Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Drying Procedure
2.4. The Procedure for Extraction
2.5. Analysis of Phenolic Compounds
2.6. Quantitative Determination Total Flavonoid Content (TFC) and Total Phenolic Content (TPC)
2.7. Antioxidant Capacity Assays
2.7.1. DPPH Radical Scavenging Activity Assay (DPPH)
2.7.2. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
2.7.3. Ferric Reducing Antioxidant Power Assay (FRAP)
2.7.4. Thiobarbituric Acid Reactive Substances Assay (TBARS)
2.7.5. Oxidative Hemolysis Inhibition Assay (OxHLIA)
2.8. Cytotoxic Activity
2.9. Anti-Inflammatory Activity
2.10. Inhibition of Fungal α-Glucosidase
2.11. Rat α-Glucosidase Inhibitory Assay
2.12. Statistical Analysis
3. Results and Discussion
3.1. Drying Process Optimization
3.2. Phenolic Compounds Identification Using HPLC/MS
3.3. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.4. Antioxidant Activity
3.5. Cytotoxic and Anti-Inflammatory Activity
3.6. Inhibition of Fungal and Mammalian α-Glucosidase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shikov, A.N.; Tsitsilin, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Heinrich, M. Traditional and current food use of wild plants listed in the Russian Pharmacopoeia. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Kianmehr, M.H.; Samimi-Akhijahani, H. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers. Manag. 2008, 49, 2865–2871. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Z.; Yao, H.; Li, P.; Peng, W.; Su, W.; Wang, Y. Extraction and purification of pedunculoside from the dried barks of Ilex rotunda using crystallization combined with polyamide column chromatography. Sep. Sci. Technol. 2021, 56, 1710–1720. [Google Scholar] [CrossRef]
- Mounir, S.; Mujumdar, A.S.; Bhandari, B.; Fang, Z. Advances in drying science and technology. In Handbook of Drying of Vegetables and Vegetable Products; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Gavrilaș, L.I.; Ionescu, C.; Bălăcescu, O.; Mureșan, D.; Revnic, C.; Filip, L.; Miere, D. Intake of plant based foods and colorectal cancer. A case-control study in Romania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2018, 75, 163. [Google Scholar] [CrossRef] [Green Version]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolosova, V.; Svanberg, I.; Kalle, R.; Strecker, L.; Özkan, A.M.G.; Pieroni, A.; Cianfaglione, K.; Molnár, Z.; Papp, N.; Łuczaj, Ł.; et al. The bear in Eurasian plant names: Motivations and models. J. Ethnobiol. Ethnomed. 2017, 13, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Javadzadeh, S.M.; Fallah, S.R. Therapeutic application of different parts Berberis vulgaris. Int. J. Agric. Crop Sci. 2012, 4, 404–408. [Google Scholar]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crisan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, 9, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimi-Madiseh, M.; Lorigoini, Z.; Zamani-Gharaghoshi, H.; Rafieian-Kopaei, M. Berberis vulgaris: Specifications and traditional uses. Iran. J. Basic Med. Sci. 2017, 20, 569–587. [Google Scholar] [CrossRef] [PubMed]
- Minaiyan, M.; Ghannadi, A.; Mahzouni, P.; Jaffari-Shirazi, E. Comparative study of Berberis vulgaris fruit extract and berberine chloride effects on acetic acid-induced colitis in rats. Iran. J. Pharm. Res. 2011, 10, 97–104. [Google Scholar]
- Tomosaka, H.; Young-Won, C.; Salim, A.A.; Keller, W.J.; Chai, H.; Kinghorn, C.D. Antioxidant and cytoprotective compounds from Berberis vulgaris (Barberry). Phyther. Res. 2008. [Google Scholar] [CrossRef]
- Edwards, J.E.; Brown, P.N.; Talent, N.; Dickinson, T.A.; Shipley, P.R. A review of the chemistry of the genus Crataegus. Phytochemistry 2012, 79, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Habtemariam, S.; Ahmed, T.; Sureda, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.M. Polyphenolic composition of Crataegus monogyna Jacq.: From chemistry to medical applications. Nutrients 2015, 7, 7708–7728. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Zuo, Z.; Harrison, F.; Sing, M.; Chow, S. Hawthorn. J. Clin. Pharmacol. 2002, 42, 605–612. [Google Scholar] [CrossRef]
- Hawthorn berries Crataegi fructus. In European Pharmacopoeia; 2019; Available online: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition (accessed on 1 September 2021).
- Sticher, O.; Meier, B. Hawthorn (Crataegus): Biological activity and new strategies for quality control. Phytomed. Eur. 2009, 241–262. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb. f.: An underexploited and highly disseminated species. Ind. Crop. Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Zengin, G.; Crişan, G.; Mollica, A. Enzymatic assays and molecular modeling studies of Schisandra chinensis lignans and phenolics from fruit and leaf extracts. J. Enzyme Inhib. Med. Chem. 2016, 31, 200–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crişan, G.; Rohn, S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. J. Enzyme Inhib. Med. Chem. 2017, 32, 153–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldovan, C.; Babota, M.; Mocan, A.; Menghini, L.; Cesa, S.; Gavan, A.; Sisea, C.; Vodnar, D.C.; Dias, M.I.; Pereira, C.; et al. Optimization of the drying process of autumn fruits rich in antioxidants: A study focusing on rosehip (Rosa canina L.) and sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) and their bioactive properties. Food Funct. 2021, 12, 3939–3953. [Google Scholar] [CrossRef]
- Mocan, A.; Crişan, G.; Vlase, L.; Crişan, O.; Vodnar, D.C.; Raita, O.; Gheldiu, A.M.; Toiu, A.; Oprean, R.; Tilea, I. Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of Schisandra chinensis leaves and fruits. Molecules 2014, 19, 15162–15179. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Moldovan, C.; Zengin, G.; Bender, O.; Locatelli, M.; Simirgiotis, M.; Atalay, A.; Cristian, D.; Rohn, S.; Cri, G. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem. Toxicol. 2018, 115, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Souilem, F.; Fernandes, Â.; Calhelha, R.C.; Barreira, J.C.M.; Barros, L.; Skhiri, F.; Martins, A.; Ferreira, I.C.F.R. Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chem. 2017, 230, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takebayashi, J.; Iwahashi, N.; Ishimi, Y.; Tai, A. Development of a simple 96-well plate method for evaluation of antioxidant activity based on the oxidative haemolysis inhibition assay (OxHLIA). Food Chem. 2012, 134, 606–610. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.-J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno [3,2-b]pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Sakna, S.T.; Mocan, A.; Sultani, H.N.; El-fiky, N.M.; Wessjohann, L.A.; Farag, M.A. Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chem. 2019, 293, 233–246. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef]
- Gorjian, S.; Tavakkoli Hashjin, T.; Khoshtaghaza, M.H.; Nikbakht, A.M. Drying kinetics and quality of barberry in a thin layer dryer. J. Agric. Sci. Technol. 2011, 13, 303–314. [Google Scholar]
- Alavi, N.; Mazloumzadeh, S.M. Effect of harvesting and drying methods of seedless barberry on some fruit quality. J. Saudi Soc. Agric. Sci. 2012, 11, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A.; Hassani, B. Vacuum drying of barberry fruit (Berberis vulgaris) and selection of a suitable thin layer drying model. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 1668–1673. [Google Scholar] [CrossRef]
- Koyuncu, T.; Pinar, Y.; Lule, F. Convective drying characteristics of azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bosc.) fruits. J. Food Eng. 2007, 78, 1471–1475. [Google Scholar] [CrossRef]
- Unal, H.G.; Sacilik, K. Drying characteristics of hawthorn fruits in a convective hot-air dryer. J. Food Process. Preserv. 2011, 35, 272–279. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Poyatos, M.d.P.; Ruiz-Medina, A.; Salazar-Mendías, C.; Llorent-Martínez, E.J. Spectrophotometric determination of the antioxidant properties and characterization of the phenolic content by high-performance liquid chromatography–diode array detection–tandem mass spectrometry (HPLC–DAD–MS/MS) of Berberis hispanica Boiss. & Reu. Anal. Lett. 2021, 54, 646–657. [Google Scholar] [CrossRef]
- Fernández-Poyatos, M.d.P.F.-P.; Ruiz-Medina, A.; Zengin, G.; Llorent-Martínez, E.J. Phenolic characterization, antioxidant activity, and enzyme inhibitory properties of Berberis thunbergii DC. leaves: A valuable source of phenolic acids. Molecules 2019, 24, 4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, P.; Qu, H.; Cheng, Y. Characterization of phenolic compounds in Erigeron breviscapus by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2971–2984. [Google Scholar] [CrossRef]
- Zhang, J.M.; Guo, J.; Tu, X.; Shi, Z.H.; Hao, J.J.; Ke, Y.H.; Guan, J.F.; He, J.J. Protective effect of Huaxia shallot preparation on human umbilical vein endothelial injury induced by oxidized low density lipoprotein and its mechanism. J. Chinese Integr. Med. 2007, 5, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MS(n). Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Kallio, H.; Yang, B. Phenolic compounds in hawthorn (Crataegus grayana) fruits and leaves and changes during fruit ripening. J. Agric. Food Chem. 2011, 59, 11141–11149. [Google Scholar] [CrossRef]
- Badalica-Petrescu, M.; Dragan, S.; Ranga, F.; Fetea, F.; Socaciu, C. Comparative HPLC-DAD-ESI(+)MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.; Calhelha, R.C.; Barreira, J.C.M.; Dueñas, M.; Carvalho, A.M.; Abreu, R.M.V.; Santos-Buelga, C.; Ferreira, I.C.F.R. Crataegus monogyna buds and fruits phenolic extracts: Growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC-DAD-ESI/MS. Food Res. Int. 2012, 49, 516–523. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; ur Rehman, Z.; et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef]
- Romano, B.; Pagano, E.; Montanaro, V.; Fortunato, A.L.; Milic, N.; Borrelli, F. Novel insights into the pharmacology of flavonoids. Phyther. Res. 2013, 27, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Bahorun, T.; Trotin, F.; Pommery, J.; Vasseur, J.; Pinkas, M. Antioxidant activities of Crataegus monogyna extracts. Planta Med. 1994, 60, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J. Antioxidant capacity and HPLC-DAD-MS profiling of chilean peumo (Cryptocarya alba) fruits and comparison with german peumo (Crataegus monogyna) from Southern Chile. Molecules 2013, 18, 2061–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Comparing the composition and bioactivity of Crataegus monogyna flowers and fruits used in folk medicine. Phytochem. Anal. 2011, 22, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Tahirović, A.; Bašić, N. Phenolic content and antioxidant activity of Crataegus monogyna L. fruit extracts. Univ. Sarajev. 2014, 2, 29–40. [Google Scholar]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Özgen, M.; Saraçoǧlu, O.; Geçer, E.N. Antioxidant capacity and chemical properties of selected barberry (Berberis vulgaris L.) fruits. Hortic. Environ. Biotechnol. 2012, 53, 447–451. [Google Scholar] [CrossRef]
- Motalleb, G.; Hanachi, P.; Kua, S.H.; Fauziah, O.; Asmah, R. Evaluation of phenolic content and total antioxidant activity in Berberis vulgaris fruit extract. J. Biol. Sci. 2009, 5, 648–653. [Google Scholar] [CrossRef] [Green Version]
- Hoshyar, R.; Mahboob, Z.; Zarban, A. The antioxidant and chemical properties of Berberis vulgaris and its cytotoxic effect on human breast carcinoma cells. Cytotechnology 2016, 68, 1207–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadic, V.M.; Dobric, S.; Marcovic, G.M.; Dordevic, S.M.; Arsic, I.A.; Menkovic, N.R.; Stevic, T. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J. Agric. Food Chem. 2008, 56, 7700–7709. [Google Scholar] [CrossRef] [PubMed]
- Belkhir, M.; Rebai, O.; Dhaouadi, K.; Congiu, F.; Tuberoso, C.I.G.; Amri, M.; Fattouch, S. Comparative analysis of Tunisian wild Crataegus azarolus (yellow azarole) and Crataegus monogyna (red azarole) leaf, fruit, and traditionally derived syrup: Phenolic profiles and antioxidant and antimicrobial activities of the aqueous-aceton. J. Agric. Food Chem. 2013, 61, 9594–9601. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Mortazavi, S.A.; Maskooki, A.; Niakousari, M.; Elhamirad, A.H. Optimization of subcritical water extraction of bioactive compounds from barberry fruit (Berberis vulgaris) by using response surface methodology. Int. J. Agric. Crop Sci. 2013, 6, 89–96. [Google Scholar]
- Gundogdu, M. Determination of antioxidant capacities and biochemical compounds of Berberis vulgaris L. fruits. Adv. Environ. Biol. 2013, 7, 344–348. [Google Scholar]
- Hanachi, P.; Othman, F.; Motalleb, G. Effect of Berberis vulgaris aqueous extract on the apoptosis, sodium and potassium in hepatocarcinogenic rats. Iran. J. Basic Med. Sci. 2001, 11, 62–69. [Google Scholar]
- Motalleb, G.; Hanachi, P.; Fauziah, O.; Asmah, R. Effect of Berberis vulgaris fruit extract on alpha-fetoprotein gene expression and chemical carcinogen metabolizing enzymes activities in hepatocarcinogenesis rats. Iran. J. Cancer Prev. 2008, 1, 33–44. [Google Scholar]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Hajzadeh, M.A.R.; Rajaei, Z.; Shafiee, S.; Alavinejhad, A.; Samarghandian, S.; Ahmadi, M. Effect of barberry fruit (Berberis vulgaris) on serum glucose and lipids in streptozotocin-diabetic rats. Pharmacologyonline 2011, 817, 809–817. [Google Scholar]
- Rahimi-Madiseh, M.; Karimian, P.; Kafeshani, M.; Rafieian-Kopaei, M. The effects of ethanol extract of Berberis vulgaris fruit on histopathological changes and biochemical markers of the liver damage in diabetic rats. Iran. J. Basic Med. Sci. 2017, 20, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Shidfar, F.; Ebrahimi, S.S.; Hosseini, S.; Heydari, I.; Shidfar, S.; Hajhassani, G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran. J. Pharm. Res. 2012, 11, 643–652. [Google Scholar]
- Moazezi, Z.; Qujeq, D. Berberis fruit extract and biochemical parameters in patients with type II diabetes. J. Nat. Pharm. Prod. 2014, 9, e13490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak | Rt (min) | λ Max (nm) | [M − H]− (m/z) | MS2 (m/z) | Tentative Identification | Quantification (mg/g Extract) |
---|---|---|---|---|---|---|
B. vulgaris | ||||||
1 G | 6.78 | 324 | 353 | 191 (100), 179 (51), 173 (7), 135 (5) | 3-O-Caffeoylquinic acid | 34.1 ± 0.6 |
2 G | 9.51 | 325 | 353 | 191 (100), 179 (11), 173 (5), 135 (5) | 5-O-Caffeoylquinic acid | 3.4 ± 0.1 |
3 F | 14.76 | 334 | 335 | 291 (100), 273 (12), 247 (5), 229 (10), 193 (5), 179 (15), 151 (5) | Hydroxy ampelopsin isomer I | 2.3 ± 0.1 |
4 F | 15.71 | 336 | 335 | 291 (100), 273 (12), 247 (5), 229 (10), 193 (5), 179 (15), 151 (5) | Hydroxy ampelopsin isomer II | 1.68 ± 0.01 |
5 G | 17.45 | 332 | 381 | 293 (5), 219 (2), 203 (5), 179 (100), 161 (15), 135 (21) | CDOA isomer I | 1.5724 ± 0.03 |
6 G | 18.66 | 328 | 381 | 293 (5), 219 (5), 203 (5), 179 (100), 161 (9), 135 (17) | CDOA isomer II | 4.55 ± 0.05 |
7 D | 20.75 | 330 | 593 | 285 (100) | Luteolin-O-glucuronide | 0.558 ± 0.003 |
8 D | 22.02 | 335 | 447 | 301 (100) | Quercetin-O-deoxyhexoside | 0.61 ± 0.01 |
Total phenolic compounds | 49 ± 1 | |||||
C. monogyna | ||||||
9 A | 6.99 | 310 | 163 | 119 (100) | p-Coumaric acid | 0.1704 ± 0.001 |
10 B | 9.35 | 280 | 289 | 245 (100), 205 (29) | (+)-Catequin | 0.78 ± 0.01 |
11 C | 17.39 | 349 | 609 | 301 (100) | Quercetin-3-O-rutinoside | tr |
12 D | 18.37 | 354 | 463 | 301 (100) | Quercetin-3-O-glucoside | 0.202 ± 0.004 |
13 D | 18.66 | 352 | 463 | 301 (100) | Quercetin-O-hexoside | 0.194 ± 0.001 |
14 D | 20.33 | 352 | 505 | 463 (100), 301 (25) | Quercetin-O-acetylhexoside | 0.132 ± 0.001 |
15 E | 23.19 | 324 | 619 | 499 (5), 413 (71), 393 (100) | Apigenin 2″-O-rhamnosyl-C-acetylhexoside | 0.088 ± 0.001 |
Total phenolic compounds | 1.568 ± 0.002 |
C. monogyna | B. vulgaris | |
---|---|---|
TFC (mg QE/g dw) | 2.584 ± 0.238 | 8.306 ± 0.509 |
TPC (mg GAE/g dw) | 23.371 ± 1.178 | 100.862 ± 1.967 |
DPPH (mg TE/g dw) | 34.343 ± 1.025 | 50.853 ± 0.246 |
TEAC (mg TE/g dw) | 12.677 ± 0.618 | 30.983 ± 0.649 |
FRAP (mg TE/g dw) | 74.341 ± 2.229 | 302.458 ± 15.257 |
TBARS (IC50; µg/mL)1 | 72.2 ± 0.9 | 252.5 ± 14.2 |
OxHLIA Δt = 60 min (IC50; µg/mL)1 | 118 ± 7 | 76 ± 1 |
α-Glucosidase Inhibitory Capacity | ||
---|---|---|
Fungal (IC50; mg/mL) | 0.34 ± 0.01 | 0.56 ± 0.02 |
Mammalian (%I; 8 mg/mL) | na | na |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, C.; Frumuzachi, O.; Babotă, M.; Menghini, L.; Cesa, S.; Gavan, A.; Sisea, C.R.; Tanase, C.; Dias, M.I.; Pereira, C.; et al. Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq. Antioxidants 2021, 10, 1579. https://doi.org/10.3390/antiox10101579
Moldovan C, Frumuzachi O, Babotă M, Menghini L, Cesa S, Gavan A, Sisea CR, Tanase C, Dias MI, Pereira C, et al. Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq. Antioxidants. 2021; 10(10):1579. https://doi.org/10.3390/antiox10101579
Chicago/Turabian StyleMoldovan, Cadmiel, Oleg Frumuzachi, Mihai Babotă, Luigi Menghini, Stefania Cesa, Alexandru Gavan, Cristian R. Sisea, Corneliu Tanase, Maria Inês Dias, Carla Pereira, and et al. 2021. "Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq." Antioxidants 10, no. 10: 1579. https://doi.org/10.3390/antiox10101579
APA StyleMoldovan, C., Frumuzachi, O., Babotă, M., Menghini, L., Cesa, S., Gavan, A., Sisea, C. R., Tanase, C., Dias, M. I., Pereira, C., Ferreira, I. C. F. R., Crișan, G., Mocan, A., & Barros, L. (2021). Development of an Optimized Drying Process for the Recovery of Bioactive Compounds from the Autumn Fruits of Berberis vulgaris L. and Crataegus monogyna Jacq. Antioxidants, 10(10), 1579. https://doi.org/10.3390/antiox10101579