Serum Levels of Tumor Necrosis Factor-α and Loudness Dependence of Auditory Evoked Potentials at Pretreatment and Posttreatment in Patients with Major Depressive Disorder
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Measurements of Serum TNF-α Level
2.3. Electroencephalography Methods
2.4. Source LDAEP Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctot, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.J.; Alexander, R.; Smith, M.A.; Pathak, S.; Kanes, S.; Lee, C.M.; Sanacora, G. Glutamate-based depression gbd. Med. Hypotheses 2012, 78, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Zarate, C.A., Jr.; Niciu, M.J. Ketamine for depression: Evidence, challenges and promise. World Psychiatry 2015, 14, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Zarate, C.A., Jr.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an n-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 2006, 63, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Bogerts, B.; Sarnyai, Z.; Walter, M.; Gos, T.; Bernstein, H.G.; Myint, A.M. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial nmda receptor modulators and impaired blood-brain barrier integrity. World J. Biol. Psychiatry 2012, 13, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Baganz, N.L.; Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 2013, 4, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Berthold-Losleben, M.; Himmerich, H. The tnf-alpha system: Functional aspects in depression, narcolepsy and psychopharmacology. Curr. Neuropharmacol. 2008, 6, 193–202. [Google Scholar] [CrossRef]
- Hegerl, U.; Gallinat, J.; Juckel, G. Event-related potentials. Do they reflect central serotonergic neurotransmission and do they predict clinical response to serotonin agonists? J. Affect. Disord. 2001, 62, 93–100. [Google Scholar] [CrossRef]
- Juckel, G.; Molnar, M.; Hegerl, U.; Csepe, V.; Karmos, G. Auditory-evoked potentials as indicator of brain serotonergic activity—First evidence in behaving cats. Biol. Psychiatry 1997, 41, 1181–1195. [Google Scholar] [CrossRef]
- Park, Y.M.; Lee, S.H.; Kim, S.; Bae, S.M. The loudness dependence of the auditory evoked potential (ldaep) in schizophrenia, bipolar disorder, major depressive disorder, anxiety disorder, and healthy controls. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 313–316. [Google Scholar] [CrossRef]
- Wutzler, A.; Winter, C.; Kitzrow, W.; Uhl, I.; Wolf, R.J.; Heinz, A.; Juckel, G. Loudness dependence of auditory evoked potentials as indicator of central serotonergic neurotransmission: Simultaneous electrophysiological recordings and in vivo microdialysis in the rat primary auditory cortex. Neuropsychopharmacology 2008, 33, 3176–3181. [Google Scholar] [CrossRef] [PubMed]
- Mulert, C.; Jager, L.; Propp, S.; Karch, S.; Stormann, S.; Pogarell, O.; Moller, H.J.; Juckel, G.; Hegerl, U. Sound level dependence of the primary auditory cortex: Simultaneous measurement with 61-channel eeg and fmri. Neuroimage 2005, 28, 49–58. [Google Scholar] [CrossRef]
- Park, Y.M.; Lee, B.H. Treatment response in relation to subthreshold bipolarity in patients with major depressive disorder receiving antidepressant monotherapy: A post hoc data analysis (komdd study). Neuropsychiatr. Dis. Treat. 2016, 12, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Semlitsch, H.V.; Anderer, P.; Schuster, P.; Presslich, O. A solution for reliable and valid reduction of ocular artifacts, applied to the p300 erp. Psychophysiology 1986, 23, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sloreta): Technical details. Methods Find. Exp. Clin. Pharmacol. 2002, 24 (Suppl. D), 5–12. [Google Scholar] [PubMed]
- Fuchs, M.; Kastner, J.; Wagner, M.; Hawes, S.; Ebersole, J.S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 2002, 113, 702–712. [Google Scholar] [CrossRef]
- Brett, M.; Johnsrude, I.S.; Owen, A.M. The problem of functional localization in the human brain. Nat. Rev. Neurosci. 2002, 3, 243–249. [Google Scholar] [CrossRef]
- Mulert, C.; Juckel, G.; Augustin, H.; Hegerl, U. Comparison between the analysis of the loudness dependency of the auditory n1/p2 component with loreta and dipole source analysis in the prediction of treatment response to the selective serotonin reuptake inhibitor citalopram in major depression. Clin. Neurophysiol. 2002, 113, 1566–1572. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, D.W.; Kim, S.; Im, C.H.; Lee, S.H. The loudness dependence of the auditory evoked potential (ldaep) as a predictor of the response to escitalopram in patients with generalized anxiety disorder. Psychopharmacology (Berl.) 2011, 213, 625–632. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Tyring, S.; Gottlieb, A.; Papp, K.; Gordon, K.; Leonardi, C.; Wang, A.; Lalla, D.; Woolley, M.; Jahreis, A.; Zitnik, R.; et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: Double-blind placebo-controlled randomised phase iii trial. Lancet 2006, 367, 29–35. [Google Scholar] [CrossRef]
- Krishnan, R.; Cella, D.; Leonardi, C.; Papp, K.; Gottlieb, A.B.; Dunn, M.; Chiou, C.F.; Patel, V.; Jahreis, A. Effects of etanercept therapy on fatigue and symptoms of depression in subjects treated for moderate to severe plaque psoriasis for up to 96 weeks. Br. J. Dermatol. 2007, 157, 1275–1277. [Google Scholar] [CrossRef] [PubMed]
- Muller, N.; Schwarz, M.J. The immune-mediated alteration of serotonin and glutamate: Towards an integrated view of depression. Mol. Psychiatry 2007, 12, 988–1000. [Google Scholar] [CrossRef] [PubMed]
- Lichtblau, N.; Schmidt, F.M.; Schumann, R.; Kirkby, K.C.; Himmerich, H. Cytokines as biomarkers in depressive disorder: Current standing and prospects. Int. Rev. Psychiatry 2013, 25, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Mossner, R.; Heils, A.; Stober, G.; Okladnova, O.; Daniel, S.; Lesch, K.P. Enhancement of serotonin transporter function by tumor necrosis factor alpha but not by interleukin-6. Neurochem. Int. 1998, 33, 251–254. [Google Scholar] [CrossRef]
- Eller, T.; Vasar, V.; Shlik, J.; Maron, E. Effects of bupropion augmentation on pro-inflammatory cytokines in escitalopram-resistant patients with major depressive disorder. J. Psychopharmacol. 2009, 23, 854–858. [Google Scholar] [CrossRef]
- Narita, K.; Murata, T.; Takahashi, T.; Kosaka, H.; Omata, N.; Wada, Y. Plasma levels of adiponectin and tumor necrosis factor-alpha in patients with remitted major depression receiving long-term maintenance antidepressant therapy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 30, 1159–1162. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, H.; Baloch, Z. Pathogenetic and therapeutic applications of tumor necrosis factor-alpha (tnf-alpha) in major depressive disorder: A systematic review. Int. J. Mol. Sci. 2016, 17, 733. [Google Scholar] [CrossRef]
- Hegerl, U.; Juckel, G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: A new hypothesis. Biol. Psychiatry 1993, 33, 173–187. [Google Scholar] [CrossRef]
- Giacobbe, P.; Mayberg, H.S.; Lozano, A.M. Treatment resistant depression as a failure of brain homeostatic mechanisms: Implications for deep brain stimulation. Exp. Neurol. 2009, 219, 44–52. [Google Scholar] [CrossRef] [PubMed]
Variable | Subjects (n = 64) |
---|---|
Age (years) Sex (male/female) a Total BDI score Total HAMD score N1 LDAEP P2 LDAEP N1/P2 LDAEP N1 LORETA-LDAEP (Lt) N1 LORETA-LDAEP (Rt) N1 LORETA-LDAEP (Av) P2 LORETA-LDAEP (Lt) P2 LORETA-LDAEP (Rt) P2 LORETA-LDAEP (Av) N1/P2 LORETA-LDAEP (Lt) N1/P2 LORETA-LDAEP (Rt) N1/P2 LORETA-LDAEP (Av) TNF-α (pg/mL) | 40.47 ± 13.71 14/50 28.39 ± 10.77 17.94 ± 5.05 –0.52 ± 0.67 0.77 ± 0.76 1.28 ± 0.87 0.069 ± 0.14 0.092 ± 0.15 0.081 ± 0.12 0.026 ± 0.093 0.038 ± 0.12 0.032 ± 0.091 0.039 ± 0.084 0.052 ± 0.095 0.046 ± 0.074 8.81 ± 5.92 |
Variable | Low-TNF-α Group (n = 32) | High-TNF-α Group (n = 32) | p |
---|---|---|---|
Age (years) | 38.66 ± 11.91 | 42.28 ± 15.28 | 0.29 |
Sex (male/female) a | 6/26 | 8/24 | 0.55 |
Total BDI score | 25.09 ± 11.62 | 31.69 ± 8.85 | 0.013 * |
Total HAMD score | 17.41 ± 4.38 | 18.47 ± 5.66 | 0.40 |
N1 LDAEP | 1.12 ± 0.84 | 0.93 ± 0.78 | 0.36 |
P2 LDAEP | 0.96 ± 0.81 | 0.57 ± 0.68 | 0.042 * |
N1/P2 LDAEP | 1.44 ± 0.89 | 1.13 ± 0.83 | 0.15 |
N1 LORETA-LDAEP (Lt) | 0.099 ± 0.14 | 0.039 ± 0.13 | 0.034 * |
N1 LORETA-LDAEP (Rt) | 0.10 ± 0.13 | 0.082 ± 0.16 | 0.22 |
N1 LORETA-LDAEP (Av) | 0.10 ± 0.12 | 0.061 ± 0.12 | 0.062 |
P2 LORETA-LDAEP (Lt) | 0.059 ± 0.097 | 0.0063 ± 0.078 | 0.012 * |
P2 LORETA-LDAEP (Rt) | 0.063 ± 0.13 | 0.013 ± 0.10 | 0.10 |
P2 LORETA-LDAEP (Av) | 0.061 ± 0.10 | 0.0037 ± 0.070 | 0.012 * |
N1/P2 LORETA-LDAEP (Lt) | 0.069 ± 0.086 | 0.0084 ± 0.070 | 0.008 ** |
N1/P2 LORETA-LDAEP (Rt) | 0.069 ± 0.090 | 0.035 ± 0.098 | 0.066 |
N1/P2 LORETA-LDAEP (Av) | 0.069 ± 0.076 | 0.022 ± 0.065 | 0.005** |
Variables | CE | SE | t | p-Value |
---|---|---|---|---|
Intercept | 0.019 | 0.04 | 0.47 | 0.64 |
Age | 0.00079 | 0.00067 | 1.18 | 0.24 |
Sex | 0.03 | 0.022 | 1.39 | 0.17 |
BDI | –0.0002 | 0.0009 | –0.23 | 0.82 |
TNF-α a | –0.047 | 0.019 | –2.45 | 0.017* |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.-H.; Park, Y.-M.; Lee, S.-H.; Shim, M. Serum Levels of Tumor Necrosis Factor-α and Loudness Dependence of Auditory Evoked Potentials at Pretreatment and Posttreatment in Patients with Major Depressive Disorder. Brain Sci. 2019, 9, 253. https://doi.org/10.3390/brainsci9100253
Lee B-H, Park Y-M, Lee S-H, Shim M. Serum Levels of Tumor Necrosis Factor-α and Loudness Dependence of Auditory Evoked Potentials at Pretreatment and Posttreatment in Patients with Major Depressive Disorder. Brain Sciences. 2019; 9(10):253. https://doi.org/10.3390/brainsci9100253
Chicago/Turabian StyleLee, Bun-Hee, Young-Min Park, Seung-Hwan Lee, and Miseon Shim. 2019. "Serum Levels of Tumor Necrosis Factor-α and Loudness Dependence of Auditory Evoked Potentials at Pretreatment and Posttreatment in Patients with Major Depressive Disorder" Brain Sciences 9, no. 10: 253. https://doi.org/10.3390/brainsci9100253
APA StyleLee, B.-H., Park, Y.-M., Lee, S.-H., & Shim, M. (2019). Serum Levels of Tumor Necrosis Factor-α and Loudness Dependence of Auditory Evoked Potentials at Pretreatment and Posttreatment in Patients with Major Depressive Disorder. Brain Sciences, 9(10), 253. https://doi.org/10.3390/brainsci9100253