Differential Neuroendocrine Responses and Dysregulation of the Hypothalamic–Pituitary–Adrenal Axis Following Repeated Mild Concussive Impacts and Blast Exposures in a Rat Model
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. ACTH Levels Following Mild Concussive Impacts and Blast Exposures
3.2. Corticosterone Levels Following Mild Concussive Impacts and Blast Exposures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
TBI | Traumatic Brain Injury |
bTBI | Blast-Induced Traumatic Brain Injury |
HPA Axis | Hypothalamic–Pituitary–Adrenal Axis |
ACTH | Adrenocorticotropic Hormone |
WD | Weight Drop |
RB | Repeated Blast |
ABS | Advanced Blast Simulator |
CTE | Chronic Traumatic Encephalopathy |
PTSD | Post-Traumatic Stress Disorder |
ELISA | Enzyme-Linked Immunosorbent Assay |
IACUC | Institutional Animal Care and Use Committee |
AAALAC | Association for Assessment and Accreditation of Laboratory Animal Care |
SEM | Standard Error of the Mean |
ANOVA | Analysis of Variance |
CRH | Corticotropin-Releasing Hormone |
References
- Haarbauer-Krupa, J.; Pugh, M.J.; Prager, E.M.; Harmon, N.; Wolfe, J.; Yaffe, K. Epidemiology of chronic effects of traumatic brain injury. J. Neurotrauma 2021, 38, 3235–3247. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Francony, G. Traumatic brain injury: Integrated approaches to improving prevention, clinical care, and research. Lancet Neurol. 2017, 16, 987–1048. [Google Scholar] [CrossRef]
- Schneider, H.J.; Kreitschmann-Andermahr, I.; Ghigo, E.; Stalla, G.K.; Agha, A. Hypothalamo-pituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: A systematic review. JAMA 2017, 318, 1473–1488. [Google Scholar]
- Ciarlone, S.L.; Statz, J.K.; Goodrich, J.A.; Norris, J.N.; Goforth, C.W.; Ahlers, S.T.; Tschiffely, A.E. Neuroendocrine function and associated mental health outcomes following mild traumatic brain injury in OEF-deployed service members. J. Neurosci. Res. 2020, 98, 1174–1187. [Google Scholar] [CrossRef]
- McKee, A.C.; Mez, J.; Abdolmohammadi, B.; Butler, M.; Huber, B.R.; Uretsky, M.; Alosco, M.L. Neuropathologic and clinical findings in young contact sport athletes exposed to repetitive head impacts. JAMA Neurol. 2023, 80, 1037–1050. [Google Scholar] [CrossRef]
- Bailes, J.E.; Petraglia, A.L.; Omalu, B.I.; Nauman, E.; Talavage, T. Role of subconcussion in repetitive mild traumatic brain injury. J. Neurosurg. 2013, 119, 1235–1245. [Google Scholar] [CrossRef]
- Mez, J.; Daneshvar, D.H.; Kiernan, P.T.; Abdolmohammadi, B.; Alvarez, V.E.; Huber, B.R.; McKee, A.C. Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA 2017, 318, 360–370. [Google Scholar] [CrossRef]
- Goldstein, L.E.; Fisher, A.M.; Tagge, C.A.; Zhang, X.L.; Velisek, L.; Sullivan, J.A.; McKee, A.C. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 2012, 4, 134ra60. [Google Scholar]
- Cernak, I.; Noble-Haeusslein, L.J. Traumatic brain injury: An overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 2010, 30, 255–266. [Google Scholar] [CrossRef]
- de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef]
- Mouzon, B.C.; Bachmeier, C.; Ojo, J.O.; Atyeo, C.; Crynen, G.; Mullan, M. Chronic neuropathological and behavioral changes in a repetitive mild TBI model. Ann. Neurol. 2018, 84, 245–257. [Google Scholar]
- Soltani, Z.; Nazari, M.; Babaei, M.; Shakeri, H.; Jalali, S.; Hajali, V.; Keshavarzi, Z. Endocrine dysfunction post-traumatic brain injury: Challenges and therapeutic approaches. Acta Neurol. Belg. 2025, 125, 649–660. [Google Scholar] [CrossRef]
- Blocher, N. Post-Traumatic Hypopituitarism. Curr. Phys. Med. Rehabil. Rep. 2024, 12, 405–416. [Google Scholar] [CrossRef]
- Tarvonen-Schröder, S.; Tenovuo, O.; Kaljonen, A.; Laimi, K. Comparing disability between traumatic brain injury and spinal cord injury using the 12-item WHODAS 2.0 and the WHO minimal generic data set covering functioning and health. Clin. Rehabil. 2018, 32, 1676–1683. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Liou, T.H.; Chang, K.H.; Chi, W.C.; Escorpizo, R.; Yen, C.F.; Tsai, J.T. Functioning and disability analysis of patients with traumatic brain injury and spinal cord injury by using the world health organization disability assessment schedule 2.0. Int. J. Environ. Res. Public Health 2015, 12, 4116–4127. [Google Scholar] [CrossRef]
- Arun, P.; Wilder, D.M.; Eken, O.; Urioste, R.; Batuure, A.; Sajja, S.; Long, J.B. Long-term effects of blast exposure: A functional study in rats using an advanced blast simulator. J. Neurotrauma 2020, 37, 647–655. [Google Scholar] [CrossRef]
- Marmarou, C.R.; Prieto, R.; Taya, K.; Young, H.F.; Marmarou, A. Marmarou weight drop injury model. In Animal Models of Acute Neurological Injuries; Humana Press: Totowa, NJ, USA, 2009; pp. 393–407. [Google Scholar]
- Arun, P.; Krishnan, J.K.; Govindarajulu, M.; Wilder, D.M.; Long, J.B. Repeated mild concussive events heighten the vulnerability of brain to blast exposure. J. Neurotrauma 2024, 41, 1000–1004. [Google Scholar] [CrossRef]
- Bryden, D.W.; Tilghman, J.I.; Hinds, S.R. Blast-related traumatic brain injury: Current concepts and research considerations. J. Exp. Neurosci. 2019, 13, 1179069519872213. [Google Scholar] [CrossRef]
- McKee, A.C.; Alosco, M.L.; Huber, B.R. Repetitive head impacts and chronic traumatic encephalopathy. Neurosurg. Clin. N. Am. 2016, 27, 529–535. [Google Scholar] [CrossRef]
- Ledreux, A.; Pryhoda, M.K.; Gorgens, K.; Shelburne, K.; Gilmore, A.; Linseman, D.A.; Granholm, A.C. Assessment of long-term effects of sports-related concussions: Biological mechanisms and exosomal biomarkers. Front. Neurosci. 2020, 14, 761. [Google Scholar] [CrossRef]
- Dieter, J.N.; Engel, S.D. Traumatic brain injury and posttraumatic stress disorder: Comorbid consequences of war. Neurosci. Insights 2019, 14, 1179069519892933. [Google Scholar] [CrossRef]
- Hellewell, S.C.; Granger, D.A.; Cernak, I. Blast-induced neurotrauma results in spatially distinct gray matter alteration alongside hormonal alteration: A preliminary investigation. Int. J. Mol. Sci. 2023, 24, 6797. [Google Scholar] [CrossRef]
- Wang, J.M.; Chen, J. Damage of vascular endothelial barrier induced by explosive blast and its clinical significance. Chin. J. Traumatol. 2016, 19, 125–128. [Google Scholar] [CrossRef]
- Perez-Garcia, G.; Sosa, M.A.G.; De Gasperi, R.; Tschiffely, A.E.; McCarron, R.M.; Hof, P.R.; Elder, G.A. Blast-induced “PTSD”: Evidence from an animal model. Neuropharmacology 2019, 145, 220–229. [Google Scholar] [CrossRef]
- Perez Garcia, G.; Perez, G.M.; De Gasperi, R.; Gama Sosa, M.A.; Otero-Pagan, A.; Pryor, D.; Elder, G.A. Progressive cognitive and post-traumatic stress disorder-related behavioral traits in rats exposed to repetitive low-level blast. J. Neurotrauma 2021, 38, 2030–2045. [Google Scholar] [CrossRef]
- Aravind, A.; Ravula, A.R.; Chandra, N.; Pfister, B.J. Behavioral deficits in animal models of blast traumatic brain injury. Front. Neurol. 2020, 11, 990. [Google Scholar] [CrossRef]
- Tapp, Z.M.; Godbout, J.P.; Kokiko-Cochran, O.N. A tilted axis: Maladaptive inflammation and HPA axis dysfunction contribute to consequences of TBI. Front. Neurol. 2019, 10, 345. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.L.; Richardson, M.R.; Bauman, B.M.; Hernandez, I.M.; Saperstein, S.; Handa, R.J.; Wu, T.J. Differential responses of the HPA axis to mild blast traumatic brain injury in male and female mice. Endocrinology 2018, 159, 2363–2375. [Google Scholar] [CrossRef] [PubMed]
- Fesharaki-Zadeh, A.; Datta, D. An overview of preclinical models of traumatic brain injury (TBI): Relevance to pathophysiological mechanisms. Front. Cell. Neurosci. 2024, 18, 1371213. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol. 2016, 6, 603. [Google Scholar] [CrossRef] [PubMed]
- Lowrance, S.A.; Ionadi, A.; McKay, E.; Douglas, X.; Johnson, J.D. Sympathetic nervous system contributes to enhanced corticosterone levels following chronic stress. Psychoneuroendocrinology 2016, 68, 163–170. [Google Scholar] [CrossRef]
- Gjerstad, J.K.; Lightman, S.L.; Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 2018, 21, 403–416. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin. J. Traumatol. 2018, 21, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Elder, G.A.; Gama Sosa, M.A.; De Gasperi, R.; Stone, J.R.; Dickstein, D.L.; Haghighi, F.; Ahlers, S.T. Vascular and inflammatory factors in the pathophysiology of blast-induced brain injury. Front. Neurol. 2015, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Howlett, J.R.; Nelson, L.D.; Stein, M.B. Mental health consequences of traumatic brain injury. Biol. Psychiatry 2022, 91, 413–420. [Google Scholar] [CrossRef]
- Stern, R.A.; Riley, D.O.; Daneshvar, D.H.; Nowinski, C.J.; Cantu, R.C.; McKee, A.C. Long-term consequences of repetitive brain trauma: Chronic traumatic encephalopathy. PM&R 2011, 3, S460–S467. [Google Scholar]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr. Rev. 2020, 41, bnaa002. [Google Scholar] [CrossRef]
- Veldhuis, J.D. Pulsatile hormone secretion: Mechanisms, significance and evaluation. In Ultradian Rhythms from Molecules to Mind: A New Vision of Life; Springer: Dordrecht, The Netherlands, 2008; pp. 229–248. [Google Scholar]
- Talbot, J.A.; Kane, J.W.; White, A. Analytical and clinical aspects of adrenocorticotrophin determination. Ann. Clin. Biochem. 2003, 40, 453–471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samdavid Thanapaul, R.J.R.; Krishnan, J.K.S.; Govindarajulu, M.Y.; Pundkar, C.Y.; Phuyal, G.; Long, J.B.; Arun, P. Differential Neuroendocrine Responses and Dysregulation of the Hypothalamic–Pituitary–Adrenal Axis Following Repeated Mild Concussive Impacts and Blast Exposures in a Rat Model. Brain Sci. 2025, 15, 847. https://doi.org/10.3390/brainsci15080847
Samdavid Thanapaul RJR, Krishnan JKS, Govindarajulu MY, Pundkar CY, Phuyal G, Long JB, Arun P. Differential Neuroendocrine Responses and Dysregulation of the Hypothalamic–Pituitary–Adrenal Axis Following Repeated Mild Concussive Impacts and Blast Exposures in a Rat Model. Brain Sciences. 2025; 15(8):847. https://doi.org/10.3390/brainsci15080847
Chicago/Turabian StyleSamdavid Thanapaul, Rex Jeya Rajkumar, Jishnu K. S. Krishnan, Manoj Y. Govindarajulu, Chetan Y. Pundkar, Gaurav Phuyal, Joseph B. Long, and Peethambaran Arun. 2025. "Differential Neuroendocrine Responses and Dysregulation of the Hypothalamic–Pituitary–Adrenal Axis Following Repeated Mild Concussive Impacts and Blast Exposures in a Rat Model" Brain Sciences 15, no. 8: 847. https://doi.org/10.3390/brainsci15080847
APA StyleSamdavid Thanapaul, R. J. R., Krishnan, J. K. S., Govindarajulu, M. Y., Pundkar, C. Y., Phuyal, G., Long, J. B., & Arun, P. (2025). Differential Neuroendocrine Responses and Dysregulation of the Hypothalamic–Pituitary–Adrenal Axis Following Repeated Mild Concussive Impacts and Blast Exposures in a Rat Model. Brain Sciences, 15(8), 847. https://doi.org/10.3390/brainsci15080847