Diagnostic Value of the Delta Neutrophil Index and Neutrophil-to-Lymphocyte Ratio for Preoperative Differentiation of Malignant and Benign Primary Brain Tumors: A Retrospective Cohort Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Ethical Approval
2.2. Study Population and Grouping
2.3. Inclusion and Exclusion Criteria
2.4. Data Collection
2.5. Laboratory Analysis and Calculation of Hematological Indices
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaifi, R. A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification. Diagnostics 2023, 13, 3007. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.; Dowswell, T.; Tomlinson, E.; Brennan, P.M.; Walter, F.M.; Ben-Shlomo, Y.; Hunt, D.W.; Bulbeck, H.; Kernohan, A.; Robinson, T.; et al. Interventions to reduce the time to diagnosis of brain tumours. Cochrane Database Syst. Rev. 2020, 9, Cd013564. [Google Scholar] [CrossRef] [PubMed]
- Gilard, V.; Tebani, A.; Dabaj, I.; Laquerrière, A.; Fontanilles, M.; Derrey, S.; Marret, S.; Bekri, S. Diagnosis and Management of Glioblastoma: A Comprehensive Perspective. J. Pers. Med. 2021, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Perkins, A.; Liu, G. Primary Brain Tumors in Adults: Diagnosis and Treatment. Am. Fam. Physician 2016, 93, 211–217. [Google Scholar]
- Zhong, J.H.; Huang, D.H.; Chen, Z.Y. Prognostic role of systemic immune-inflammation index in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef]
- Yang, C.; Hu, B.W.; Tang, F.; Zhang, Q.; Quan, W.; Wang, J.; Wang, Z.-F.; Li, Y.-R.; Li, Z.-Q. Prognostic Value of Systemic Immune-Inflammation Index (SII) in Patients with Glioblastoma: A Comprehensive Study Based on Meta-Analysis and Retrospective Single-Center Analysis. J. Clin. Med. 2022, 11, 7514. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Tian, Y.; Niu, H.; Zhang, P.; Geng, J. Inflammatory markers including NLR, AFR and SII as prognostic factors in neuroblastoma. Sci. Rep. 2025, 15, 24101. [Google Scholar] [CrossRef]
- Choi, J.H.; Bang, C.S.; Lee, J.J.; Baik, G.H. Delta neutrophil index as a predictor of disease severity, surgical outcomes, and mortality rates in gastrointestinal diseases: Rationale for a meta-analysis of diagnostic test accuracy. Medicine 2019, 98, e17059. [Google Scholar] [CrossRef]
- Moon, S.; Park, Y.; Hong, C.W.; Park, S.; Sim, Y.; Ko, Y.; Park, S. A Usefulness of Delta Neutrophil Index (DNI) for Prediction of 28 Day Mortality in Patients with Pneumonia-Induced Sepsis in the Intensive Care Unit. J. Clin. Med. 2025, 14, 2002. [Google Scholar] [CrossRef]
- Jung, W.J.; Kim, H.S.; Cha, K.C.; Roh, Y.I.; An, G.J.; Cha, Y.S.; Kim, H.; Lee, K.H.; Hwang, S.O.; Kim, O.H. Early Evaluation of Myeloperoxidase and Delta Neutrophil Indices Is Similar to 48 h Sequential Organ Failure Assessment Score for Predicting Multiple Organ Failure After Trauma. J. Clin. Med. 2025, 14, 3447. [Google Scholar] [CrossRef] [PubMed]
- Yune, H.Y.; Chung, S.P.; Park, Y.S.; Chung, H.S.; Lee, H.S.; Lee, J.W.; You, J.S.; Park, I.; Lee, H.S. Delta neutrophil index as a promising prognostic marker in out of hospital cardiac arrest. PLoS ONE 2015, 10, e0120677. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Satici, M.O.; Eroglu, S.E. Unraveling the clinical significance and prognostic value of the neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune-inflammation index, systemic inflammation response index, and delta neutrophil index: An extensive literature review. Turk. J. Emerg. Med. 2024, 24, 8–19. [Google Scholar] [PubMed]
- Bozan, M.B.; Yazar, F.M.; Kale, İ.T.; Yüzbaşıoğlu, M.F.; Boran, Ö.F.; Azak Bozan, A. Delta Neutrophil Index and Neutrophil-to-Lymphocyte Ratio in the Differentiation of Thyroid Malignancy and Nodular Goiter. World J. Surg. 2021, 45, 507–514. [Google Scholar] [CrossRef]
- Bozan, M.B.; Yazar, F.M.; Kale, I.T.; Topuz, S.; Bozan, A.A.; Boran, O.F. Immature Granulocyte Count and Delta Neutrophil Index as New Predictive Factors for Axillary Metastasis of Breast Cancer. J. Coll. Physicians Surg. Pak. 2022, 32, 220–225. [Google Scholar] [CrossRef]
- Barut, O.; Demirkol, M.K.; Kucukdurmaz, F.; Sahinkanat, T.; Resim, S. Pre-treatment Delta Neutrophil Index as a Predictive Factor in Renal Cell Carcinoma. J. Coll. Physicians Surg. Pak. 2021, 31, 156–161. [Google Scholar] [CrossRef]
- Dharmajaya, R.; Sari, D.K. Role and value of inflammatory markers in brain tumors: A case controlled study. Ann. Med. Surg. 2021, 63, 102107. [Google Scholar] [CrossRef]
- Manake, R.; Phillips, V.; Gangi, A.; Ravikumar, J. Trends in the Incidence of Brain Cancer: An Observational Study. Cureus 2024, 16, e72805. [Google Scholar] [CrossRef]
- White, M.C.; Holman, D.M.; Boehm, J.E.; Peipins, L.A.; Grossman, M.; Henley, S.J. Age and cancer risk: A potentially modifiable relationship. Am. J. Prev. Med. 2014, 46, S7–S15. [Google Scholar] [CrossRef]
- Laconi, E.; Marongiu, F.; DeGregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br. J. Cancer 2020, 122, 943–952. [Google Scholar] [CrossRef]
- Li, B.; Gao, B.; Zhu, H.J.; Luwor, R.B.; Lu, J.; Zhang, L.; Kong, B. The Prognostic Value of Preoperative Inflammatory Markers for Pathological Grading of Glioma Patients. Technol. Cancer Res. Treat. 2024, 23, 15330338241273160. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.; Kim, W.; Lim, T.H.; Cho, Y.; Choi, K.S.; Jang, B.H. The delta neutrophil index (DNI) as a prognostic marker for mortality in adults with sepsis: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 6621. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood-brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther. 2021, 27, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Park, K.J.; Kang, S.H.; Chae, Y.S.; Yu, M.O.; Cho, T.H.; Suh, J.K.; Lee, H.K.; Chung, Y.G. Influence of interleukin-6 on the development of peritumoral brain edema in meningiomas. J. Neurosurg. 2010, 112, 73–80. [Google Scholar] [CrossRef]
- Berhouma, M.; Jacquesson, T.; Jouanneau, E.; Cotton, F. Pathogenesis of peri-tumoral edema in intracranial meningiomas. Neurosurg. Rev. 2019, 42, 59–71. [Google Scholar] [CrossRef]
- Park, J.H.; Byeon, H.J.; Lee, K.H.; Lee, J.W.; Kronbichler, A.; Eisenhut, M.; Shin, J.I. Delta neutrophil index (DNI) as a novel diagnostic and prognostic marker of infection: A systematic review and meta-analysis. Inflamm. Res. 2017, 66, 863–870. [Google Scholar] [CrossRef]
- Mostofa, A.G.; Punganuru, S.R.; Madala, H.R.; Al-Obaide, M.; Srivenugopal, K.S. The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017, 7, 34. [Google Scholar] [CrossRef]
- Wang, D.P.; Kang, K.; Lin, Q.; Hai, J. Prognostic Significance of Preoperative Systemic Cellular Inflammatory Markers in Gliomas: A Systematic Review and Meta-Analysis. Clin. Transl. Sci. 2020, 13, 179–188. [Google Scholar] [CrossRef]
- Jarmuzek, P.; Kozlowska, K.; Defort, P.; Kot, M.; Zembron-Lacny, A. Prognostic Values of Systemic Inflammatory Immunological Markers in Glioblastoma: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 3339. [Google Scholar] [CrossRef]
- Rusidi, H.A.; Rosyidi, R.M.; Wardhana, D.P.W.; Baskoro, W.; Ramadhana, G.A. The role of preoperative hematological inflammatory markers as a predictor of meningioma grade: A systematic review and meta-analysis. Surg. Neurol. Int. 2024, 15, 77. [Google Scholar] [CrossRef]
- Yalon, M.; Toren, A.; Jabarin, D.; Fadida, E.; Constantini, S.; Mehrian-Shai, R. Elevated NLR May Be a Feature of Pediatric Brain Cancer Patients. Front. Oncol. 2019, 9, 327. [Google Scholar] [CrossRef]
- Ashwath, K.G.; Aggarwal, A.; Praneeth, K.; Singla, N.; Gupta, K. Neutrophil-to-Lymphocyte Ratio: Can It Be Used as an Adjunct Tool to Predict Histopathological Grade of Brain Tumor? J. Neurosci. Rural. Pr. Pract. 2019, 10, 648–652. [Google Scholar] [CrossRef]
- Kayhan, A.; Korkmaz, T.S.; Baran, O.; Kemerdere, R.; Yeni, S.N.; Tanriverdi, T. Preoperative Systemic Inflammatory Markers in Different Brain Pathologies: An Analysis of 140 Patients. Turk. Neurosurg. 2019, 29, 799–803. [Google Scholar] [CrossRef]
- Brenner, A.; Friger, M.; Geffen, D.B.; Kaisman-Elbaz, T.; Lavrenkov, K. The Prognostic Value of the Pretreatment Neutrophil/Lymphocyte Ratio in Patients with Glioblastoma Multiforme Brain Tumors: A Retrospective Cohort Study of Patients Treated with Combined Modality Surgery, Radiation Therapy, and Temozolomide Chemotherapy. Oncology 2019, 97, 255–263. [Google Scholar] [CrossRef]
- Zhou, J.; Tan, B.; Gao, F. Prognostic values of combined ratios of white blood cells in glioma: A systematic review and meta-analysis. Neurosurg. Rev. 2024, 47, 831. [Google Scholar] [CrossRef]
- Stepanenko, A.A.; Sosnovtseva, A.O.; Valikhov, M.P.; Chernysheva, A.A.; Abramova, O.V.; Pavlov, K.A.; Chekhonin, V.P. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front. Immunol. 2024, 15, 1326753. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Chen, J.; Wang, L.; Wang, Z. Prognostic value of C-reactive protein in patients with glioma: A meta-analysis. Biomark Med 2024, 18, 789–796. [Google Scholar]


| Groups | ||||
|---|---|---|---|---|
| Malign (n = 60) | Benign (n = 50) | Control (n = 30) | p | |
| Age, years | 57 (51–64) | 49 (44–57) * | 55.5 (49–64) | <0.001 ‡ |
| Sex | ||||
| Male | 26 (43.33%) | 20 (40.00%) | 16 (53.33%) | 0.499 § |
| Female | 34 (56.67%) | 30 (60.00%) | 14 (46.67%) | |
| Pathology | ||||
| Anaplastic astrocytoma | 18 (30.00%) | 0 (0.00%) * | - | <0.001 ¶ |
| Glioblastoma | 42 (70.00%) | 0 (0.00%) * | - | |
| Meningioma | 0 (0.00%) | 32 (64.00%) * | - | |
| Pituitary adenoma | 0 (0.00%) | 6 (12.00%) * | - | |
| Schwannoma | 0 (0.00%) | 12 (24.00%) * | - | |
| Symptom | 54 (90.00%) | 41 (82.00%) | 28 (93.33%) | 0.258 § |
| Cognitive/behavioral change | 20 (33.33%) | 0 (0.00%) * | 16 (53.33%) # | <0.001 § |
| Focal deficit | 20 (33.33%) | 17 (34.00%) | 17 (56.67%) | 0.071 § |
| Headache | 34 (56.67%) | 21 (42.00%) | 12 (40.00%) | 0.192 § |
| Nausea/vomiting | 23 (38.33%) | 0 (0.00%) * | 9 (30.00%) # | <0.001 § |
| Seizure | 21 (35.00%) | 15 (30.00%) | 8 (26.67%) | 0.698 § |
| Other | 0 (0.00%) | 12 (24.00%) * | 0 (0.00%) # | <0.001 ¶ |
| Steroid use | 16 (26.67%) | 9 (18.00%) | 11 (36.67%) | 0.176 § |
| Recent antibiotic use | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | - |
| NSAID use | 13 (21.67%) | 10 (20.00%) | 9 (30.00%) | 0.563 § |
| WBC (109/L) | 9.76 ± 2.07 | 7.67 ± 1.73 * | 6.34 ± 1.59 *# | <0.001 † |
| Neutrophil (109/L) | 6.79 (5.81–7.72) | 4.92 (3.90–5.89) * | 3.73 (3.13–4.42) *# | <0.001 ‡ |
| Lymphocyte (109/L) | 1.27 ± 0.50 | 1.71 ± 0.49 * | 1.97 ± 0.61 * | <0.001 † |
| Monocyte (109/L) | 0.51 ± 0.18 | 0.51 ± 0.19 | 0.50 ± 0.19 | 0.947 † |
| Platelet (109/L) | 237.65 ± 62.35 | 238.54 ± 61.16 | 241.40 ± 63.60 | 0.964 † |
| DNI (%) | 5.00 ± 1.99 | 2.51 ± 1.28 * | 1.08 ± 0.53 *# | <0.001 † |
| Hemoglobin (g/dL) | 13.26 ± 1.71 | 13.02 ± 1.49 | 13.66 ± 1.76 | 0.244 † |
| Hematocrit (%) | 40.7 (36.2–42.1) | 39.75 (35.2–42.4) | 40.65 (35.7–43.8) | 0.604 ‡ |
| NLR | 5.71 (3.99–7.50) | 2.63 (2.00–3.51) * | 1.76 (1.36–2.56) * | <0.001 ‡ |
| PLR | 181.37 (138.90–259.15) | 144.16 (112.16–186.73) * | 122.05 (94.07–172.33) * | <0.001 ‡ |
| MLR | 0.45 (0.27–0.57) | 0.29 (0.23–0.40) * | 0.25 (0.18–0.37) * | <0.001 ‡ |
| SII (103) | 1262.80 (849.48–1873.57) | 604.09 (440.49–834.89) * | 459.43 (284.00–694.67) * | <0.001 ‡ |
| CRP (mg/L) | 10.13 (7.32–13.38) | 4.56 (2.99–5.60) * | 8.60 (3.53–10.39) # | <0.001 ‡ |
| Albumin (g/dL) | 3.72 ± 0.33 | 3.99 ± 0.32 * | 3.64 ± 0.30 # | <0.001 † |
| Cut-Off | Sensitivity | Specificity | Accuracy | PPV | NPV | AUC (95% CI) | p | |
|---|---|---|---|---|---|---|---|---|
| DNI (%) | >3.50 | 71.67% | 88.00% | 79.09% | 87.76% | 72.13% | 0.847 (0.775–0.919) | <0.001 |
| NLR | >3.95 | 76.67% | 86.00% | 80.91% | 86.79% | 75.44% | 0.850 (0.776–0.923) | <0.001 |
| PLR | >161.5 | 66.67% | 66.00% | 66.36% | 70.18% | 62.26% | 0.688 (0.589–0.786) | 0.001 |
| MLR | >0.37 | 61.67% | 74.00% | 67.27% | 74.00% | 61.67% | 0.674 (0.573–0.775) | 0.002 |
| SII (103) | >835.0 | 78.33% | 76.00% | 77.27% | 79.66% | 74.51% | 0.829 (0.752–0.905) | <0.001 |
| DNI and NLR combination a | - | 85.00% | 86.00% | 85.45% | 87.93% | 82.69% | 0.937 (0.893–0.981) | <0.001 |
| Sensitivity | Specificity | Accuracy | PPV | NPV | AUC (95% CI) | p | |
|---|---|---|---|---|---|---|---|
| DNI (%) | 78.33% | 76.00% | 77.27% | 79.66% | 74.51% | 0.870 (0.804–0.935) | <0.001 |
| NLR | 75.00% | 82.00% | 78.18% | 83.33% | 73.21% | 0.870 (0.805–0.935) | <0.001 |
| PLR | 70.00% | 60.00% | 65.45% | 67.74% | 62.50% | 0.757 (0.669–0.845) | <0.001 |
| MLR | 73.33% | 68.00% | 70.91% | 73.33% | 68.00% | 0.772 (0.686–0.858) | <0.001 |
| SII (103) | 73.33% | 76.00% | 74.55% | 78.57% | 70.37% | 0.842 (0.771–0.914) | <0.001 |
| DNI and NLR combination a | 88.33% | 86.00% | 87.27% | 88.33% | 86.00% | 0.943 (0.900–0.986) | <0.001 |
| Univariable | Multivariable a | ||||
|---|---|---|---|---|---|
| OR (95% CI) | p | OR (95% CI) | p | VIF | |
| Age | 1.086 (1.038–1.136) | <0.001 | 1.089 (0.995–1.192) | 0.063 | 1.113 |
| Sex, Female | 0.872 (0.407–1.868) | 0.724 | |||
| Symptom, Yes | 1.976 (0.651–5.994) | 0.229 | |||
| Steroid use, Yes | 1.657 (0.660–4.160) | 0.283 | |||
| NSAID use, Yes | 1.106 (0.438–2.793) | 0.831 | |||
| WBC (109/L) | 1.822 (1.403–2.366) | <0.001 | 1.878 (1.160–3.041) | 0.010 | 1.174 |
| Neutrophil (109/L) | 2.178 (1.584–2.995) | <0.001 | 0.108 | ||
| Lymphocyte (109/L) | 0.167 (0.068–0.408) | <0.001 | 0.693 | ||
| Monocyte (109/L) | 1.197 (0.155–9.266) | 0.863 | |||
| Platelet (109/L) | 1.000 (0.994–1.006) | 0.940 | |||
| DNI (%), >3.50 | 18.549 (6.681–51.502) | <0.001 | 20.667 (3.346–127.642) | 0.001 | 1.332 |
| Hemoglobin (g/dL) | 1.098 (0.868–1.390) | 0.435 | |||
| Hematocrit (%) | 1.052 (0.967–1.145) | 0.235 | |||
| NLR, >3.95 | 20.184 (7.440–54.756) | <0.001 | 21.165 (3.282–136.501) | 0.001 | 1.371 |
| PLR, >161.5 | 3.882 (1.755–8.589) | 0.001 | 0.662 | ||
| MLR, >0.37 | 4.579 (2.019–10.382) | <0.001 | 0.369 | ||
| SII (103), >835.0 | 11.449 (4.685–27.978) | <0.001 | 0.978 | ||
| CRP (mg/L) | 1.400 (1.228–1.597) | <0.001 | 1.522 (1.200–1.931) | 0.001 | 1.245 |
| Albumin (g/dL) | 0.072 (0.018–0.281) | <0.001 | 0.701 | ||
| Nagelkerke R2 | - | 0.839 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kesilmez, E.C.; Yüzbaşı, M.F.; Kırkgeçit, M.; Türkoğlu, H.; Yüksel, K.Z. Diagnostic Value of the Delta Neutrophil Index and Neutrophil-to-Lymphocyte Ratio for Preoperative Differentiation of Malignant and Benign Primary Brain Tumors: A Retrospective Cohort Study. Brain Sci. 2026, 16, 169. https://doi.org/10.3390/brainsci16020169
Kesilmez EC, Yüzbaşı MF, Kırkgeçit M, Türkoğlu H, Yüksel KZ. Diagnostic Value of the Delta Neutrophil Index and Neutrophil-to-Lymphocyte Ratio for Preoperative Differentiation of Malignant and Benign Primary Brain Tumors: A Retrospective Cohort Study. Brain Sciences. 2026; 16(2):169. https://doi.org/10.3390/brainsci16020169
Chicago/Turabian StyleKesilmez, Emrullah Cem, Muharrem Furkan Yüzbaşı, Muhammed Kırkgeçit, Hasan Türkoğlu, and Kasım Zafer Yüksel. 2026. "Diagnostic Value of the Delta Neutrophil Index and Neutrophil-to-Lymphocyte Ratio for Preoperative Differentiation of Malignant and Benign Primary Brain Tumors: A Retrospective Cohort Study" Brain Sciences 16, no. 2: 169. https://doi.org/10.3390/brainsci16020169
APA StyleKesilmez, E. C., Yüzbaşı, M. F., Kırkgeçit, M., Türkoğlu, H., & Yüksel, K. Z. (2026). Diagnostic Value of the Delta Neutrophil Index and Neutrophil-to-Lymphocyte Ratio for Preoperative Differentiation of Malignant and Benign Primary Brain Tumors: A Retrospective Cohort Study. Brain Sciences, 16(2), 169. https://doi.org/10.3390/brainsci16020169

