Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Color Analysis
2.3. Proximate Composition
2.4. The Analysis of Glucosinolates
2.5. The Analysis of Amino Acids
2.6. Extract Preparation
2.7. Total Phenolic Content
2.8. Total Flavonoid Content
2.9. Ferric Reducing Antioxidant Potential
2.10. Trolox Equivalent Antioxidant Capacity Assay with ABTS
2.11. The Analysis of Chlorophylls
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, F.A.; Ali, R.F.M. Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. BioMed Res. Int. 2013, 2013, 367819. [Google Scholar] [CrossRef]
- Sikorska-Zimny, K.; Beneduce, L. The glucosinolates and their bioactive derivatives in Brassica: A review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit. Rev. Food Sci. Nutr. 2020, 61, 2544–2571. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Herz, C.; Schlotz, N.; Kupke, F.; Bartolomé Rodríguez, M.M.; Schreiner, M.; Rohn, S.; Lamy, E. The Brassica epithionitrile 1-cyano-2,3-epithiopropane triggers cell death in human liver cancer cells in vitro. Mol. Nutr. Food Res. 2015, 59, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soundararajan, P.; Kim, J.S. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 2018, 23, 2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burčul, F.; Generalić Mekinić, I.; Radan, M.; Rollin, P.; Blažević, I. Isothiocyanates: Cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. J. Enzym. Inhib. Med. Chem. 2018, 33, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, L.; Cassidy, A. A review of the health care potential of bioactive compounds. J. Sci. Food Agric. 2006, 86, 1805–1813. [Google Scholar] [CrossRef]
- Koch, W. Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, A.; Sharma, U.; Vig, A.P.; Singh, B.; Arora, S. Free radical scavenging, antiproliferative activities and profiling of variations in the level of phytochemicals in different parts of broccoli (Brassica oleracea italica). Food Chem. 2014, 148, 373–380. [Google Scholar] [CrossRef]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Li, X.; Kang, H. Antioxidant extract from cauliflower leaves effectively improve the stability of pork patties during refrigerated storage. J. Food Process. Preserv. 2020, 44, e14510. [Google Scholar] [CrossRef]
- Wani, T.A.; Sood, M. Effect of incorporation of cauliflower leaf powder on sensory and nutritional composition of malted wheat biscuits. Afr. J. Biotechnol. 2014, 13, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Peñas, E.; Zielińska, D.; Gulewicz, P.; Zieliński, H.; Frias, J. Vitamin C, phenolic compounds and antioxidant capacity of broccoli florets grown under different nitrogen treatments combined with selenium. Pol. J. Food Nutr. Sci. 2018, 68, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Giannino, D.; Testone, G.; Nicolodi, C.; Giorgetti, L.; Bellani, L.; Gonnella, M.; Ciardi, M.; Cappuccio, P.; Moscatello, S.; Battistelli, A.; et al. Nutritive parameters and antioxidant quality of minimally processed “Cime di Rapa” (Brassica rapa subsp. sylvestris) Vary as influenced by genotype and storage time. Pol. J. Food Nutr. Sci. 2020, 70, 337–346. [Google Scholar] [CrossRef]
- Ciska, E.; Horbowicz, M.; Rogowska, M.; Kosson, R.; Drabińska, N.; Honke, J. Evaluation of seasonal varaitions in the glucosinolate content in leaves and roots of four. Pol. J. Food Nutr. Sci. 2017, 67, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Karamać, M.; Gai, F.; Peiretti, P.G. Effect of the growth stage of false flax (Camelina sativa L.) on the phenolic compound content and antioxidant potential of the aerial part of the plant. Pol. J. Food Nutr. Sci. 2020, 70, 189–198. [Google Scholar] [CrossRef]
- Costantini, M.; Summo, C.; Centrone, M.; Rybicka, I.; D’Agostino, M.; Annicchiarico, P.; Caponio, F.; Pavan, S.; Tamma, G.; Pasqualone, A. Macro- and micro-nutrient composition and antioxidant activity of chickpea and pea accessions. Pol. J. Food Nutr. Sci. 2021, 71, 177–185. [Google Scholar] [CrossRef]
- Yi, G.-E.; Robin, A.H.K.; Yang, K.; Park, J.-I.; Kang, J.-G.; Yang, T.-J.; Nou, I.-S. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 2015, 20, 13089–13111. [Google Scholar] [CrossRef]
- Picchi, V.; Migliori, C.; Lo Scalzo, R.; Campanelli, G.; Ferrari, V.; Di Cesare, L.F. Phytochemical content in organic and conventionally grown Italian cauliflower. Food Chem. 2012, 130, 501–509. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Current through Revision 4; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2011; Volume 54, pp. 57–58. [Google Scholar]
- Official Journal of the European Communities. 1990; 170, 33.
- Horszwald, A.; Andlauer, W. Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. J. Berry Res. 2011, 1, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.B.T.-M. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Plant Cell Membranes; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. ISBN 0076-6879. [Google Scholar]
- Quintero, C.; Bowers, M.D. Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae). Oecologia 2012, 168, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Smallegange, R.C.; van Loon, J.J.A.; Blatt, S.E.; Harvey, J.A.; Agerbirk, N.; Dicke, M. Flower vs. leaf feeding by Pieris brassicae: Glucosinolate-rich flower tissues are preferred and sustain higher growth rate. J. Chem. Ecol. 2007, 33, 1831–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, T.; Krosse, S.; van Dam, N.M. Root and shoot glucosinolate allocation patterns follow optimal defence allocation theory. J. Ecol. 2017, 105, 1256–1266. [Google Scholar] [CrossRef]
- McKey, D. Adaptive patterns in alkaloid physiology. Am. Nat. 1974, 108, 305–320. [Google Scholar] [CrossRef]
- McCall, A.C.; Fordyce, J.A. Can optimal defence theory be used to predict the distribution of plant chemical defences? J. Ecol. 2010, 98, 985–992. [Google Scholar] [CrossRef]
- Brown, P.D.; Tokuhisa, J.G.; Reichelt, M.; Gershenzon, J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 2003, 62, 471–481. [Google Scholar] [CrossRef]
- Kim, Y.B.; Li, X.; Kim, S.-J.; Kim, H.H.; Lee, J.; Kim, H.; Park, S.U. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Molecules 2013, 18, 8682–8695. [Google Scholar] [CrossRef] [Green Version]
- Barillari, J.; Canistro, D.; Paolini, M.; Ferroni, F.; Pedulli, G.F.; Iori, R.; Valgimigli, L. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agric. Food Chem. 2005, 53, 2475–2482. [Google Scholar] [CrossRef]
- Borek, C. Dietary Antioxidants and Human Cancer. Integr. Cancer Ther. 2004, 3, 333–341. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Wang, M.; Jian, Y.; Zhang, F.; Zhu, J.; Wang, Q.; Sun, B. Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Sci. Rep. 2019, 9, 20344. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.R.; Kwak, J.-H. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-J.; Ishii, G. Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci. Plant Nutr. 2006, 52, 394–400. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Florkiewicz, A.; Leszczyńska, T.; Borczak, B. Directions of changes in the content of selected macro- and micronutrients of kale, rutabaga, green and purple cauliflower due to hydrothermal treatment. Appl. Sci. 2021, 11, 3452. [Google Scholar] [CrossRef]
- Kage, H.; Alt, C.; Stützel, H. Nitrogen concentration of cauliflower organs as determined by organ size, N supply, and radiation environment. Plant Soil 2002, 246, 201–209. [Google Scholar] [CrossRef]
- Li, H. Cauliflower plant organ water status and nitrogen translocation from leaf–stem sources to head sinks in its three hybrid cultivars. Int. J. Veg. Sci. 2011, 17, 363–382. [Google Scholar] [CrossRef]
- Evans, C.; Dunstan, R.H.; Rothkirch, T.; Roberts, T.K.; Reichelt, K.L.; Cosford, R.; Deed, G.; Ellis, L.B.; Sparkes, D.L. Altered amino acid excretion in children with autism. Nutr. Neurosci. 2008, 11, 9–17. [Google Scholar] [CrossRef]
- Drabińska, N.; Krupa-Kozak, U.; Ciska, E.; Jarocka-Cyrta, E. Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: Results of a randomised placebo-controlled pilot study. Amino Acids 2018, 50, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Hugh Dunstan, R.; Sparkes, D.L.; Macdonald, M.M.; Roberts, T.K.; Wratten, C.; Kumar, M.B.; Baines, S.; Denham, J.W.; Gallagher, S.A.; Rothkirch, T. Altered amino acid homeostasis and the development of fatigue by breast cancer radiotherapy patients: A pilot study. Clin. Biochem. 2011, 44, 208–215. [Google Scholar] [CrossRef]
- Dereziński, P.; Klupczynska, A.; Sawicki, W.; Pałka, J.A.; Kokot, Z.J. Amino acid profiles of serum and urine in search for prostate cancer biomarkers: A pilot study. Int. J. Med. Sci. 2017, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tegeder, M. Transporters involved in source to sink partitioning of amino acids and ureides: Opportunities for crop improvement. J. Exp. Bot. 2014, 65, 1865–1878. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, R.; Thukral, A.K.; Bhardwaj, R.; Ahmad, P. Differential distribution of amino acids in plants. Amino Acids 2017, 49, 821–869. [Google Scholar] [CrossRef]
- Yoneyama, T.; Suzuki, A. Light-independent nitrogen assimilation in plant leaves: Nitrate incorporation into glutamine, glutamate, aspartate, and asparagine traced by 15N. Plants 2020, 9, 1303. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, Q.; Lee, R.; Trethewy, A.; Lee, Y.-H.; Tegeder, M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 2010, 22, 3603–3620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneyama, T.; Tanno, F.; Tatsumi, J.; Mae, T. Whole-plant dynamic system of nitrogen use for vegetative growth and grain filling in rice plants (Oryza sativa L.) as revealed through the production of 350 grains from a germinated seed over 150 days: A review and synthesis. Front. Plant Sci. 2016, 7, 1151. [Google Scholar] [CrossRef] [Green Version]
- Savić, A.; Alimpić Aradski, A.; Živković, J.; Šavikin, K.; Jarić, S.; Marin, P.D.; Duletić-Laušević, S. Phenolic composition, and antioxidant and antineurodegenerative potential of methanolic extracts of fruit peel and flesh of pear varieties from Serbia. Pol. J. Food Nutr. Sci. 2021, 71, 225–236. [Google Scholar] [CrossRef]
- Orak, H.H.; Bahrisefit, I.S.; Sabudak, T. Antioxidant activity of extracts of soursop (Annona muricata L.) leaves, fruit pulps, peels, and seeds. Pol. J. Food Nutr. Sci. 2019, 69, 359–366. [Google Scholar] [CrossRef]
- O’Shea, N.; Ktenioudaki, A.; Smyth, T.P.; McLoughlin, P.; Doran, L.; Auty, M.A.E.; Arendt, E.; Gallagher, E. Physicochemical assessment of two fruit by-products as functional ingredients: Apple and orange pomace. J. Food Eng. 2015, 153, 89–95. [Google Scholar] [CrossRef]
- Wani, T.A.; Sood, M.; Amin, Q.A.; Wani, N.; Kour, H. Nutritional and organoleptic evaluation of noodles prepared by supplementation with cauliflower leaves. Asian J. Hortic. 2013, 8, 304–312. [Google Scholar]
Florets | Leaves | Stems | |
---|---|---|---|
L* | 43.41 ± 0.00 b | 34.24 ± 0.01 c | 43.51 ± 0.00 a |
A* | 0.23 ± 0.01 a | −5.13 ± 0.02 c | 0.19 ± 0.01 b |
B* | 6.49 ± 0.01 b | 13.36 ± 0.01 a | 5.66 ± 0.02 c |
Glucosinolate | Florets | Leaves | Stems |
---|---|---|---|
Progoitrin | 6.8 ± 1.58 c | 9.69 ± 2.02 b | 14.83 ± 2.61 a |
Sinigrin | 10.54 ± 2.75 b | 7.48 ± 3.22 b | 17.46 ± 6.71 a |
Unidentified 1 | 8.75 ± 2.61 b | 7.35 ± 3.13 b | 14.06 ± 1.68 a |
Unidentified 2 | 3.56 ± 1.26 a | 2.77 ± 1.03 a | 3.67 ± 0.45 a |
4-Hydroxyglucobrassicin | 13.78 ± 3.32 b | 23.48 ± 4.65 a | 16.84 ± 6.13 b |
Glucobrassicin | 32.21 ± 3.49 b | 59.85 ± 11.96 a | 16.09 ± 2.55 c |
4-Methoxyglucobrassicin | 10.22 ± 2.16 c | 51.88 ± 9.27 a | 16.61 ± 2.3 b |
Neoglucobrassicin | 8.17 ± 3.54 c | 62.7 ± 13.6 a | 25.49 ± 2.96 b |
Total glucosinolates | 94.02 ± 20.71 b | 225.2 ± 48.88 a | 125.05 ± 25.39 b |
Florets | Leaves | Stems | |
---|---|---|---|
TPC (mg GAE/g DM) | 2.76 ± 0.34 b | 4.40 ± 0.22 a | 2.65 ± 0.52 b |
TFC (mg RUT/g DM) | 0.29 ± 0.02 b | 0.64 ± 0.06 a | 0.22 ± 0.02 b |
CHa (μg/g DM) | 0.38 ± 0.10 b | 14.08 ± 0.63 a | 0.34 ± 0.09 b |
CHb (μg/g DM) | 0.66 ± 0.10 b | 8.36 ± 1.64 a | 0.66 ± 0.10 b |
TCH (μg/g DM) | 1.04 ± 0.14 b | 22.43 ± 2.10 a | 1.00 ± 0.13 b |
Florets | Leaves | Stems | |
---|---|---|---|
Ash | 9.47 ± 0.53 b,1 | 10.13 ± 0.64 b | 11.78 ± 0.74 a |
Protein | 23.28 ± 1.46 a | 20.74 ± 1.68 b | 19.12 ± 1.57 b |
Fat | 1.94 ± 0.24 b | 4.68 ± 0.35 a | 4.74 ± 0.40 a |
Carbohydrates 2 | 65.31 ± 2.31 a | 64.45 ± 2.80 a | 64.36 ± 2.91 a |
Amino Acid | Abbrev. | Florets | Leaves | Stems |
---|---|---|---|---|
Essential amino acids | ||||
Valine | VAL | 106.54 ± 23.81 a | 60.66 ± 11.15 b | 100.01 ± 24.52 a |
Leucine | LEU | 62.7 ± 11.11 a | 10.30 ± 2.93 c | 23.93 ± 6.2 b |
Isoleucine | ILE | 64.2 ± 15.64 a | 16.43 ± 2.07 c | 41.25 ± 7.23 b |
Threonine | THR | 54.47 ± 6.56 b | 75.14 ± 8.74 a | 50.4 ± 14.39 b |
Phenylalanine | PHE | 62.72 ± 15.97 a | 18.19 ± 4.2 b | 21.99 ± 7.36 b |
Lysine | LYS | 36.5 ± 7.72 a | 7.48 ± 1.35 c | 17.51 ± 3.01 b |
Histidine | HIS | 41.08 ± 13.16 a, b | 42.06 ± 10.39 a | 30.68 ± 10.92 b |
Tryptophan | TRP | 15.32 ± 5.66 a | 9.13 ± 2.1 b | 12.66 ± 5.25 a, b |
Non-essential amino acids | ||||
Alanine | ALA | 432.07 ± 53.24 a | 332.01 ± 46.53 b | 341.32 ± 68.92 b |
Glycine | GLY | 29.54 ± 4.08 a | 22.25 ± 5.01 b | 33.02 ± 5.51 a |
Serine | SER | 224.1 ± 32.93 b | 276.51 ± 28.78 a | 268.31 ± 48.04 a |
Proline | PRO | 21.27 ± 3.07 a | 22.62 ± 4.07 a | 21.18 ± 3.99 a |
Asparagine | ASN | 126.9 ± 14.12 c | 444.96 ± 76.12 a | 205.97 ± 55.7 b |
Glutamic acid | GLU | 146.75 ± 24.74 b | 93.32 ± 15.21 c | 193.56 ± 46.19 a |
Glutamine | GLN | 491.85 ± 124.21 c | 2121.63 ± 314.16 a | 1009.42 ± 196.41 b |
Tyrosine | TYR | 42.86 ± 7.15 a | 13.88 ± 3.29 c | 26.36 ± 7.8 b |
Other amino acids | ||||
α-Aminoadipic acid | AAA | 9.72 ± 1.71 c | 43.51 ± 7.95 a | 25.07 ± 6.25 b |
Total essential amino acids | 443.53 ± 26.64 a | 239.38 ± 26.13 c | 298.44 ± 28.22 b | |
Total non-essential amino acids | 1515.34 ± 182.28 c | 3327.19 ± 708.33 a | 2099.14 ± 324.86 b | |
Total amino acid | 1968.58 ± 364.87 b | 3610.08 ± 544.06 a | 2422.64 ± 517.67 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drabińska, N.; Jeż, M.; Nogueira, M. Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants 2021, 10, 1597. https://doi.org/10.3390/antiox10101597
Drabińska N, Jeż M, Nogueira M. Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants. 2021; 10(10):1597. https://doi.org/10.3390/antiox10101597
Chicago/Turabian StyleDrabińska, Natalia, Maja Jeż, and Mariana Nogueira. 2021. "Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower" Antioxidants 10, no. 10: 1597. https://doi.org/10.3390/antiox10101597
APA StyleDrabińska, N., Jeż, M., & Nogueira, M. (2021). Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants, 10(10), 1597. https://doi.org/10.3390/antiox10101597