Antioxidant-Based Therapies in Male Infertility: Do We Have Sufficient Evidence Supporting Their Effectiveness?
Abstract
:1. Introduction
1.1. Clinical Classification/Diagnosis of Male Infertility
1.2. Laboratory Routine Diagnosis of Male Infertility
2. Male Infertility and Oxidative/Nitrosative Stress: A Rationale for Antioxidant-Based Therapies
2.1. ROS and RNS from Non-Seminal Cells
2.2. ROS and RNS in Sperm Cells: The ROS Paradox and the Sperm Antioxidant Defenses
3. Antioxidant-Based Therapies in the Treatment of Male Infertility
3.1. Ascorbic Acid (Vitamin C)
3.2. N-Acetylcysteine (NAC)
3.3. Tocopherols (Vitamin E)
3.4. Coenzyme Q10
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
4-HNE | 4-Hydroxynonenal |
8-OHdG | 8-Hydroxy-2′-deoxyguanosine |
AA | Ascorbic acid |
cAMP | Cyclic AMP |
AVED | Ataxia with isolated vitamin e deficiency |
CoQ10 | Coenzyme Q10 or ubiquinone |
CoQ10 ox | Oxidized coenzyme Q10 |
CoQ10H2 | Reduced coenzyme Q10 |
DFI | DNA fragmentation index |
DHA | Dehydroascorbic acid |
eNOS | Epithelial nitric oxide synthase |
ETC | Electron transfer chain |
G6PDH | Glucose-6-phosphate dehydrogenase |
GLUT 1, 3 or 4 | Glucose transporters |
GPx | Glutathione peroxidases |
GR | GSH reductase |
GSH | Reduced glutathione |
GSSG | Oxidized glutathione |
GST | Glutathione-S-transferase |
IVF | In vitro fertilization |
IL | Interleukin |
iNOS | Inducible nitric oxide synthase |
LDL | Low-density lipoproteins |
MDA | Malondialdehyde |
NAC | N-acetylcysteine |
NADP+ | Nicotinamide adenine dinucleotide phosphate, oxidized form |
NADPH | Nicotinamide adenine dinucleotide phosphate, reduced form |
NOS | Nitric oxide synthases |
NOX5 | NADPH oxidase, isoform 5 |
OXPHOS | Oxidative phosphorylation |
PKA | Protein kinase A |
PKC | Protein kinase C |
PPP | Pentose phosphate pathway |
PUFAs | Polyunsaturated fatty acids |
RDI | Recommended daily intake |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SDI | Nuclear decondensation index |
SOD | Superoxide dismutase |
SVCT1 or 2 | Sodium-dependent vitamin c transporter 1 or 2 |
α-TTP | α-Tocopherol transfer protein |
WHO | World Health Organization |
References
- Inhorn, M.C.; Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zegers-Hochschild, F.; Adamson, G.D.; de Mouzon, J.; Ishihara, O.; Mansour, R.; Nygren, K.; Sullivan, E.; Vanderpoel, S. International Committee for Monitoring Assisted Reproductive Technology; World Health Organization. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil. Steril. 2009, 92, 1520–1524. [Google Scholar] [PubMed]
- Winters, B.R.; Walsh, T.J. The epidemiology of male infertility. Urol. Clin. N. Am. 2014, 41, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.J.; Teloken, P.; Shoshany, O. Male infertility–The other side of the equation. Aust. Fam. Physician. 2017, 46, 641–646. [Google Scholar]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Anifandis, G.; Bounartzi, T.; Messini, C.I.; Dafopoulos, K.; Sotiriou, S.; Messinis, I.E. The impact of cigarette smoking and alcohol consumption on sperm parameters and sperm DNA fragmentation (SDF) measured by Halosperm(®). Arch. Gynecol. Obstet. 2014, 290, 777–782. [Google Scholar] [CrossRef]
- Anifandis, G.; Amiridis, G.; Dafopoulos, K.; Daponte, A.; Dovolou, E.; Gavriil, E.; Gorgogietas, V.; Kachpani, E.; Mamuris, Z.; Messini, C.I.; et al. The In Vitro Impact of the Herbicide Roundup on Human Sperm Motility and Sperm Mitochondria. Toxics 2017, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Anifandis, G.; Katsanaki, K.; Lagodonti, G.; Messini, C.; Simopoulou, M.; Dafopoulos, K.; Daponte, A. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation. Int. J. Environ. Res Public Health 2018, 15, 1117. [Google Scholar] [CrossRef] [Green Version]
- Khalili, M.A.; Leisegang, K.; Majzoub, A.; Finelli, R.; Panner Selvam, M.K.; Henkel, R.; Mojgan, M.; Agarwal, A. Male Fertility and the COVID-19 Pandemic: Systematic Review of the Literature. World J. Mens Health. 2020, 38, 506–520. [Google Scholar] [CrossRef]
- Anifandis, G.; Messini, C.I.; Daponte, A.; Messinis, I.E. COVID-19 and fertility: A virtual reality. Reprod. Biomed. Online 2020, 41, 157–159. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. SARS-CoV-2 and Male Infertility: Possible Multifaceted Pathology. Reprod. Sci. 2020, 10, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mahdian, S.; Shahhoseini, M.; Moini, A. COVID-19 Mediated by Basigin Can Affect Male and Female Fertility. Int. J. Fertil. Steril. 2020, 14, 262–263. [Google Scholar] [PubMed]
- Szkodziak, P.; Wozniak, S.; Czuczwar, P.; Wozniakowska, E.; Milart, P.; Mroczkowski, A.; Paszkowski, T. Infertility in the light of new scientific reports—focus on male factor. Ann. Agric. Environ. Med. 2016, 23, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Shah, A.; Gudi, A.; Homburg, R. Unexplained infertility: An update and review of practice. Reprod. Biomed. Online 2012, 24, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Ramalingam, M.; Kini, S.; Mahmood, T. Male fertility and infertility. Obstetr. Gynaecol. Reprod. Med. 2014, 24, 326–332. [Google Scholar] [CrossRef]
- Lin, C.H.; Huang, T.Y. Congenital bilateral absence of the vas deferens (CBAVD) with bilaterally present seminal vesicles. Urol. Case Rep. 2020, 31, 101131. [Google Scholar] [CrossRef]
- McCallum, T.; Milunsky, J.; Munarriz, R.; Carson, R.; Sadeghi-Nejad, H.; Oates, R. Unilateral renal agenesis associated with congenital bilateral absence of the vas deferens: Phenotypic findings and genetic considerations. Hum. Reprod. 2001, 16, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Mittal, P.K.; Little, B.; Harri, P.A.; Miller, F.H.; Alexander, L.F.; Kalb, B.; Camacho, J.C.; Master, V.; Hartman, M.; Moreno, C.C. Role of Imaging in the Evaluation of Male Infertility. Radiographics 2017, 37, 837–854. [Google Scholar]
- Cocuzza, M.; Alvarenga, C.; Pagani, R. The epidemiology and etiology of azoospermia. Clinics 2013, 68, 15–26. [Google Scholar] [CrossRef]
- Pryor, J.P.; Hendry, W.F. Ejaculatory duct obstruction in subfertile males: Analysis of 87 patients. Fertil. Steril. 1991, 56, 725–730. [Google Scholar] [CrossRef]
- Goldwasser, B.Z.; Weinerth, J.L.; Carson, C.C., 3rd. Ejaculatory duct obstruction: The case for aggressive diagnosis and treatment. J. Urol. 1985, 134, 964–966. [Google Scholar] [CrossRef]
- Hendry, W.F. Disorders of ejaculation: Congenital, acquired and functional. Br. J. Urol. 1998, 82, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Maiburg, M.; Repping, S.; Giltay, J. The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. Fertil. Steril. 2012, 98, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D.J.; Szafran, A.A.; Jordan, P.W.; Dobs, A.S.; Herati, A.S. Infertility in Patients with Klinefelter Syndrome: Optimal Timing for Sperm and Testicular Tissue Cryopreservation. Rev. Urol. 2018, 20, 56–62. [Google Scholar] [PubMed]
- Kim, S.Y.; Lee, B.Y.; Oh, A.R.; Park, S.Y.; Lee, H.S.; Seo, J.T. Clinical, Hormonal, and Genetic Evaluation of Idiopathic Nonobstructive Azoospermia and Klinefelter Syndrome Patients. Cytogenet. Genome Res. 2017, 153, 190–197. [Google Scholar] [CrossRef]
- Docampo, M.J.; Hadziselimovic, F. Molecular Pathology of Cryptorchidism-Induced Infertility. Sex Dev. 2015, 9, 269–278. [Google Scholar] [CrossRef]
- Lee, P.A.; Houk, C.P. Cryptorchidism. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 210–216. [Google Scholar] [CrossRef]
- Kohn, T.P.; Kohn, J.R.; Owen, R.C.; Coward, R.M. The Prevalence of Y-chromosome Microdeletions in Oligozoospermic Men: A Systematic Review and Meta-analysis of European and North American Studies. Eur. Urol. 2019, 76, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Colaco, S.; Modi, D. Consequences of Y chromosome microdeletions beyond male infertility. J. Assist. Reprod. Genet. 2019, 36, 1329–1337. [Google Scholar] [CrossRef]
- Zhang, F.P.; Malinen, M.; Mehmood, A.; Lehtiniemi, T.; Jääskeläinen, T.; Niskanen, E.A.; Korhonen, H.; Laiho, A.; Elo, L.L.; Ohlsson, C.; et al. Lack of androgen receptor SUMOylation results in male infertility due to epididymal dysfunction. Nat. Commun. 2019, 10, 777. [Google Scholar] [CrossRef]
- Hiort, O.; Holterhus, P.M. Androgen insensitivity and male infertility. Int. J. Androl. 2003, 26, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Jiang, F.; Chen, Q.; Yang, H.; Zhou, N.; Sun, L.; Zou, P.; Yang, W.; Cao, J.; Zhou, Z.; et al. Associations of ambient air pollutant exposure with seminal plasma MDA, sperm mtDNA copy number, and mtDNA integrity. Environ. Int. 2020, 136, 105483. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Bosagna, C.; Skinner, M.K. Environmental epigenetics and effects on male fertility. Adv. Exp. Med. Biol. 2014, 791, 67–81. [Google Scholar] [PubMed]
- Bundhun, P.K.; Janoo, G.; Bhurtu, A.; Teeluck, A.R.; Soogund, M.Z.S.; Pursun, M.; Huang, F. Tobacco smoking and semen quality in infertile males: A systematic review and meta-analysis. BMC Public Health 2019, 19, 36. [Google Scholar] [CrossRef] [PubMed]
- Sansone, A.; Di Dato, C.; de Angelis, C.; Menafra, D.; Pozza, C.; Pivonello, R.; Isidori, A.; Gianfrilli, D. Smoke, alcohol and drug addiction and male fertility. Reprod. Biol. Endocrinol. 2018, 16, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassan, F.L.; Arvizu, M.; Mínguez-Alarcón, L.; Gaskins, A.J.; Williams, P.L.; Petrozza, J.C.; Hauser, R.; Chavarro, J.E.; Earth Study Team. Marijuana smoking and outcomes of infertility treatment with assisted reproductive technologies. Hum. Reprod. 2019, 34, 1818–1829. [Google Scholar] [CrossRef]
- Boeri, L.; Pederzoli, F.; Capogrosso, P.; Abbate, C.; Alfano, M.; Mancini, N.; Clementi, M.; Montanari, E.; Montorsi, F.; Salonia, A. Semen infections in men with primary infertility in the real-life setting. Fertil. Steril. 2020, 113, 1174–1182. [Google Scholar] [CrossRef]
- Craig, J.R.; Jenkins, T.G.; Carrell, D.T.; Hotaling, J.M. Obesity, male infertility, and the sperm epigenome. Fertil. Steril. 2017, 107, 848–859. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, K.A.; Walsh, T.J. Infertility with Testicular Cancer. Urol. Clin. N. Am. 2015, 42, 409–420. [Google Scholar] [CrossRef]
- Jensen, C.F.S.; Østergren, P.; Dupree, J.M.; Ohl, D.A.; Sønksen, J.; Fode, M. Varicocele and male infertility. Nat. Rev. Urol. 2017, 14, 523–533. [Google Scholar] [CrossRef]
- Omar, S.S.; Mahfouz, W.; Dawood, W.; Abo El-Wafa, R.A.H.; Ghazala, R.A.; Zahran, A.M. Relation of nitric oxide synthase gene (NOS3) polymorphisms to varicocele risk and post-varicocelectomy seminal oxidative stress reduction. Andrologia 2020, 52, e13525. [Google Scholar] [CrossRef] [PubMed]
- Cooper, T.G.; Yeung, C.H.; Nashan, D.; Nieschlag, E. Epididymal markers in human infertility. J. Androl. 1988, 9, 91–101. [Google Scholar] [CrossRef]
- Griffin, D.K.; Finch, K.A. The genetic and cytogenetic basis of male infertility. Hum. Fertil. 2005, 8, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lekarev, O.; Lin-Su, K.; Vogiatzi, M.G. Infertility and Reproductive Function in Patients with Congenital Adrenal Hyperplasia: Pathophysiology, Advances in Management, and Recent Outcomes. Endocrinol. Metab. Clin. N. Am. 2015, 44, 705–722. [Google Scholar] [CrossRef] [PubMed]
- Kothandaraman, N.; Agarwal, A.; Abu-Elmagd, M.; Al-Qahtani, M.H. Pathogenic landscape of idiopathic male infertility: New insight towards its regulatory networks. NPJ Genom Med. 2016, 1, 16023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, N.; Agarwal, A.; Nallella, K.P.; Thomas, A.J., Jr. Relationship between epidemiological features and aetiology of male infertility as diagnosed by a comprehensive infertility service provider. Reprod. Biomed. Online 2006, 12, 209–214. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010; p. 271. [Google Scholar]
- Cooper, T.G.; Noonan, E.; von Eckardstein, S.; Auger, J.; Baker, H.W.; Behre, H.M.; Haugen, T.B.; Kruger, T.; Wang, C.; Mbizvo, M.T.; et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 2010, 16, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Sabra, S.M.; Al-Harbi, M.S. An influential relationship of seminal fluid microbial infections and infertility, Taif Region, KSA. World J. Med. Sci. 2014, 10, 32–37. [Google Scholar]
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191–196. [Google Scholar] [CrossRef]
- Bracke, A.; Peeters, K.; Punjabi, U.; Hoogewijs, D.; Dewilde, S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod. Biomed. Online 2018, 36, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Emokpae, M.A.; Chima, H.N. Effect of senescence on some apoptosis and oxidative stress markers in infertile normozospermic and oligospermic men: A cross-sectional study. Int. J. Reprod. Biomed. 2018, 16, 435–442. [Google Scholar] [PubMed] [Green Version]
- Bisht, S.; Faiq, M.; Tolahunase, M.; Dada, R. Oxidative stress and male infertility. Nat. Rev. Urol. 2017, 14, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Tremellen, K. Oxidative stress and male infertility—A clinical perspective. Hum. Reprod. Update 2008, 14, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Martin-Hidalgo, D.; Bragado, M.J.; Batista, A.R.; Oliveira, P.F.; Alves, M.G. Antioxidants and Male Fertility: From Molecular Studies to Clinical Evidence. Antioxidants 2019, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, J.; Imai, H. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress. Spermatogenesis 2014, 4, e979108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azantee, Y.A.W.; Lokman, M.I. The future of Azoospermic Patients: In vitro spermatogenesis. Andrology 2015, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Walters, J.L.H.; Gadella, B.M.; Sutherland, J.M.; Nixon, B.; Bromfield, E.G. Male Infertility: Shining a Light on Lipids and Lipid-Modulating Enzymes in the Male Germline. J. Clin. Med. 2020, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Oborna, I.; Wojewodka, G.; De Sanctis, J.B.; Fingerova, H.; Svobodova, M.; Brezinova, J.; Hajduch, M.; Novotny, J.; Radova, L.; Radzioch, D. Increased lipid peroxidation and abnormal fatty acid profiles in seminal and blood plasma of normozoospermic males from infertile couples. Hum. Reprod. 2010, 25, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Gibb, Z.; Baker, M.A.; Drevet, J.; Gharagozloo, P. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 2016, 28, 1–10. [Google Scholar] [CrossRef]
- Drevet, J.R.; Aitken, R.J. Oxidative Damage to Sperm DNA: Attack and Defense. Adv. Exp Med. Biol. 2019, 1166, 107–117. [Google Scholar]
- Homa, S.T.; Vassiliou, A.M.; Stone, J.; Killeen, A.P.; Dawkins, A.; Xie, J.; Gould, F.; Ramsay, J.W.A. A Comparison Between Two Assays for Measuring Seminal Oxidative Stress and their Relationship with Sperm DNA Fragmentation and Semen Parameters. Genes 2019, 10, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, A.D.; Sharma, R.; Henkel, R.; Agarwal, A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 2018, 50, e13012. [Google Scholar] [CrossRef] [PubMed]
- Bracko, O.; Di Pietro, V.; Lazzarino, G.; Amorini, A.M.; Tavazzi, B.; Artmann, J.; Wong, E.C.; Buxton, R.B.; Weller, M.; Luft, A.R.; et al. 3-Nitropropionic acid-induced ischemia tolerance in the rat brain is mediated by reduced metabolic activity and cerebral blood flow. J. Cereb. Blood Flow Metab. 2014, 34, 1522–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzarino, G.; Amorini, A.M.; Petzold, A.; Gasperini, C.; Ruggieri, S.; Quartuccio, M.E.; Lazzarino, G.; Di Stasio, E.; Tavazzi, B. Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. Mol. Neurobiol. 2017, 54, 7520–7533. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 2018, 117, 76–89. [Google Scholar] [CrossRef]
- Kudryavtseva, A.V.; Krasnov, G.S.; Dmitriev, A.A.; Alekseev, B.Y.; Kardymon, O.L.; Sadritdinova, A.F.; Fedorova, M.S.; Pokrovsky, A.V.; Melnikova, N.V.; Kaprin, A.D.; et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2016, 7, 44879–44905. [Google Scholar] [CrossRef] [Green Version]
- Lazzarino, G.; Amorini, A.M.; Signoretti, S.; Musumeci, G.; Lazzarino, G.; Caruso, G.; Pastore, F.S.; Di Pietro, V.; Tavazzi, B.; Belli, A. Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement. Int. J. Mol. Sci. 2019, 20, 5774. [Google Scholar] [CrossRef] [Green Version]
- Tibullo, D.; Giallongo, C.; Romano, A.; Vicario, N.; Barbato, A.; Puglisi, F.; Parenti, R.; Amorini, A.M.; Wissam Saab, M.; Tavazzi, B.; et al. Mitochondrial Functions, Energy Metabolism and Protein Glycosylation are Interconnected Processes Mediating Resistance to Bortezomib in Multiple Myeloma Cells. Biomolecules 2020, 10, 696. [Google Scholar] [CrossRef]
- Lazzarino, G.; Listorti, I.; Muzii, L.; Amorini, A.M.; Longo, S.; Di Stasio, E.; Caruso, G.; D’Urso, S.; Puglia, I.; Pisani, G.; et al. Low-molecular weight compounds in human seminal plasma as potential biomarkers of male infertility. Hum. Reprod. 2018, 33, 1817–1828. [Google Scholar] [CrossRef]
- Cosci, I.; Moretti, E.; Collodel, G. Lipid peroxidation in human spermatozoa from men with genitourinary infections. Syst. Biol. Reprod. Med. 2008, 54, 75–83. [Google Scholar] [CrossRef]
- Moazamian, R.; Polhemus, A.; Connaughton, H.; Fraser, B.; Whiting, S.; Gharagozloo, P.; Aitken, R.J. Oxidative stress and human spermatozoa: Diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol. Hum. Reprod. 2015, 21, 502–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorilhon, S.; Brugnon, F.; Kocer, A.; Dollet, S.; Bourgne, C.; Berger, M.; Janny, L.; Pereira, B.; Aitken, R.J.; Moazamian, A.; et al. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Hum. Reprod. 2018, 33, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Kuang, F.; Liu, J.; Tang, D.; Kang, R. Oxidative Damage and Antioxidant Defense in Ferroptosis. Front. Cell Dev. Biol. 2020, 8, 586578. [Google Scholar] [CrossRef] [PubMed]
- Alkan, İ.; Yüksel, M.; Canat, H.L.; Atalay, H.A.; Can, O.; Özveri, H.; Başar, M.M. Superoxide Anion Production by the Spermatozoa of Men with Varicocele: Relationship with Varicocele Grade and Semen Parameters. World J. Mens Health 2018, 36, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, F.F.; Sundaram, A.; Sharma, R.K.; Borges, E., Jr.; Pasqualotto, E.B.; Agarwal, A. Semen quality and oxidative stress scores in fertile and infertile patients with varicocele. Fertil. Steril. 2008, 89, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Albani, D.; Coppola, L.; Zara, V. Varicocele Negatively Affects Sperm Mitochondrial Respiration. Urology 2015, 86, 735–739. [Google Scholar] [CrossRef]
- Agarwal, A.; Rana, M.; Qiu, E.; AlBunni, H.; Bui, A.D.; Henkel, R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018, 50, e13126. [Google Scholar] [CrossRef] [PubMed]
- Romeo, C.; Ientile, R.; Impellizzeri, P.; Turiaco, N.; Teletta, M.; Antonuccio, P.; Basile, M.; Gentile, C. Preliminary report on nitric oxide-mediated oxidative damage in adolescent varicocele. Hum. Reprod. 2003, 18, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Hamada, A.; Esteves, S.C. Insight into oxidative stress in varicocele-associated male infertility: Part 1. Nat. Rev. Urol. 2012, 9, 678–690. [Google Scholar] [CrossRef]
- Ritchie, C.; Ko, E.Y. Oxidative stress in the pathophysiology of male infertility. Andrologia 2020. [Google Scholar] [CrossRef]
- Fraczek, M.; Hryhorowicz, M.; Gill, K.; Zarzycka, M.; Gaczarzewicz, D.; Jedrzejczak, P.; Bilinska, B.; Piasecka, M.; Kurpisz, M. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J. Reprod. Immunol. 2016, 118, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Whittington, K.; Ford, W.C. Relative contribution of leukocytes and of spermatozoa to reactive oxygen species production in human sperm suspensions. Int. J. Androl. 1999, 22, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Lobascio, A.M.; De Felici, M.; Anibaldi, M.; Greco, P.; Minasi, M.G.; Greco, E. Involvement of seminal leukocytes, reactive oxygen species, and sperm mitochondrial membrane potential in the DNA damage of the human spermatozoa. Andrology 2015, 3, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, R.; Salemi, M.; Vicari, L.O.; Vicari, E. Relationship of semen hyperviscosity with IL-6, TNF-? IL-10 and ROS production in seminal plasma of infertile patients with prostatitis and prostato-vesiculitis. Andrologia 2014, 46, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mulgund, A.; Alshahrani, S.; Assidi, M.; Abuzenadah, A.M.; Sharma, R.; Sabanegh, E. Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod. Biol. Endocrinol. 2014, 12, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazalytska, S.V.; Persidsky, Y.; Romanenko, A.M. Molecular mechanisms of initiation of carcinogenesis in the testis. Exp. Oncol. 2019, 41, 224–234. [Google Scholar]
- Sposito, C.; Camargo, M.; Tibaldi, D.S.; Barradas, V.; Cedenho, A.P.; Nichi, M.; Bertolla, R.P.; Spaine, D.M. Antioxidant enzyme profile and lipid peroxidation products in semen samples of testicular germ cell tumor patients submitted to orchiectomy. Int. Braz. J. Urol. 2017, 43, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.B.R.; Bertolla, R.P.; Intasqui, P.; Antoniassi, M.P.; Tibaldi, D.S.; Belardin, L.B.; Spaine, D.M. Effect of orchiectomy on sperm functional aspects and semen oxidative stress in men with testicular tumours. Andrologia 2019, 51, e13205. [Google Scholar] [CrossRef]
- Agarwal, A.; Allamaneni, S.S. Disruption of spermatogenesis by the cancer disease process. J. Natl. Cancer Inst. Monogr. 2005, 34, 9–12. [Google Scholar] [CrossRef]
- Aboulmaouahib, S.; Madkour, A.; Kaarouch, I.; Sefrioui, O.; Saadani, B.; Copin, H.; Benkhalifa, M.; Louanjli, N.; Cadi, R. Impact of alcohol and cigarette smoking consumption in male fertility potential: Looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia 2018, 50. [Google Scholar] [CrossRef]
- Kiziler, A.R.; Aydemir, B.; Onaran, I.; Alici, B.; Ozkara, H.; Gulyasar, T.; Akyolcu, M.C. High levels of cadmium and lead in seminal fluid and blood of smoking men are associated with high oxidative stress and damage in infertile subjects. Biol. Trace Elem. Res. 2007, 120, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Gunes, S.; Metin Mahmutoglu, A.; Arslan, M.A.; Henkel, R. Smoking-induced genetic and epigenetic alterations in infertile men. Andrologia 2018, 50, e13124. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Zara, V. Bioenergetics of mammalian sperm capacitation. Biomed. Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas-Maynou, J.; Yeste, M. Oxidative Stress in Male Infertility: Causes, Effects in Assisted Reproductive Techniques, and Protective Support of Antioxidants. Biology 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskaran, S.; Finelli, R.; Agarwal, A.; Henkel, R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia 2020. [Google Scholar] [CrossRef]
- Sullivan, R.; Mieusset, R. The human epididymis: Its function in sperm maturation. Hum. Reprod. Update 2016, 22, 574–587. [Google Scholar] [CrossRef] [Green Version]
- Ollero, M.; Gil-Guzman, E.; Lopez, M.C.; Sharma, R.K.; Agarwal, A.; Larson, K.; Evenson, D.; Thomas, A.J., Jr.; Alvarez, J.G. Characterization of subsets of human spermatozoa at different stages of maturation: Implications in the diagnosis and treatment of male infertility. Hum. Reprod. 2001, 16, 1912–1921. [Google Scholar] [CrossRef] [Green Version]
- Aitken, J.; Krausz, C.; Buckingham, D. Relationships between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol. Reprod. Dev. 1994, 39, 268–279. [Google Scholar] [CrossRef]
- Said, T.M.; Agarwal, A.; Sharma, R.K.; Mascha, E.; Sikka, S.C.; Thomas, A.J., Jr. Human sperm superoxide anion generation and correlation with semen quality in patients with male infertility. Fertil. Steril. 2004, 82, 871–877. [Google Scholar] [CrossRef]
- Barati, E.; Nikzad, H.; Karimian, M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol. Life Sci. 2020, 77, 93–113. [Google Scholar] [CrossRef]
- Hanukoglu, I. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev. 2006, 38, 171–196. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.; Ingold, I.; Buday, K.; Kobayashi, S.; Angeli, J.P. ROS, thiols and thiol-regulating systems in male gametogenesis. Biochim. Biophys. Acta. 2015, 1850, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Cabrillana, M.E.; Monclus, M.L.Á.; Lancellotti, T.E.S.; Boarelli, P.V.; Vincenti, A.E.; Fornés, M.M.; Sanabria, E.A.; Fornés, M.W. Thiols of flagellar proteins are essential for progressive motility in human spermatozoa. Reprod. Fertil. Dev. 2017, 29, 1435–1446. [Google Scholar] [CrossRef]
- Morielli, T.; O’Flaherty, C. Oxidative stress impairs function and increases redox protein modifications in human spermatozoa. Reproduction 2015, 149, 113–123. [Google Scholar] [CrossRef] [Green Version]
- De Lamirande, E.; O’Flaherty, C. Sperm activation: Role of reactive oxygen species and kinases. Biochim. Biophys. Acta. 2008, 1784, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, T.; Oeda, T.; Ohmori, H.; Schill, W.B. Reactive oxygen species influence the acrosome reaction but not acrosin activity in human spermatozoa. Int. J. Androl. 1999, 22, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Nixon, B. Sperm capacitation: A distant landscape glimpsed but unexplored. Mol. Hum. Reprod. 2013, 19, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Flesch, F.M.; Gadella, B.M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta. 2000, 1469, 197–235. [Google Scholar] [CrossRef]
- Kampfer, C.; Spillner, S.; Spinnler, K.; Schwarzer, J.U.; Terradas, C.; Ponzio, R.; Puigdomenech, E.; Levalle, O.; Köhn, F.M.; Matzkin, M.E.; et al. Evidence for an adaptation in ROS scavenging systems in human testicular peritubular cells from infertility patients. Int. J. Androl. 2012, 35, 793–801. [Google Scholar] [CrossRef]
- Alkan, I.; Simşek, F.; Haklar, G.; Kervancioğlu, E.; Ozveri, H.; Yalçin, S.; Akdaş, A. Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: Relationship to seminal plasma antioxidants. J. Urol. 1997, 157, 140–143. [Google Scholar] [CrossRef]
- Otasevic, V.; Kalezic, A.; Macanovic, B.; Jankovic, A.; Stancic, A.; Garalejic, E.; Korac, A.; Korac, B. Evaluation of the antioxidative enzymes in the seminal plasma of infertile men: Contribution to classic semen quality analysis. Syst. Biol. Reprod. Med. 2019, 65, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Lazzarino, G.; Listorti, I.; Bilotta, G.; Capozzolo, T.; Amorini, A.M.; Longo, S.; Caruso, G.; Lazzarino, G.; Tavazzi, B.; Bilotta, P. Water- and Fat-Soluble Antioxidants in Human Seminal Plasma and Serum of Fertile Males. Antioxidants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhemrev, J.P.; van Overveld, F.W.; Haenen, G.R.; Teerlink, T.; Bast, A.; Vermeiden, J.P. Quantification of the nonenzymatic fast and slow TRAP in a post-addition assay in human seminal plasma and the antioxidant contributions of various seminal compounds. J. Androl. 2000, 21, 913–920. [Google Scholar] [PubMed]
- Smits, R.M.; Mackenzie-Proctor, R.; Yazdani, A.; Stankiewicz, M.T.; Jordan, V.; Showell, M.G. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2019, 3, CD007411. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Michels, A.J.; Frei, B. Vitamin C. Adv. Nutr. 2014, 5, 16–18. [Google Scholar] [CrossRef]
- Getoff, N. Vitamin C: Electron emission, free radicals and biological versatility. In Vivo 2013, 27, 565–570. [Google Scholar]
- Granger, M.; Eck, P. Dietary Vitamin C in Human Health. Adv. Food Nutr. Res. 2018, 83, 281–310. [Google Scholar]
- Nishikimi, M.; Yagi, K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am. J. Clin. Nutr. 1991, 54, 1203S–1208S. [Google Scholar] [CrossRef]
- Savini, I.; Rossi, A.; Pierro, C.; Avigliano, L.; Catani, M.V. SVCT1 and SVCT2: Key proteins for vitamin C uptake. Amino Acids. 2008, 34, 347–355. [Google Scholar]
- Di Pietro, V.; Lazzarino, G.; Amorini, A.M.; Tavazzi, B.; D’Urso, S.; Longo, S.; Vagnozzi, R.; Signoretti, S.; Clementi, E.; Giardina, B.; et al. Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic. Biol. Med. 2014, 69, 258–264. [Google Scholar] [CrossRef]
- Hornig, D. Distribution of Ascorbic Acid, Metabolites and Analogues in Man and Animals. Ann. N. Y. Acad. Sci. 1975, 258, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Angulo, C.; Maldonado, R.; Pulgar, E.; Mancilla, H.; Córdova, A.; Villarroel, F.; Castro, M.A.; Concha, I.I. Vitamin C and oxidative stress in the seminiferous epithelium. Biol. Res. 2011, 44, 169–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanďár, R.; Drábková, P.; Hampl, R. The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 2834–2839. [Google Scholar] [CrossRef] [PubMed]
- Guz, J.; Gackowski, D.; Foksinski, M.; Rozalski, R.; Zarakowska, E.; Siomek, A.; Szpila, A.; Kotzbach, M.; Kotzbach, R.; Olinski, R. Comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. PLoS ONE 2013, 8, e68490. [Google Scholar] [CrossRef] [Green Version]
- Berger, G.K.; Smith-Harrison, L.I.; Sandlow, J.I. Sperm agglutination: Prevalence and contributory factors. Andrologia 2019, 51, e13254. [Google Scholar] [CrossRef]
- Nsonwu-Anyanwu, C.A.; Ekong, R.E.; Offor, J.S.; Awusha, F.O.; Orji, C.O.; Umoh, I.E.; Owhorji, A.J.; Emetonjor, R.F.; Opara Usoro, A.C. Heavy metals, biomarkers of oxidative stress and changes in sperm function: A case-control study. Int. J. Reprod. Biomed. 2019, 17, 163–174. [Google Scholar] [CrossRef]
- Dorostghoal, M.; Kazeminejad, S.R.; Shahbazian, N.; Pourmehdi, M.; Jabbari, A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia 2017, 49. [Google Scholar] [CrossRef]
- Yan, L.; Liu, J.; Wu, S.; Zhang, S.; Ji, G.; Gu, A. Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. J. Assist. Reprod. Genet. 2014, 31, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elmoaty, M.A.; Saleh, R.; Sharma, R.; Agarwal, A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil. Steril. 2010, 94, 1531–1534. [Google Scholar] [CrossRef]
- Tawadrous, G.A.; Aziz, A.A.; Mostafa, T. Seminal soluble fas relationship with oxidative stress in infertile men with varicocele. Urology 2013, 82, 820–823. [Google Scholar] [CrossRef]
- Mínguez-Alarcón, L.; Mendiola, J.; López-Espín, J.J.; Sarabia-Cos, L.; Vivero-Salmerón, G.; Vioque, J.; Navarrete-Muñoz, E.M.; Torres-Cantero, A.M. Dietary intake of antioxidant nutrients is associated with semen quality in young university students. Hum. Reprod. 2012, 27, 2807–2814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendiola, J.; Torres-Cantero, A.M.; Vioque, J.; Moreno-Grau, J.M.; Ten, J.; Roca, M.; Moreno-Grau, S.; Bernabeu, R. A low intake of antioxidant nutrients is associated with poor semen quality in patients attending fertility clinics. Fertil. Steril. 2010, 93, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.R.; Hekmatdoost, A. Nutrient patterns and asthenozoospermia: A case-control study. Andrologia 2017, 49. [Google Scholar] [CrossRef] [PubMed]
- Cyrus, A.; Kabir, A.; Goodarzi, D.; Moghimi, M. The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: A double-blind placebo controlled clinical trial. Int. Braz J. Urol. 2015, 41, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, B.; Morowvat, M.H.; Rahimi-Ghalati, N. Comparing the Effectiveness of Dietary Vitamin C and Exercise Interventions on Fertility Parameters in Normal Obese Men. Urol. J. 2016, 13, 2635–2639. [Google Scholar]
- Vani, K.; Kurakula, M.; Syed, R.; Alharbi, K. Clinical relevance of vitamin C among lead-exposed infertile men. Genet Test Mol. Biomark. 2012, 16, 1001–1006. [Google Scholar] [CrossRef]
- Abad, C.; Amengual, M.J.; Gosálvez, J.; Coward, K.; Hannaoui, N.; Benet, J.; García-Peiró, A.; Prats, J. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia 2013, 45, 211–216. [Google Scholar] [CrossRef]
- Gual-Frau, J.; Abad, C.; Amengual, M.J.; Hannaoui, N.; Checa, M.A.; Ribas-Maynou, J.; Lozano, I.; Nikolaou, A.; Benet, J.; García-Peiró, A.; et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum. Fertil. 2015, 18, 225–229. [Google Scholar] [CrossRef]
- Magdi, Y.; Darwish, E.; Elbashir, S.; Majzoub, A.; Agarwal, A. Effect of modifiable lifestyle factors and antioxidant treatment on semen parameters of men with severe oligoasthenoteratozoospermia. Andrologia 2017, 49. [Google Scholar] [CrossRef]
- Kobori, Y.; Ota, S.; Sato, R.; Yagi, H.; Soh, S.; Arai, G.; Okada, H. Antioxidant cosupplementation therapy with vitamin C, vitamin E, and coenzyme Q10 in patients with oligoasthenozoospermia. Arch. Ital. Urol. Androl. 2014, 86, 1–4. [Google Scholar] [CrossRef]
- Terai, K.; Horie, S.; Fukuhara, S.; Miyagawa, Y.; Kobayashi, K.; Tsujimura, A. Combination therapy with antioxidants improves total motile sperm counts: A Preliminary Study. Reprod. Med. Biol. 2019, 19, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadaghiani, S.; Fallahi, S.; Heshmati, H.; Teshnizi, S.H.; Chaijan, H.A.; Ebrahimi, F.F.A.; Khorrami, F.; Poorrezaeian, M.; Alizadeh, F. Effect of antioxidant supplements on sperm parameters in infertile male smokers: A single-blinded clinical trial. AIMS Public Health 2020, 7, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Steiner, A.Z.; Hansen, K.R.; Barnhart, K.T.; Cedars, M.I.; Legro, R.S.; Diamond, M.P.; Krawetz, S.A.; Usadi, R.; Baker, V.L.; Coward, R.M.; et al. Reproductive Medicine Network. The effect of antioxidants on male factor infertility: The Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil. Steril. 2020, 113, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flohé, L. The fairytale of the GSSG/GSH redox potential. Biochim. Biophys. Acta. 2013, 1830, 3139–3142. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013, 1830, 3289–3303. [Google Scholar] [CrossRef]
- Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016, 95, 27–42. [Google Scholar] [CrossRef]
- Llavanera, M.; Mateo-Otero, Y.; Bonet, S.; Barranco, I.; Fernández-Fuertes, B.; Yeste, M. The triple role of glutathione S-transferases in mammalian male fertility. Cell Mol. Life Sci. 2020, 77, 2331–2342. [Google Scholar] [CrossRef]
- Look, M.P.; Rockstroh, J.K.; Rao, G.S.; Kreuzer, K.A.; Barton, S.; Lemoch, H.; Sudhop, T.; Hoch, J.; Stockinger, K.; Spengler, U.; et al. Serum selenium, plasma glutathione (GSH) and erythrocyte glutathione peroxidase (GSH-Px)-levels in asymptomatic versus symptomatic human immunodeficiency virus-1 (HIV-1)-infection. Eur. J. Clin. Nutr. 1997, 51, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Moretti, E.; Collodel, G.; Fiaschi, A.I.; Micheli, L.; Iacoponi, F.; Cerretani, D. Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reprod. Biol. 2017, 17, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Kralikova, M.; Crha, I.; Huser, M.; Melounova, J.; Zakova, J.; Matejovicova, M.; Ventruba, P. The intracellular concentration of homocysteine and related thiols is negatively correlated to sperm quality after highly effective method of sperm lysis. Andrologia 2017, 49. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Cerretani, D.; Collodel, G.; Menchiari, A.; Moltoni, L.; Fiaschi, A.I.; Moretti, E. Evaluation of enzymatic and non-enzymatic antioxidants in seminal plasma of men with genitourinary infections, varicocele and idiopathic infertility. Andrology 2016, 4, 456–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, E.; Micheli, L.; Noto, D.; Fiaschi, A.I.; Menchiari, A.; Cerretani, D. Resistin in Human Seminal Plasma: Relationship with Lipid Peroxidation, CAT Activity, GSH/GSSG Ratio, and Semen Parameters. Oxid. Med. Cell Longev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Jannatifar, R.; Parivar, K.; Roodbari, N.H.; Nasr-Esfahani, M.H. Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reprod. Biol. Endocrinol. 2019, 17, 24. [Google Scholar] [CrossRef] [Green Version]
- Barekat, F.; Tavalaee, M.; Deemeh, M.R.; Bahreinian, M.; Azadi, L.; Abbasi, H.; Rozbahani, S.; Nasr-Esfahani, M.H. A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy. Int. J. Fertil. Steril. 2016, 10, 120–126. [Google Scholar]
- Dattilo, M.; Cornet, D.; Amar, E.; Cohen, M.; Menezo, Y. The importance of the one carbon cycle nutritional support in human male fertility: A preliminary clinical report. Reprod. Biol. Endocrinol. 2014, 12, 71. [Google Scholar] [CrossRef] [Green Version]
- Elsedfy, H.; De Sanctis, V.; Ahmed, A.Y.; Mohamed, N.R.; Arafa, M.; Elalfy, M.S. A pilot study on sperm DNA damage in β-thalassemia major: Is there a role for antioxidants? Acta Biomed. 2018, 89, 47–54. [Google Scholar]
- Comitato, R.; Ambra, R.; Virgili, F. Tocotrienols: A Family of Molecules with Specific Biological Activities. Antioxidants 2017, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Niki, E.; Traber, M.G. A history of vitamin E. Ann. Nutr. Metab. 2012, 61, 207–212. [Google Scholar] [CrossRef]
- Zerbinati, C.; Caponecchia, L.; Fiori, C.; Sebastianelli, A.; Salacone, P.; Ciacciarelli, M.; Iuliano, L. Alpha- and gamma-tocopherol levels in human semen and their potential functional implications. Andrologia 2020, 52, e13543. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Vitamin E inadequacy in humans: Causes and consequences. Adv. Nutr. 2014, 5, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Rossato, M.; Mariotti, C. Normal spermatogenesis and sperm function in a subject affected by cerebellar ataxia due to congenital vitamin E deficiency. Andrologia 2014, 46, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997, 409, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Bolle, P.; Evandri, M.G.; Saso, L. The controversial efficacy of vitamin E for human male infertility. Contraception 2002, 65, 313–315. [Google Scholar] [CrossRef]
- Suleiman, S.A.; Ali, M.E.; Zaki, Z.M.; el-Malik, E.M.; Nasr, M.A. Lipid peroxidation and human sperm motility: Protective role of vitamin E. J. Androl. 1996, 17, 530–537. [Google Scholar] [PubMed]
- Benedetti, S.; Tagliamonte, M.C.; Catalani, S.; Primiterra, M.; Canestrari, F.; De Stefani, S.; Palini, S.; Bulletti, C. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod. Biomed. Online 2012, 25, 300–306. [Google Scholar] [CrossRef]
- Nadjarzadeh, A.; Mehrsai, A.; Mostafavi, E.; Gohari, M.R.; Shidfar, F. The association between dietary antioxidant intake and semen quality in infertile men. Med. J. Islam Repub. Iran 2013, 27, 204–209. [Google Scholar]
- Schmid, T.E.; Eskenazi, B.; Marchetti, F.; Young, S.; Weldon, R.H.; Baumgartner, A.; Anderson, D.; Wyrobek, A.J. Micronutrients intake is associated with improved sperm DNA quality in older men. Fertil. Steril. 2012, 98, 1130–1137. [Google Scholar] [CrossRef] [Green Version]
- Salas-Huetos, A.; Rosique-Esteban, N.; Becerra-Tomás, N.; Vizmanos, B.; Bulló, M.; Salas-Salvadó, J. The Effect of Nutrients and Dietary Supplements on Sperm Quality Parameters: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv. Nutr. 2018, 9, 833–848. [Google Scholar] [CrossRef]
- Ener, K.; Aldemir, M.; Işık, E.; Okulu, E.; Özcan, M.F.; Uğurlu, M.; Tangal, S.; Özayar, A. The impact of vitamin E supplementation on semen parameters and pregnancy rates after varicocelectomy: A randomised controlled study. Andrologia 2016, 48, 829–834. [Google Scholar] [CrossRef] [PubMed]
- ElSheikh, M.G.; Hosny, M.B.; Elshenoufy, A.; Elghamrawi, H.; Fayad, A.; Abdelrahman, S. Combination of vitamin E and clomiphene citrate in treating patients with idiopathic oligoasthenozoospermia: A prospective, randomized trial. Andrology 2015, 3, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, H.; Shaeer, O.; El-Segini, A. Combination clomiphene citrate and antioxidant therapy for idiopathic male infertility: A randomized controlled trial. Fertil. Steril. 2010, 93, 2232–2235. [Google Scholar] [CrossRef] [PubMed]
- Lipovac, M.; Bodner, F.; Imhof, M.; Chedraui, P. Comparison of the effect of a combination of eight micronutrients versus a standard mono preparation on sperm parameters. Reprod. Biol. Endocrinol. 2016, 14, 84. [Google Scholar] [CrossRef] [Green Version]
- Gvozdjáková, A.; Kucharská, J.; Dubravicky, J.; Mojto, V.; Singh, R.B. Coenzyme Q10, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis. Markers 2015. [Google Scholar] [CrossRef] [Green Version]
- Moslemi, M.K.; Tavanbakhsh, S. Selenium-vitamin E supplementation in infertile men: Effects on semen parameters and pregnancy rate. Int. J. Gen. Med. 2011, 4, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.S. Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics. Ann. N. Y. Acad. Sci. 2010, 1201, 84–95. [Google Scholar] [CrossRef]
- Wang, Y.; Hekimi, S. Understanding Ubiquinone. Trends Cell Biol. 2016, 26, 367–378. [Google Scholar] [CrossRef]
- Di Pietro, V.; Lazzarino, G.; Amorini, A.M.; Signoretti, S.; Hill, L.J.; Porto, E.; Tavazzi, B.; Lazzarino, G.; Belli, A. Fusion or Fission: The Destiny of Mitochondria in Traumatic Brain Injury of Different Severities. Sci. Rep. 2017, 7, 9189. [Google Scholar] [CrossRef]
- Niklowitz, P.; Onur, S.; Fischer, A.; Laudes, M.; Palussen, M.; Menke, T.; Döring, F. Coenzyme Q10 serum concentration and redox status in European adults: Influence of age, sex, and lipoprotein concentration. J. Clin. Biochem. Nutr. 2016, 58, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Rasheed, O.F.; Farid, Y.Y.; Al-Nasiri, U.S. Coenzyme Q10 and oxidative stress markers in seminal plasma of Iraqi patients with male infertility. Saudi Med. J. 2010, 31, 501–506. [Google Scholar] [PubMed]
- Mancini, A.; Balercia, G. Coenzyme Q(10) in male infertility: Physiopathology and therapy. Biofactors 2011, 37, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, M.; Sahin, S.; Durukan, B.; Ozakpinar, O.B.; Erdinc, N.; Turkgeldi, L.; Sofuoglu, K.; Karateke, A. Blood serum and seminal plasma selenium, total antioxidant capacity and coenzyme Q10 levels in relation to semen parameters in men with idiopathic infertility. Biol. Trace Elem. Res. 2014, 159, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Mantle, D.; Dybring, A. Bioavailability of Coenzyme Q(10): An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants 2020, 9, 386. [Google Scholar] [CrossRef]
- Safarinejad, M.R.; Safarinejad, S.; Shafiei, N.; Safarinejad, S. Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: A double-blind, placebo controlled, randomized study. J. Urol. 2012, 188, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Alahmar, A.T. The impact of two doses of coenzyme Q10 on semen parameters and antioxidant status in men with idiopathic oligoasthenoteratozoospermia. Clin. Exp. Reprod. Med. 2019, 46, 112–118. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Calogero, A.E.; Sengupta, P.; Dutta, S. Coenzyme Q10 Improves Sperm Parameters, Oxidative Stress Markers and Sperm DNA Fragmentation in Infertile Patients with Idiopathic Oligoasthenozoospermia. World J. Mens Health 2020. [Google Scholar] [CrossRef] [Green Version]
- Alahmar, A.T.; Sengupta, P. Impact of Coenzyme Q10 and Selenium on Seminal Fluid Parameters and Antioxidant Status in Men with Idiopathic Infertility. Biol. Trace Elem. Res. 2020. [Google Scholar] [CrossRef]
- Cakiroglu, B.; Eyyupoglu, S.E.; Gozukucuk, R.; Uyanik, B.S. Ubiquinol effect on sperm parameters in subfertile men who have astheno-teratozoospermia with normal sperm concentration. Nephrourol. Mon. 2014, 6, e16870. [Google Scholar] [CrossRef] [Green Version]
- Nadjarzadeh, A.; Shidfar, F.; Amirjannati, N.; Vafa, M.R.; Motevalian, S.A.; Gohari, M.R.; Nazeri Kakhki, S.A.; Akhondi, M.M.; Sadeghi, M.R. Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: A double-blind randomised clinical trial. Andrologia 2014, 46, 177–183. [Google Scholar] [CrossRef]
- Festa, R.; Giacchi, E.; Raimondo, S.; Tiano, L.; Zuccarelli, P.; Silvestrini, A.; Meucci, E.; Littarru, G.P.; Mancini, A. Coenzyme Q10 supplementation in infertile men with low-grade varicocele: An open, uncontrolled pilot study. Andrologia 2014, 46, 805–807. [Google Scholar] [CrossRef] [PubMed]
- Safarinejad, M.R. The effect of coenzyme Q10 supplementation on partner pregnancy rate in infertile men with idiopathic oligoasthenoteratozoospermia: An open-label prospective study. Int. Urol. Nephrol. 2012, 44, 689–700. [Google Scholar] [PubMed]
- Tirabassi, G.; Vignini, A.; Tiano, L.; Buldreghini, E.; Brugè, F.; Silvestri, S.; Orlando, P.; D’Aniello, A.; Mazzanti, L.; Lenzi, A.; et al. Protective effects of coenzyme Q10 and aspartic acid on oxidative stress and DNA damage in subjects affected by idiopathic asthenozoospermia. Endocrine 2015, 49, 549–552. [Google Scholar] [CrossRef] [PubMed]
Authors | Patients (Number and Type of Infertility) | Controls (Number) | Antioxidant(s) (Type(s), Doses and Administration Protocol) | Duration of Treatment (Months) | Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) | No Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) |
---|---|---|---|---|---|---|
Cyrus A. et al. [135] | 46 = varicocele | 69 | AA 500 mg/day | 3 | Sperm motility and morphology | Sperm count |
Rafiee B. et al. [136] | 200 = increasing Body mass index | 50 | AA 1000 mg/day | 6 | Sperm concentration and motility | |
Vani K. et al. [137] | 120 = testicular dysfunction high rate of DNA fragmentation | No controls | AA 1000 mg/day for 5 day/week | 3 | Sperm motility, sperm total count and significantly decreased the number of morphologically abnormal spermatozoa | |
Abad C. et al. [138] | 20 = AT | No controls | AA (60 mg), L-carnitine (1500 mg), CoQ10 (20 mg), vitamin E (10 mg), vitamin B9 (200 µg), vitamin B12 (1 µg), zinc (10 mg) and selenium (50 µg)/day | 3 | Sperm concentration, motility, vitality and morphology parameters, DNA integrity and 5% pregnancy rate | |
Gual-Frau J. et al. [139] | 20 = grade I varicocele | No controls | AA (60 mg), L-carnitine (1500 mg), CoQ10 (20 mg), vitamin E (10 mg), vitamin B9 (200 µg), vitamin B12 (1 µg), zinc (10 mg) and selenium (50 µg)/day | 3 | Sperm count and DNA integrity | Concentration, progressive motility, vitality, and morphology |
Magdi Y. et al. [140] | 120 = severe OAT | No controls | AA (1 g), vitamin E (400 mg) and L-carnitine (2 g)/day | 6 | Sperm concentration, percentage of total motility and progressive motility | |
Kobori Y. et al. [141] | 169 = idiopathic OAT | No controls | AA (60 mg), CoQ10 (120 mg) and vitamin E (40 mg)/day | 3 and 6 | Sperm concentration and motility | Atypical sperm cell number and semen volume |
Terai K. et al. [142] | 15 = O and/or A | 16 = administered with a Chinese herbal medicine | AA (1000 mg), L-carnitine (750.1 mg), zinc (30 mg), astaxanthin (16.05 mg), Co Q10 (90.26 mg), vitamin B12 (60.1 µg) and of vitamin E (150 mg) 3 times/day | 3 | Total motile sperm count | Semen volume, sperm concentration and sperm motility |
Sadaghiani S. et al. [143] | 50 = infertile O and A | No controls | AA (100 mg), CoQ10 (30 mg), zinc (8 mg), vitamin E (12 mg) and folic acid (400 µg)/day selenium (200 mg)/other day | 3 | Volume, morphology, motion, count, progressive motility and pH | |
Steiner AZ. Et al. [144] | 174 = O, A, T and DNA-fragmented patients | 86 | AA (500 mg), vitamin E (400 mg), selenium (0.20 mg), L-carnitine (1000 mg), zinc (20 mg), folic acid (1000 mg), lycopene (10 mg), and vitamin D (2000 IU)/day | 3 and 6 | Sperm morphology, motility, DNA integrity, no different pregnancy and live-birth rates |
Authors | Patients (Number and Type of Infertility) | Controls (Number) | Antioxidant(s) (Type(s), Doses and Administration Protocol) | Duration of Treatment (Months) | Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) | No Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) |
---|---|---|---|---|---|---|
Jannatifar R. et al. [156] | 50 = AT | No controls | NAC (600 mg)/day | 3 | Sperm count, motility and normal morphology, DNA integrity | |
Barekat F. et al. [157] | 15 = varicocele | 20 | NAC (200 mg)/day post-varicocelectomy | 3 | Sperm motility and 33.4% pregnancy rate | |
Dattilo M. et al. [158] | 84 = ART failures | No controls | NAC (250 mg), extract of opuntia fig fruits (100 mg), quercetin (0.05 mg), betalain (0.001 mg), vitamins B2 (1.4 mg), B3 (16 mg), B6 (1.4 mg), B9 (400 μg), B12 (2.5 μg), zinc (12.5 mg), and vitamin E (12 mg)/day | 4 | DNA integrity, spontaneous pregnancy rate (21%), pregnancy rate (47.6%), and live birth rate (39.3%) after a new ART attempt. | Total sperm count, fast motility and normal morphology rates |
Elsedfy H. et al. [159] | 20 = BTM (hypogonadotropic hypogonadism) | No controls | NAC (600 mg) and L-carnitine (2 g)/day | 6 | Increased sperm deformities |
Authors | Patients (Number and Type of Infertility) | Controls (Number) | Antioxidant(s) (Type(s), Doses and Administration Protocol) | Duration of Treatment (Months) | Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) | No Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) |
---|---|---|---|---|---|---|
Zerbinati C. et al. [162] | 10 = sperm analysis anomalies and varicocele | No controls | α-Tocopherol (800 IU)/day | 3 | All parameters (data not shown) | |
Ener K. et al. [172] | 22 = varicocele | 23 | Vitamin E (2×300 mg)/day post- varicocelectomy | 12 | Total sperm count, motile spermatozoa and no different pregnancy rates | |
El Sheikh MG. et al. [173] | 60 = idiopathic OA | 30 | Vitamin E (400 mg) and clomiphene citrate (25 mg)/day | 6 | Means of sperm concentration and total sperm motility | |
Ghanem H. et al. [174] | 60 = idiopathic OA | 30 | Vitamin E (400 mg) and clomiphene citrate (25 mg)/day | 6 | Sperm count, progressive sperm motility and 36.7% pregnancy rate in treated patients vs. 13.3% in controls | Total sperm motility, percentage of abnormal forms and semen volume |
Lipovac M. et al. [175] | 143 = at least one recent (1 year) pathological semen analysis result | 156 | Vitamin E (120 mg), L-carnitine (440 mg), L-arginine (250 mg), zinc (40 mg), GSH (80 mg), selenium (60 μg), CoQ10 (15 mg) and folic acid (800 μg)/day | 3 | Volume, density, overall progressive motility (including slow and fast motility) and% of sperm with normal morphology | |
Gvozdjáková et al. [176] | 40 = OA | No controls | Vitamin E (75 IU), L-carnitine fumarate (440 mg), ubiquinol (30 mg) and AA (12 mg) twice a day for 3 months + once a day for 3 months | 6 | Sperm density, decrease of the sperm anomalies and 45% pregnancy rate | |
Moslemi et al. [177] | 690 = idiopathic AT | No controls | Vitamin E (400 IU) and Se (200 μg)/day | 3.5 | Sperm motility, morphology (52.6% cases) and 10.8% pregnancy rate | Sperm motility and morphology (36.6% cases) |
Authors | Patients (Number and Type of Infertility) | Controls (Number) | Antioxidant(s) (Type(s), Doses and Administration Protocol) | Duration of Treatment (Months) | Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) | No Improvement (Sperm Parameters, Pregnancy and Live Birth Rates) |
---|---|---|---|---|---|---|
Safarinejad et al. [186] | 114 = idiopathic OAT | 114 | CoQ10H2 (200 mg)/day | 6.5 | Sperm density, sperm motility and sperm morphology | Semen volume |
Alahmar AT. [187] | 65 = idiopathic OAT | No controls | CoQ10H2 (200 mg)/day (35 patients) CoQ10H2 (400 mg)/day (30 patients) | 3 | Sperm concentration, progressive motility and total motility (greater improvement after 400 mg/day dose) | |
Alahmar AT. at al. [188] | 65 = idiopathic OAT | 40 | CoQ10 (unspecified form, 200 mg)/day | 3 | Sperm concentration, progressive motility, total motility and DNA integrity | |
Alahmar AT. et al. [189] | 35 = idiopathic OAT | 35 | CoQ10H2 (200 mg)/day | 3 | Sperm concentration and progressive motility | Sperm morphology |
Cakiroglu B. et al. [190] | 62 = idiopathic AT | No controls | CoQ10H2 (100 mg) twice/day | 6 | Sperm morphology and motility | Sperm concentration |
Nadjarzadeh A. et al. [181] | 47 = idiopathic OAT | 30 | CoQ10H2 (100 mg) twice/day | 3 | Sperm morphology | Sperm concentration and motility |
Festa et al. [192] | 38 = varicocele | No controls | CoQ10H2 (50 mg) twice/day | 3 | Sperm forward motility and sperm density | No pregnancies |
Safarinejad MR. [193] | 287 = idiopathic OAT | No controls | CoQ10 (unspecified form, 300 mg) twice/day | 12 | Sperm concentration, motility percentage, total sperm count, morphology and 34.1% pregnancy rate | |
Tirabassi et al. [194] | 20 = idiopathic A | No controls | CoQ10 (unspecified form, 200 mg) and D-aspartate (2660 mg)/day | 3 | Total sperm motility | Sperm count and morphology |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amorini, A.M.; Listorti, I.; Bilotta, G.; Pallisco, R.; Saab, M.W.; Mangione, R.; Manca, B.; Lazzarino, G.; Tavazzi, B.; Lazzarino, G.; et al. Antioxidant-Based Therapies in Male Infertility: Do We Have Sufficient Evidence Supporting Their Effectiveness? Antioxidants 2021, 10, 220. https://doi.org/10.3390/antiox10020220
Amorini AM, Listorti I, Bilotta G, Pallisco R, Saab MW, Mangione R, Manca B, Lazzarino G, Tavazzi B, Lazzarino G, et al. Antioxidant-Based Therapies in Male Infertility: Do We Have Sufficient Evidence Supporting Their Effectiveness? Antioxidants. 2021; 10(2):220. https://doi.org/10.3390/antiox10020220
Chicago/Turabian StyleAmorini, Angela Maria, Ilaria Listorti, Gabriele Bilotta, Romina Pallisco, Miriam Wissam Saab, Renata Mangione, Benedetta Manca, Giacomo Lazzarino, Barbara Tavazzi, Giuseppe Lazzarino, and et al. 2021. "Antioxidant-Based Therapies in Male Infertility: Do We Have Sufficient Evidence Supporting Their Effectiveness?" Antioxidants 10, no. 2: 220. https://doi.org/10.3390/antiox10020220
APA StyleAmorini, A. M., Listorti, I., Bilotta, G., Pallisco, R., Saab, M. W., Mangione, R., Manca, B., Lazzarino, G., Tavazzi, B., Lazzarino, G., & Bilotta, P. (2021). Antioxidant-Based Therapies in Male Infertility: Do We Have Sufficient Evidence Supporting Their Effectiveness? Antioxidants, 10(2), 220. https://doi.org/10.3390/antiox10020220