Modulation of Telomere Length by Mediterranean Diet, Caloric Restriction, and Exercise: Results from PREDIMED-Plus Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects
2.3. Blood Samples and DNA Extraction
2.4. Telomere Length Determination
2.5. Measurement of 8-Hydroxydeoxyguanosine Plasma Levels
2.6. Assessment of Covariates
2.7. Statistical Analyses
3. Results
3.1. Baseline Characteristics of Control and Intervention Group Participants
3.2. Food Consumption
3.3. Anthropometric Measurements and Biochemical Parameters
3.4. Telomere Length and 8-OHdG Plasma Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, N.M.; Hughes, G.M.; Huang, Z.; Clarke, M.; Jebb, D.; Whelan, C.V.; Petit, E.J.; Touzalin, F.; Farcy, O.; Jones, G.; et al. Growing old, yet staying young: The role of telomeres in bats’ exceptional longevity. Sci. Adv. 2018, 4, eaao0926. [Google Scholar] [CrossRef] [Green Version]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [Green Version]
- Chakravarti, D.; Labella, K.A.; Depinho, R.A. Telomeres: History, health, and hallmarks of aging. Cell 2021, 184, 306–322. [Google Scholar] [CrossRef]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-W.; Blasco, M.A.; Gottlieb, G.J.; Ii, J.W.H.; Greider, C.W.; DePinho, R. Essential role of mouse telomerase in highly proliferative organs. Nature 1998, 392, 569–574. [Google Scholar] [CrossRef]
- Greider, C.; Blackburn, E.H. The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987, 51, 887–898. [Google Scholar] [CrossRef]
- Cong, Y.-S.; Wright, W.E.; Shay, J.W. Human Telomerase and Its Regulation. Microbiol. Mol. Biol. Rev. 2002, 66, 407–425. [Google Scholar] [CrossRef] [Green Version]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Shi, L.; Prescott, J.; Chiuve, S.; Hu, F.B.; De Vivo, I.; Stampfer, M.J.; Franks, P.; Manson, J.E.; Rexrode, K. Healthy Lifestyle and Leukocyte Telomere Length in U.S. Women. PLoS ONE 2012, 7, e38374. [Google Scholar] [CrossRef] [PubMed]
- Demissie, S.; Levy, D.; Benjamin, E.J.; Cupples, L.A.; Gardner, J.P.; Herbert, A.; Kimura, M.; Larson, M.G.; Meigs, J.B.; Keaney, J.F.; et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 2006, 5, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Vidaček, N.; Nanić, L.; Ravlić, S.; Sopta, M.; Gerić, M.; Gajski, G.; Garaj-Vrhovac, V.; Rubelj, I. Telomeres, Nutrition, and Longevity: Can We Really Navigate Our Aging? J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2017, 73, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Welendorf, C.; Nicoletti, C.F.; Pinhel, M.A.D.S.; Noronha, N.; de Paula, B.M.F.; Nonino, C.B. Obesity, weight loss, and influence on telomere length: New insights for personalized nutrition. Nutrition 2019, 66, 115–121. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Salas-Salvadó, J.; Ros, E.; Estruch, R.; Corella, D.; Fitó, M.; Martínez-González, M.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. The PREDIMED trial, Mediterranean diet and health outcomes: How strong is the evidence? Nutr. Metab. Cardiovasc. Dis. 2017, 27, 624–632. [Google Scholar] [CrossRef] [Green Version]
- Galiè, S.; Canudas, S.; Muralidharan, J.; García-Gavilán, J.; Bulló, M.; Salas-Salvadó, J. Impact of Nutrition on Telomere Health: Systematic Review of Observational Cohort Studies and Randomized Clinical Trials. Adv. Nutr. 2019, 11, 576–601. [Google Scholar] [CrossRef]
- Canudas, S.; Becerra-Tomás, N.; Hernández-Alonso, P.; Galié, S.; Leung, C.; Crous-Bou, M.; De Vivo, I.; Gao, Y.; Gu, Y.; Meinilä, J.; et al. Mediterranean Diet and Telomere Length: A Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 1544–1554. [Google Scholar] [CrossRef]
- Meinilä, J.; Perälä, M.-M.; Kautiainen, H.; Männistö, S.; Kanerva, N.; Shivappa, N.; Hébert, J.R.; Iozzo, P.; Guzzardi, M.A.; Eriksson, J.G. Healthy diets and telomere length and attrition during a 10-year follow-up. Eur. J. Clin. Nutr. 2019, 73, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- García-Calzón, S.; Martínez-González, M.A.; Razquin, C.; Arós, F.; Lapetra, J.; Martínez, J.A.; Zalba, G.; Marti, A. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin. Nutr. 2016, 35, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Martínez-González, M.; Buil-Cosiales, P.; Corella, D.; Bulló, M.; Fitó, M.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; López-Miranda, J.; et al. Cohort Profile: Design and methods of the PREDIMED-Plus randomized trial. Int. J. Epidemiol. 2018, 48, 387–388o. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Salvadó, J.; Díaz-López, A.; Ruiz-Canela, M.; Basora, J.; Fitó, M.; Corella, D.; Serra-Majem, L.; Wärnberg, J.; Romaguera, D.; Estruch, R.; et al. Effect of a Lifestyle Intervention Program with Energy-Restricted Mediterranean Diet and Exercise on Weight Loss and Cardiovascular Risk Factors: One-Year Results of the PREDIMED-Plus Trial. Diabetes Care 2018, 42, 777–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibriya, M.G.; Jasmine, F.; Roy, S.; Ahsan, H.; Pierce, B. Measurement of Telomere Length: A New Assay Using QuantiGene Chemistry on a Luminex Platform. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2667–2672. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Ballarth, J.D.; Pinol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martinez-Gonzalez, M.A.; Salas-Salvadó, J.; Martin-Moreno, J. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Zomeño, M.D.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Tinahones, F.J.; Miranda, J.L.; et al. Validity of the energy-restricted Mediterranean Diet Adherence Screener. Clin. Nutr. 2021, 40, 4971–4979. [Google Scholar] [CrossRef]
- Molina, L.; Sarmiento, M.; Peñafiel, J.; Donaire-Gonzalez, D.; Garcia-Aymerich, J.; Gomez, M.; Ble, M.; Ruiz, S.; Frances, A.; Schroder, H.; et al. Validation of the Regicor Short Physical Activity Questionnaire for the Adult Population. PLoS ONE 2017, 12, e0168148. [Google Scholar] [CrossRef]
- Panos, A.; Mavridis, D. TableOne: An online web application and R package for summarising and visualising data. Évid. Based Ment. Health 2020, 23, 127–130. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Canudas, S.; Hernández-Alonso, P.; Galié, S.; Muralidharan, J.; Morell-Azanza, L.; Zalba, G.; García-Gavilán, J.; Martí, A.; Salas-Salvadó, J.; Bulló, M. Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: A crossover randomized clinical trial. Am. J. Clin. Nutr. 2019, 109, 1738–1745. [Google Scholar] [CrossRef] [Green Version]
- Crous-Bou, M.; Molinuevo, J.-L.; Sala-Vila, A. Plant-Rich Dietary Patterns, Plant Foods and Nutrients, and Telomere Length. Adv. Nutr. 2019, 10, S296–S303. [Google Scholar] [CrossRef] [PubMed]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2017, 73, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Calzón, S.; Moleres, A.; Martínez-González, M.A.; Martínez, J.A.; Zalba, G.; Marti, A. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin. Nutr. 2014, 34, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Boccardi, V.; Esposito, A.; Rizzo, M.R.; Marfella, R.; Barbieri, M.; Paolisso, G. Mediterranean Diet, Telomere Maintenance and Health Status among Elderly. PLoS ONE 2013, 8, e62781. [Google Scholar] [CrossRef] [PubMed]
- Urquiaga, I.; Strobel, P.; Perez, D.; Martinez, C.; Cuevas, A.; Castillo, O.; Marshall, G.; Rozowski, J.; Leighton, F. Mediterranean diet and red wine protect against oxidative damage in young volunteers. Atherosclerosis 2010, 211, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Da, W.; Qiao, S.; Zhang, Q.; Li, X.; Ivey, G.; Zilioli, S. Basal cortisol, cortisol reactivity, and telomere length: A systematic review and meta-analysis. Psychoneuroendocrinology 2019, 103, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Fauce, S.R.; Effros, R.B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 2008, 22, 600–605. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Control Group (n = 38) | Intervention Group (n = 31) | p-Value |
---|---|---|---|
Age (years) | 64.8 (5.1) | 64.3 (5.1) | 0.655 |
Male, n (%) | 17 (44.7) | 12 (38.7) | 0.795 |
Weight (kg) | 85.8 (13.1) | 88.8 (14.2) | 0.360 |
BMI (kg/m2) | 32.1 (3.4) | 33.1 (3.6) | 0.254 |
Waist circumference (cm) | 104.1 (10.4) | 107.3 (8.4) | 0.174 |
Number of metabolic syndrome components (%) | 0.940 | ||
≤3 Components | 23 (60.5) | 18 (58.1) | |
4 Components | 10 (26.3) | 8 (25.8) | |
5 Components | 5 (13.2) | 5 (16.1) | |
Obese status | 0.333 | ||
Overweight (BMI ≥25 kg/m2) (%) | 11 (28.9) | 5 (16.1) | |
Obesity (BMI ≥30 kg/m2) (%) | 27 (71.1) | 26 (83.9) | |
Prediabetes * (%) | 21 (55.3) | 13 (41.9) | 0.390 |
Dyslipidaemia (%) | 28 (73.7) | 15 (48.4) | 0.056 |
High blood pressure (%) | 29 (76.3) | 25 (80.6) | 0.888 |
Depression (%) | 16 (42.1) | 7 (22.6) | 0.146 |
Smokers (%) | 0.407 | ||
Current | 4 (10.5) | 4 (12.9) | |
Former | 17 (44.7) | 9 (29.0) | |
Never | 17 (44.7) | 18 (58.1) | |
Educational level (%) | 0.404 | ||
Primary school | 24 (63.2) | 16 (51.6) | |
High school or bachelor | 8 (21.1) | 12 (38.7) | |
University | 3 (7.9) | 1 (3.2) | |
Higher degree | 3 (7.9) | 2 (6.5) | |
Medications use (%) | |||
Lipid-Lowering drugs | |||
Statin | 18 (47.4) | 10 (32.3) | 0.408 |
Other lipid-lowering drugs | 2 (5.3) | 4 (12.9) | 0.387 |
Hypotensive drugs | |||
Renin direct inhibitor | 2 (5.3) | 3 (9.7) | 0.813 |
Angiotensin receptor blocker | 8 (21.1) | 8 (25.8) | 0.660 |
Angiotensin converting enzyme inhibitor | 14 (36.8) | 12 (38.7) | 0.742 |
Thiazide drugs ‡ | 18 (47.4) | 13 (41.9) | 0.750 |
Control Group | Intervention Group | ||||
---|---|---|---|---|---|
(n = 38) | (n = 31) | ||||
Baseline | Change | Baseline | Change | p-Value | |
Total energy intake (kcal/day) | 2483.43 (602.53) | −72.44 (417.88) | 2568.71 (543.51) | −334.94 (449.36) ¥ | 0.015 |
Protein (%) | 15.54 (2.26) | 0.27 (1.61) | 15.78 (2.18) | 2.14 (2.23) ¥ | <0.001 |
Carbohydrate (%) | 40.95 (4.98) | −1.37 (4.09) | 41.40 (5.57) | −7.13 (6.12) ¥ | <0.001 |
Fibre (g/d) | 25.00 (9.48) | 2.60 (7.08) | 24.94 (6.45) | 6.24 (7.37) ¥ | 0.041 |
Total fat (%) | 40.02 (3.92) | 1.58 (4.22) | 39.87 (3.61) | 5.16 (5.22) ¥ | 0.002 |
Monounsaturated fatty acids (%) | 21.22 (3.10) | 2.31 (3.44) ¥ | 21.06 (2.54) | 4.82 (3.72) ¥ | 0.005 |
Polyunsaturated fatty acids (%) | 6.31 (1.19) | 0.88 (1.54) ¥ | 6.64 (1.20) | 1.70 (1.38) ¥ | 0.025 |
Saturated fatty acids (%) | 9.94 (1.58) | −0,85 (7.10) ¥ | 9.54 (1.55) | −0.31 (1.46) | 0.166 |
Key food items | |||||
Vegetables (g/d) | 270.41 (105.07) | 35.23 (104.99) | 294.36 (86.35) | 85.00 (137.87) ¥ | 0.093 |
Fruit (g/d) | 341.49 (155.03) | 11.18 (137.47) | 355.50 (146.97) | 9.84 (138.12) | 0.968 |
Legumes (g/d) | 19.38 (9.81) | 0.45 (12.68) | 17.65 (9.60) | 11.21 (10.62) ¥ | <0.001 |
Cereals (g/d) | 160.01 (95.63) | 9.03 (85.15) | 180.09 (76.76) | −55.45 (84.81) ¥ | 0.003 |
Dairy products (g/d) | 294.45 (188.68) | −47.26 (140.66) | 244.13 (134.57) | 6.85 (141.57) | 0.118 |
Meat products (g/d) | 154.46 (41.27) | −12.52 (36.33) | 166.95 (59.29) | −21.20 (48.53) | 0.399 |
Fish and seafood (g/d) | 94.28 (43.08) | 1.64 (51.53) | 111.76 (44.65) | 8.95 (45.28) | 0.539 |
Nuts (g/d) | 9.86 (10.91) | 13.45 (12.98) ¥ | 14.06 (10.80) | 18.13 (11.66) ¥ | 0.124 |
Red wine (ml/d) | 59.16 (111.43) | −27.66 (61.46) | 51.75 (76.98) | 20.98 (91.30) | 0.010 |
Virgin olive oil (g/d) | 37.76 (19.48) | 9.13 (14.85) ¥ | 41.98 (16.19) | 6.08 (17.81) | 0.440 |
Sugary drinks (ml/d) | 31.80 (54.06) | −10.55 (67.35) | 22.24 (41.27) | −16.83 (43.45) ¥ | 0.655 |
Sugar-free drinks (ml/d) | 24.01 (89.13) | 2.66 (65.32) | 32.26 (179.61) | −30.91 (174.57) | 0.277 |
Refined cereals (g/day) | 118.15 (79.61) | −0.73 (63.42) | 155.21 (94.56) | −97.18 (103.28) ¥ | <0.001 |
Whole-grain cereals (g/day) | 39.84 (93.80) | 9.93 (81.45) | 20.96 (41.31) | 40.96 (47.70) ¥ | 0.065 |
Control Group | Intervention Group | ||||
---|---|---|---|---|---|
(n = 38) | (n = 31) | ||||
Baseline | Change | Baseline | Change | p-Value | |
Anthropometric measurements | |||||
Body weight (kg) | 85.76 (13.08) | −0.20 (2.18) | 88.79 (14.15) | −5.51 (3.12) | <0.001 |
BMI (kg/m2) | 32.11 (3.40) | −0.09 (0.81) | 33.07 (3.58) | −2.05 (1.14) ¥ | <0.001 |
Waist circumference (cm) | 104.14 (10.39) | 0.03 (3.24) | 107.33 (8.44) | −7.94 (4.69) ¥ | <0.001 |
Biochemical parameters | |||||
Total cholesterol (mM) | 217.63 (38.56) | −5.00 (40.81) | 202.00 (34.93) | −5.68 (26.19) | 0.937 |
LDL cholesterol (mM) | 126.56 (33.16) | 0.41 (41.12) | 116.23 (20.41) | −1.23 (19.18) | 0.853 |
HDL cholesterol (mmol/L) | 51.82 (12.21) | −1.61 (6.10) | 46.77 (13.14) | 3.32 (5.47) | 0.001 |
Triglycerides (mmol/L) | 224.79 (167.78) | −20.76 (105.93) | 208.10 (107.73) | −51.55 (76.07) ¥ | 0.179 |
Glucose (mmol/L) | 101.08 (14.59) | −3.13 (12.96) | 97.58 (12.65) | −5.29 (8.47) | 0.428 |
HbA1c (%) | 5.86 (0.50) | −0.07 (0.36) | 5.73 (0.37) | −0.11 (0.26) | 0.586 |
Leisure-time PA (METs.min/d) | 385.02 (383.64) | −17.83 (307.89) | 302.65 (262.30) | 329.53 (403.68) ¥ | <0.001 |
17-point erMedDiet score | 8.00 (2.73) | 2.53 (2.78) ¥ | 6.90 (2.55) | 7.45 (2.72) ¥ | <0.001 |
Telomere Length | 3.14 (0.51) | 0.65 (0.83) ¥ | 3.11 (0.80) | 0.67 (0.80) ¥ | 0.922 |
8-OHdG plasma levels | 2.84 (0.65) | 0.01 (0.56) | 2.95 (0.83) | 0.12 (0.81) | 0.528 |
β for Intervention Group 1 | β for Time 2 | β for Intervention Group 1 x Time 2 | |
---|---|---|---|
Telomere length | |||
Unadjusted model | 0.014 (−0.206, 0.234) | 0.740 (0.529, 0.951) | −0.142 (−0.453, 0.169) |
Multivariable model | 0.070 (−0.150, 0.289) | 0.700 (0.477, 0.922) | −0.310 (−0.650, 0.025) |
8-OHdG plasma levels | |||
Unadjusted model | 0.122 (−0.212, 0.456) | −0.018 (−0.248, 0.213) | 0.139 (−0.200, 0.478) |
Multivariable model | 0.041 (−0.172, 0.254) | −0.054 (−0.270, 0.163) | 0.089 (−0.237, 0.415) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández de la Puente, M.; Hernández-Alonso, P.; Canudas, S.; Marti, A.; Fitó, M.; Razquin, C.; Salas-Salvadó, J. Modulation of Telomere Length by Mediterranean Diet, Caloric Restriction, and Exercise: Results from PREDIMED-Plus Study. Antioxidants 2021, 10, 1596. https://doi.org/10.3390/antiox10101596
Fernández de la Puente M, Hernández-Alonso P, Canudas S, Marti A, Fitó M, Razquin C, Salas-Salvadó J. Modulation of Telomere Length by Mediterranean Diet, Caloric Restriction, and Exercise: Results from PREDIMED-Plus Study. Antioxidants. 2021; 10(10):1596. https://doi.org/10.3390/antiox10101596
Chicago/Turabian StyleFernández de la Puente, María, Pablo Hernández-Alonso, Silvia Canudas, Amelia Marti, Montserrat Fitó, Cristina Razquin, and Jordi Salas-Salvadó. 2021. "Modulation of Telomere Length by Mediterranean Diet, Caloric Restriction, and Exercise: Results from PREDIMED-Plus Study" Antioxidants 10, no. 10: 1596. https://doi.org/10.3390/antiox10101596
APA StyleFernández de la Puente, M., Hernández-Alonso, P., Canudas, S., Marti, A., Fitó, M., Razquin, C., & Salas-Salvadó, J. (2021). Modulation of Telomere Length by Mediterranean Diet, Caloric Restriction, and Exercise: Results from PREDIMED-Plus Study. Antioxidants, 10(10), 1596. https://doi.org/10.3390/antiox10101596