Fraction (42.1, 31.4, 19.9, 15.5, 13.6, 12 kDa) | Reducing power, Cu2+ and Fe2+ chelation, HRSA | [18] |
Soybean | UAE | Soybean extracts | ORAC, DPPH | [57] |
SPI | Pepsin, papain, chymotrypsin, Alcalase, Protame, Flavourzyme | Hydrolysates | TBARS (liposome system) | [36] |
Black soybean soymilk | Pepsin, trypsin | Hydrolysates | FRAP, DPPH | [58] |
Soy protein | Alcalase, SEC | Hydrolysates | ABTS | [53] |
Soy milk | Lactobacillus rhamnosus CRL981 | Fermentates | DPPH, inhibition of lipid oxidation, reducing power, inhibition of plasmid DNA oxidation | [49] |
Soy milk | Lactobacillus acidophilus (CCRC 14079 or Streptococcus thermophilus CCRC 14085), and Bifidobacterium infantis (CCRC 14633 or Bifidobacterium longum B6) | Fermentates | Inhibition of ascorbate autoxidation, reducing activity, SRSA | [50] |
Soy milk | Lactobacillus rhamnosus strains (L. rhamnosus C8, L. rhamnosus C25, L. rhamnosus C28, or L. rhamnosus C34) | Fermentates | ABTS, DPPH, HRSA | [59] |
Soy milk | Leuconostoc sp. MYU 51, Lactobacillus sakei MYU 57, Leuconostoc mesenteroides MYU 60, Lactobacillus sakei MYU 67, Lactobacillus gasseri MYU 1, Pediococcus pentosaceus MYU 759 | Soy yogurt, soymilk yogurt supernatants | ORAC, HORAC, inhibition of ROS generation in HCT 116 cells, DNA protection (comet assay) | [60] |
Soy milk fortified with 2% whey protein concentrate | Lactobacillus rhamnosus (NCDC 17, 19, 24, 297, C2, C6) | Fermentates | ABTS, DPPH, FRAP | [61] |
Soy milk | Bacillus subtilis (2805PNU014, 2829PNU015, 2825PNU016, MYCO10001, KCCM11316) | Fermentates | DPPH, ABTS, LDL oxidation inhibition | [62] |
Soy milk | Lactobacillus plantarum | Fermentates | DPPH, HRSA, inhibition of ROS generation and lipid peroxidation in Caco-2 cells, enhanced levels of CAT, SOD, GSH-Px | [63] |
Soybean meal extract | Lactobacillus plantarum strain RM10 | Fermentates | In vitro: DPPH, Fe2+ chelation In vivo: inflammation/infection model (Wistar rat; MDA, MPO, GSH levels) | [41] |
SPI | Chryseobacterium sp. kr6 | Fermentates | ABTS, DPPH, Fe2+ chelation | [12] |
SPI | Germination | Germinates | DPPH, ABTS, HRSA | [58] |
SPI | Heating, proteolysis, glycation, UF | Hydrolysates | LDL oxidation inhibition, ORAC | [64] |
Source of Peptides | Preparation Method/s | Antioxidative Chickpea Peptides | Antioxidant Properties (in vitro or in vivo) | Reference |
---|---|---|---|---|
Chickpea protein | Alcalase, SEC | NFYHE (717.37 Da) | DPPH, HRSA, SRSA, Cu2+ and Fe2+ chelation, inhibition of linoleic acid autoxidation | [34] |
Chickpea protein | Alcalase, SEC | Low molecular weight peptides (two peaks of 940–2622 Da and 220–940 Da) | Reducing power, DPPH, MRSA, SRSA, inhibition of linoleic acid autoxidation | [80] |
Chickpea protein | Pepsin, pancreatin, affinity chromatography with immobilized copper, SEC, HPLC | Low molecular weight peptides (105–1205 Da) | Cu2+ chelation | [83] |
Chickpea protein isolates | RP-HPLC | ALEPDHR (836.2 Da), TETWNPNHPEL (1336.3 Da), FVPH (498.1 Da), SAEHGSLH (836.1 Da) | Reducing power, FRSA, inhibition of peroxyl-induced oxidation in Caco-2 cells | [32] |
Chickpea protein | Alcalase, Flavourzyme, SEC | RQSHFANAQP (1155 Da) | DPPH, ABTS, HRSA | [33] |
Chickpea protein concentrate | Alcalase, SEC, RP-HPLC | DHG (327.33 Da), VGDI (402.49 Da) | DPPH, reducing power, inhibition of lipid oxidation, Fe2+ chelation | [74] |
Chickpea sprout protein | Trypsin, Neutrase, Alcalase, papain, IEC, SEC, RP-HPLC | LTEIIP (685.41 Da) | DPPH, HRSA | [88] |
Chickpea seeds protein | Alcalase, Flavourzyme | Hydrolysates | DPPH, inhibition of lipid oxidation | [75] |
Chickpea | Germination | Low molecular weight peptides (9.4–10.9 kDa) | DPPH | [43] |
Chickpea seeds | Pepsin, pancreatin, UF | Low molecular weight peptides (3.5–7 kDa) | ABTS, DPPH, Fe2+ and Cu2+ chelation | [90] |
Source of Peptides | Preparation Method/s | Antioxidative Chickpea Peptides | Antioxidant Properties (in vitro or in vivo) | Reference |
---|---|---|---|---|
Lentil seeds | Germination | Germinates | DPPH, reducing power | [44] |
Lentil protein | Savinase, UF | LLSGTQNQPSFLSGF (1595.81 Da), NSLTLPILRYL (1302.78 Da), TLEPNSVFLPVLLH (1578.89 Da) | ORAC | [95] |
Lentil seeds | Hydrostatic pressure, Alcalase, Protamex, Savinase, Corolase 7089 | <3 kDa peptide | ORAC | [94] |
Lentil seeds | Lactobacillus plantarum, Bacillus subtilis | Fermentates | ORAC | [92] |
Lentil | Aspergillus oryzae, Aspergillus niger | Fermentates | DPPH, ABTS, FRAP | [91] |
Lentil | Lactobacillus plantarum CECT 748, Savinase, SEC | SDQENPFIFK (1225 Da), HGDPEER (839 Da), ATAFGLMK (838 Da) | ORAC, inhibition of ROS generation in RAW 264.7 macrophages | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matemu, A.; Nakamura, S.; Katayama, S. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants 2021, 10, 316. https://doi.org/10.3390/antiox10020316
Matemu A, Nakamura S, Katayama S. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants. 2021; 10(2):316. https://doi.org/10.3390/antiox10020316
Chicago/Turabian StyleMatemu, Athanasia, Soichiro Nakamura, and Shigeru Katayama. 2021. "Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score" Antioxidants 10, no. 2: 316. https://doi.org/10.3390/antiox10020316
APA StyleMatemu, A., Nakamura, S., & Katayama, S. (2021). Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants, 10(2), 316. https://doi.org/10.3390/antiox10020316