Transcranial Magnetic Stimulation in Tourette Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in Treatment Response
Abstract
:1. Introduction
2. Transcranial Magnetic Stimulation
3. Neurocircuitry and Neurotransmitters Glutamate/GABA Suggest Abnormal Excitatory Activity in Tourette Syndrome
4. Brain Electrical Activity and Tourette Syndrome
5. Transcranial Magnetic Stimulation as a Measure of the Electrophysiology in Tourette Syndrome
6. Transcranial Magnetic Stimulation as a Therapeutic Tool in Tourette Syndrome
7. Predictors of Transcranial Magnetic Stimulation Efficacy in Tourette Syndrome
8. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- De la Tourette, G.G. Étude sur une affection nerveuse caractérisée par de l’incoordination motrice accompagnée d’écholalie et de coprolalie (jumping, latah, myriachit). Archives de Neurologie 1885, 9, 158–200. [Google Scholar]
- Pauls, D.L.; Cohen, D.J.; Heimbuch, R.; Detlor, J.; Kidd, K.K. Familial pattern and transmission of gilles de la tourette syndrome and multiple tics. Arch. Gen. Psychiatry 1981, 38, 1091–1093. [Google Scholar] [CrossRef] [PubMed]
- Groth, C.; Mol Debes, N.; Rask, C.U.; Lange, T.; Skov, L. Course of tourette syndrome and comorbidities in a large prospective clinical study. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.M. The gilles de la tourette syndrome: The current status. Br. J. Psychiatry J. Ment. Sci. 1989, 154, 147–169. [Google Scholar] [CrossRef]
- Comings, D.E.; Comings, B.G. Ts, learning, and speech problems. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Grados, M.A.; Mathews, C.A. Latent class analysis of gilles de la tourette syndrome using comorbidities: Clinical and genetic implications. Biol. Psychiatry 2008, 64, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Mathews, C.A.; Grados, M.A. Familiality of tourette syndrome, obsessive-compulsive disorder, and attention-deficit/hyperactivity disorder: Heritability analysis in a large sib-pair sample. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E. A controlled study of tourette syndrome. Vii. Summary: A common genetic disorder causing disinhibition of the limbic system. Am. J. Hum. Genet. 1987, 41, 839–866. [Google Scholar] [PubMed]
- Nag, A.; Bochukova, E.G.; Kremeyer, B.; Campbell, D.D.; Muller, H.; Valencia-Duarte, A.V.; Cardona, J.; Rivas, I.C.; Mesa, S.C.; Cuartas, M.; et al. Cnv analysis in tourette syndrome implicates large genomic rearrangements in col8a1 and nrxn1. PLoS ONE 2013, 8, e59061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, D.F.; Brasic, J.R.; Singer, H.S.; Schretlen, D.J.; Kuwabara, H.; Zhou, Y.; Nandi, A.; Maris, M.A.; Alexander, M.; Ye, W.; et al. Mechanisms of dopaminergic and serotonergic neurotransmission in tourette syndrome: Clues from an in vivo neurochemistry study with pet. Neuropsychopharmacology 2008, 33, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; Fair, D.A.; Dosenbach, N.U.; Cohen, A.L.; Miezin, F.M.; Petersen, S.E.; Schlaggar, B.L. Control networks in paediatric tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 2009, 132, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Scahill, L.D.; Leckman, J.F.; Marek, K.L. Sensory phenomena in tourette’s syndrome. Adv. Neurol. 1995, 65, 273–280. [Google Scholar] [PubMed]
- Craig, A.D. Interoception: The sense of the physiological condition of the body. Curr. Opin. Neurobiol. 2003, 13, 500–505. [Google Scholar] [CrossRef]
- Neuner, I.; Werner, C.J.; Arrubla, J.; Stocker, T.; Ehlen, C.; Wegener, H.P.; Schneider, F.; Shah, N.J. Imaging the where and when of tic generation and resting state networks in adult tourette patients. Front. Hum. Neurosci. 2014, 8, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinaz, S.; Malone, P.; Hallett, M.; Horovitz, S.G. Role of the right dorsal anterior insula in the urge to tic in tourette syndrome. Mov. Disord. 2015, 30, 1190–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strigo, I.A.; Craig, A.D. Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Orth, M.; Kirby, R.; Richardson, M.P.; Snijders, A.H.; Rothwell, J.C.; Trimble, M.R.; Robertson, M.M.; Munchau, A. Subthreshold rtms over pre-motor cortex has no effect on tics in patients with gilles de la tourette syndrome. Clin. Neurophysiol. 2005, 116, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Lisanby, S.H.; Pieraccini, F.; Ulivelli, M.; Castrogiovanni, P.; Rossi, S. Repetitive transcranial magnetic stimulation (rtms) in the treatment of obsessive-compulsive disorder (ocd) and tourette’s syndrome (ts). Int. J. Neuropsychopharmacol. 2006, 9, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Biot, J.-B.; Savart, F. Note sur le magnetisme de la pile de volta. Ann. Chim. Phys. 1820, 15, 222–223. [Google Scholar]
- Faraday, M. Experimental researches in electricity. Philos. Trans. R. Soc. Lond. 1832, 122, 125–162. [Google Scholar] [CrossRef]
- George, M.S.; Wassermann, E.M.; Post, R.M. Transcranial magnetic stimulation: A neuropsychiatric tool for the 21st century. J. Neuropsychiatry Clin. Neurosci. 1996, 8, 373–382. [Google Scholar] [PubMed]
- Pascual-Leone, A.; Gates, J.R.; Dhuna, A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 1991, 41, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Grafman, J.; Hallett, M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 1994, 263, 1287–1289. [Google Scholar] [CrossRef] [PubMed]
- Viachos, A.; Muller-Dahlhaus, F.; Rosskopp, J.; Lenz, M.; Ziemann, U.; Deller, T. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J. Neurosci. 2012, 32, 17514–17523. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Vlachos, A. Releasing the cortical brake by non-invasive electromagnetic stimulation? Rtms induces ltd of gabaergic neurotransmission. Front. Neural Circuits 2016, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef]
- Bunse, T.; Wobrock, T.; Strube, W.; Padberg, F.; Palm, U.; Falkai, P.; Hasan, A. Motor cortical excitability assessed by transcranial magnetic stimulation in psychiatric disorders: A systematic review. Brain Stimul. 2014, 7, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.K.; Dunlop, K.; Downar, J. Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Front. Syst. Neurosci. 2016, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Haber, S.N. The primate basal ganglia: Parallel and integrative networks. J. Chem. Neuroanat. 2003, 26, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.; Bevan, M.D.; Shink, E.; Bolam, J.P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 1998, 86, 353–387. [Google Scholar] [PubMed]
- Mink, J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol. 1996, 50, 381–425. [Google Scholar] [CrossRef]
- Cheon, K.A.; Ryu, Y.H.; Namkoong, K.; Kim, C.H.; Kim, J.J.; Lee, J.D. Dopamine transporter density of the basal ganglia assessed with [123i]ipt spect in drug-naive children with tourette’s disorder. Psychiatry Res. 2004, 130, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Serra-Mestres, J.; Ring, H.A.; Costa, D.C.; Gacinovic, S.; Walker, Z.; Lees, A.J.; Robertson, M.M.; Trimble, M.R. Dopamine transporter binding in gilles de la tourette syndrome: A [123i]fp-cit/spect study. Acta Psychiatr. Scand. 2004, 109, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.; Zametkin, A.J.; Jons, P.H.; Matochik, J.A.; Pascualvaca, D.; Cohen, R.M. High presynaptic dopaminergic activity in children with tourette’s disorder. J. Am. Acad. Child Adolesc. Psychiatry 1999, 38, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Singer, H.S.; Szymanski, S.; Giuliano, J.; Yokoi, F.; Dogan, A.S.; Brasic, J.R.; Zhou, Y.; Grace, A.A.; Wong, D.F. Elevated intrasynaptic dopamine release in tourette’s syndrome measured by pet. Am. J. Psychiatry 2002, 159, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Albin, R.L.; Koeppe, R.A.; Bohnen, N.I.; Nichols, T.E.; Meyer, P.; Wernette, K.; Minoshima, S.; Kilbourn, M.R.; Frey, K.A. Increased ventral striatal monoaminergic innervation in tourette syndrome. Neurology 2003, 61, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Singer, H.S.; Morris, C.; Grados, M. Glutamatergic modulatory therapy for tourette syndrome. Med. Hypotheses 2010, 74, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Floresco, S.B.; Todd, C.L.; Grace, A.A. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J. Neurosci. 2001, 21, 4915–4922. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, E.J.; Bittner, K.C.; McGrath, M.J.; Parks, C.R., 3rd; Burton, F.H. “Hyperglutamatergic cortico-striato-thalamo-cortical circuit” breaker drugs alleviate tics in a transgenic circuit model of tourettes syndrome. Brain Res. 2015, 1629, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.M.; Pollak, E.S.; Chatterjee, D.; Leckman, J.F.; Riddle, M.A.; Cohen, D.J. Postmortem analysis of subcortical monoamines and amino acids in tourette syndrome. Adv. Neurol. 1992, 58, 123–133. [Google Scholar] [PubMed]
- De Leeuw, C.; Goudriaan, A.; Smit, A.B.; Yu, D.; Mathews, C.A.; Scharf, J.M.; Verheijen, M.H.; Posthuma, D. Involvement of astrocyte metabolic coupling in tourette syndrome pathogenesis. Eur. J. Hum. Genet. 2015, 23, 1519–1522. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, A.; Gause, C.D.; Sattler, R.; Vidensky, S.; Rothstein, J.D.; Singer, H.; Wang, T. Genetic and functional studies of a missense variant in a glutamate transporter, slc1a3, in tourette syndrome. Psychiatr. Genet. 2011, 21, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.E.; Grados, M.; Kline, T.; Thompson, C.B.; Ali, S.F.; Singer, H.S. Efficacy of glutamate modulators in tic suppression: A double-blind, randomized control trial of d-serine and riluzole in tourette syndrome. Pediatr. Neurol. 2015, 52, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, A.S.; Gerasch, S.; Garcia-Garcia, I.; Lampe, L.; Pampel, A.; Anwander, A.; Near, J.; Moller, H.E.; Muller-Vahl, K. Pathological glutamatergic neurotransmission in gilles de la tourette syndrome. Brain 2017, 140, 218–234. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Tian, N.; Caywood, M.S.; Reimer, R.J.; Edwards, R.H.; Copenhagen, D.R. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: Gaba and glycine precede glutamate. J. Neurosci. 2003, 23, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Leonzino, M.; Busnelli, M.; Antonucci, F.; Verderio, C.; Mazzanti, M.; Chini, B. The timing of the excitatory-to-inhibitory gaba switch is regulated by the oxytocin receptor via kcc2. Cell Rep. 2016, 15, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Bellemer, A.; Koelle, M.R. An evolutionarily conserved switch in response to gaba affects development and behavior of the locomotor circuit of caenorhabditis elegans. Genetics 2015, 199, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Rakhade, S.N.; Jensen, F.E. Epileptogenesis in the immature brain: Emerging mechanisms. Nat. Rev. Neurol. 2009, 5, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Selten, M.; van Bokhoven, H.; Nadif Kasri, N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Reserch 2018, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, M.; Tsukahara, T.; Tomita, K.; Iwai, H.; Sonomura, T.; Miyawaki, S.; Sato, T. Neonatal maternal separation delays the gaba excitatory-to-inhibitory functional switch by inhibiting kcc2 expression. Biochem. Biophys. Res. Commun. 2017, 493, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Tomiyasu, M.; Aida, N.; Shibasaki, J.; Umeda, M.; Murata, K.; Heberlein, K.; Brown, M.A.; Shimizu, E.; Tsuji, H.; Obata, T. In vivo estimation of gamma-aminobutyric acid levels in the neonatal brain. NMR Biomed. 2017, 3, e3666. [Google Scholar] [CrossRef] [PubMed]
- Kalanithi, P.S.; Zheng, W.; Kataoka, Y.; DiFiglia, M.; Grantz, H.; Saper, C.B.; Schwartz, M.L.; Leckman, J.F.; Vaccarino, F.M. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with tourette syndrome. Proc. Natl. Acad. Sci. USA 2005, 102, 13307–13312. [Google Scholar] [CrossRef] [PubMed]
- Bode, C.; Richter, F.; Sprote, C.; Brigadski, T.; Bauer, A.; Fietz, S.; Fritschy, J.M.; Richter, A. Altered postnatal maturation of striatal gabaergic interneurons in a phenotypic animal model of dystonia. Exp. Neurol. 2017, 287, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Mahone, E.M.; Puts, N.A.; Edden, R.A.E.; Ryan, M.; Singer, H.S. Gaba and glutamate in children with tourette syndrome: A (1)h mr spectroscopy study at 7t. Psychiatry Res. 2018, 273, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Puts, N.A.; Harris, A.D.; Crocetti, D.; Nettles, C.; Singer, H.S.; Tommerdahl, M.; Edden, R.A.; Mostofsky, S.H. Reduced gabaergic inhibition and abnormal sensory symptoms in children with tourette syndrome. J. Neurophysiol. 2015, 114, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Draper, A.; Stephenson, M.C.; Jackson, G.M.; Pepes, S.; Morgan, P.S.; Morris, P.G.; Jackson, S.R. Increased gaba contributes to enhanced control over motor excitability in tourette syndrome. Curr. Boil. 2014, 24, 2343–2347. [Google Scholar] [CrossRef] [PubMed]
- Koos, T.; Tepper, J.M. Inhibitory control of neostriatal projection neurons by gabaergic interneurons. Nat. Neurosci. 1999, 2, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G.M.; Draper, A.; Dyke, K.; Pepes, S.E.; Jackson, S.R. Inhibition, disinhibition, and the control of action in tourette syndrome. Trends Cognit. Sci. 2015, 19, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.C.; Day, B.L.; Thompson, P.D.; Kujirai, T. Short latency intracortical inhibition: One of the most popular tools in human motor neurophysiology. J. Physiol. 2009, 587, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.L.; Bansal, A.S.; Sethuraman, G.; Sallee, F.R.; Zhang, J.; Lipps, T.; Wassermann, E.M. Association of cortical disinhibition with tic, adhd, and ocd severity in tourette syndrome. Mov. Disord. 2004, 19, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.L.; Sallee, F.R.; Zhang, J.; Lipps, T.D.; Wassermann, E.M. Transcranial magnetic stimulation-evoked cortical inhibition: A consistent marker of attention-deficit/hyperactivity disorder scores in tourette syndrome. Biol. Psychiatry 2005, 57, 1597–1600. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Paulus, W.; Rothenberger, A. Decreased motor inhibition in tourette’s disorder: Evidence from transcranial magnetic stimulation. Am. J. Psychiatry 1997, 154, 1277–1284. [Google Scholar] [PubMed]
- Draper, A.; Jude, L.; Jackson, G.M.; Jackson, S.R. Motor excitability during movement preparation in tourette syndrome. J. Neuropsychol. 2015, 9, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Brandt, V.C.; Niessen, E.; Ganos, C.; Kahl, U.; Baumer, T.; Munchau, A. Altered synaptic plasticity in tourette’s syndrome and its relationship to motor skill learning. PLoS ONE 2014, 9, e98417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Rodríguez, J.F.; Ruiz-Rodríguez, M.A.; Palomar, F.J.; Cáceres-Redondo, M.T.; Vargas, L.; Porcacchia, P.; Gómez-Crespo, M.; Huertas-Fernández, I.; Carrillo, F.; Madruga-Garrido, M.; et al. Aberrant cortical associative plasticity associated with severe adult tourette syndrome. Mov. Disord. 2015, 30, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Suppa, A.; Marsili, L.; Di Stasio, F.; Berardelli, I.; Roselli, V.; Pasquini, M.; Cardona, F.; Berardelli, A. Cortical and brainstem plasticity in tourette syndrome and obsessive-compulsive disorder. Mov. Disord. 2014, 29, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Orth, M.; Rothwell, J.C. Motor cortex excitability and comorbidity in gilles de la tourette syndrome. J. Neurol. Neurosurg. Psychiatry 2009, 80, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Orth, M.; Munchau, A.; Rothwell, J.C. Corticospinal system excitability at rest is associated with tic severity in tourette syndrome. Biol. Psychiatry 2008, 64, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Heise, C.A.; Wanschura, V.; Albrecht, B.; Uebel, H.; Roessner, V.; Himpel, S.; Paulus, W.; Rothenberger, A.; Tergau, F. Voluntary motor drive: Possible reduction in tourette syndrome. J. Neural Transm. 2008, 115, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Pépés, S.E.; Draper, A.; Jackson, G.M.; Jackson, S.R. Effects of age on motor excitability measures from children and adolescents with tourette syndrome. Dev. Cognit. Neurosci. 2016, 19, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.R.; Parkinson, A.; Manfredi, V.; Millon, G.; Hollis, C.; Jackson, G.M. Motor excitability is reduced prior to voluntary movements in children and adolescents with tourette syndrome. J. Neuropsychol. 2013, 7, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Rapanelli, M.; Frick, L.R.; Pittenger, C. The role of interneurons in autism and tourette syndrome. Trends Neurosci. 2017, 40, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.Y.; Yu, D.; Davis, L.K.; Sul, J.H.; Tsetsos, F.; Ramensky, V.; Zelaya, I.; Ramos, E.M.; Osiecki, L.; Chen, J.A.; et al. Rare copy number variants in nrxn1 and cntn6 increase risk for tourette syndrome. Neuron 2017, 94, 1101–1111.e7. [Google Scholar] [CrossRef] [PubMed]
- Dayan, E.; Censor, N.; Buch, E.R.; Sandrini, M.; Cohen, L.G. Noninvasive brain stimulation: From physiology to network dynamics and back. Nat. Neurosci. 2013, 16, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Hameed, M.Q.; Dhamne, S.C.; Gersner, R.; Kaye, H.L.; Oberman, L.M.; Pascual-Leone, A.; Rotenberg, A. Transcranial magnetic and direct current stimulation in children. Curr. Neurol. Neurosci. Rep. 2017, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Mrakic-Sposta, S.; Marceglia, S.; Mameli, F.; Dilena, R.; Tadini, L.; Priori, A. Transcranial direct current stimulation in two patients with tourette syndrome. Mov. Disord. 2008, 23, 2259–2261. [Google Scholar] [CrossRef] [PubMed]
- Munchau, A.; Bloem, B.R.; Thilo, K.V.; Trimble, M.R.; Rothwell, J.C.; Robertson, M.M. Repetitive transcranial magnetic stimulation for tourette syndrome. Neurology 2002, 59, 1789–1791. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.H.; Nahas, Z.; Wassermann, E.; Li, X.; Sethuraman, G.; Gilbert, D.; Sallee, F.R.; George, M.S. A pilot safety study of repetitive transcranial magnetic stimulation (rtms) in tourette’s syndrome. Cognit. Behav. Neurol. 2004, 17, 109–117. [Google Scholar] [CrossRef]
- Bloch, Y.; Arad, S.; Levkovitz, Y. Deep tms add-on treatment for intractable tourette syndrome: A feasibility study. World J. Biol. Psychiatry 2016, 17, 557–561. [Google Scholar] [PubMed]
- Kwon, H.J.; Lim, W.S.; Lim, M.H.; Lee, S.J.; Hyun, J.K.; Chae, J.H.; Paik, K.C. 1-hz low frequency repetitive transcranial magnetic stimulation in children with tourette’s syndrome. Neurosci. Lett. 2011, 492, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Le, K.; Liu, L.; Sun, M.; Hu, L.; Xiao, N. Transcranial magnetic stimulation at 1 hertz improves clinical symptoms in children with tourette syndrome for at least 6 months. J. Clin. Neurosci. 2013, 20, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, C.; Santos, L.; Peterson, M.D.; Ehinger, M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015, 8, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Landeros-Weisenberger, A.; Mantovani, A.; Motlagh, M.G.; de Alvarenga, P.G.; Katsovich, L.; Leckman, J.F.; Lisanby, S.H. Randomized sham controlled double-blind trial of repetitive transcranial magnetic stimulation for adults with severe Tourette syndrome. Brain Stimul. 2015, 8, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Loo, S.K.; McGough, J.J.; McCracken, J.T.; Smalley, S.L. Parsing heterogeneity in attention-deficit hyperactivity disorder using eeg-based subgroups. J. Child Psychol. Psychiatry Allied Discipl. 2018, 59, 223–231. [Google Scholar] [CrossRef] [PubMed]
Pediatric TS TMS Clinical Trials | |||||||||
Authors | Design | Age (Range) | N | M:F | Comorbidities | Intervention | Comparison Groups | Targeted Brain Area | Results |
Kwon, 2011 [80] | Open label pilot study | 9.57 ± 2.75 (9–14) | 10 | 10:0 | OCD (n = 1), ADHD (n = 3) | rTMS | None | SMA | Tic symptoms improved significantly, no improvement in ADHD, anxiety or depression. |
Le, 2013 [81] | Open label | 10.61 ± 2.18 (7–16) | 25 | 22:3 | Not specified | rTMS | None | SMA | Tic severity significantly lowered, also hyperactivity, attentional deficits, depression and anxiety lower with treatment. |
Adult TS TMS Clinical Trials | |||||||||
Authors | Design | Age (range) | N | M:F | Comorbidities | Intervention | Comparison Groups | Targeted Brain Area | Results |
Bloch, 2016 [79] | Open label | 32.6 ± 12.7 (20–61) | 12 | 1:1 | OCD (n = 6), ADHD (n = 4) | Deep rTMS | None | SMA | Tics did not improve overall but comorbid TS + OCD significant improvement tic severity. |
Chae, 2004 [78] | Randomized, blinded crossover | 34.9 ± 16.4 (13–60) | 8 | 5:3 | OCD (n = 4), ADHD (n = 3) | rTMS | None | L MC, L PFC | Tic and OCD symptoms improved significantly. |
Mantovani, 2006 [18] | Open label | 38.9 ± 11.9 (18–70) | 10 | 8:2 | OCD only (n = 5), OCD + TS (n = 2) | Low frequency rTMS | None | SMA | Tics and OCD symptoms significantly reduced up to 3 months. |
Munchau, 2002 [77] | Single-blinded, placebo control | 38.0 ± 13.2 (unknown) | 16 | 3:1 | OCD (n = 7) | rTMS | Sham/Placebo | L Premotor and L Motor Cortex | No significant improvement. |
Orth, 2005 [17] | Single-blinded, placebo control | 29.0 ± SD (19–52) | 5 | 4:1 | ADHD (n = 2) | rTMS | Sham | Left (and Bilateral) Premotor Cortex | rTMS no significant effect on global tic severity. |
Landeros-Weisenberger, A., 2015 [83] | Randomized double-blind sham-control | 33.7 ± 12.2 (unknown) | 20 | 4:1 | OCD (n = 5), ADHD (n = 8) | rTMS | Sham | SMA | No significant reduction of tic severity. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grados, M.; Huselid, R.; Duque-Serrano, L. Transcranial Magnetic Stimulation in Tourette Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in Treatment Response. Brain Sci. 2018, 8, 129. https://doi.org/10.3390/brainsci8070129
Grados M, Huselid R, Duque-Serrano L. Transcranial Magnetic Stimulation in Tourette Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in Treatment Response. Brain Sciences. 2018; 8(7):129. https://doi.org/10.3390/brainsci8070129
Chicago/Turabian StyleGrados, Marco, Rachel Huselid, and Laura Duque-Serrano. 2018. "Transcranial Magnetic Stimulation in Tourette Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in Treatment Response" Brain Sciences 8, no. 7: 129. https://doi.org/10.3390/brainsci8070129
APA StyleGrados, M., Huselid, R., & Duque-Serrano, L. (2018). Transcranial Magnetic Stimulation in Tourette Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in Treatment Response. Brain Sciences, 8(7), 129. https://doi.org/10.3390/brainsci8070129