Treadmill Exercise Impact on Brain Electrophysiological and Glial Immunoreactivity in Cuprizone-Treated Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cuprizone Administration
2.3. Treadmill Exercise
2.4. CSD Recording
2.5. Immunohistochemical Analysis of Glial Cells
2.6. Statistics
3. Results
3.1. Body Weight
3.2. CSD Features
3.3. Immunohistochemistry and Densitometric Analysis
4. Discussion
5. Limitations of Our Study
5.1. Animal’s Sex
5.2. Animal Species
5.3. Routes of Cuprizone Administration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arneth, B. Genes, Gene Loci, and Their Impacts on the Immune System in the Development of Multiple Sclerosis: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 12906. [Google Scholar] [CrossRef] [PubMed]
- Moloney, E.; Mashayekhi, A.; Sharma, S.; Kontogiannis, V.; Ansaripour, A.; Brownlee, W.; Paling, D.; Javanbakht, M. Comparative efficacy and tolerability of rituximab vs. other monoclonal antibodies in the treatment of relapsing multiple sclerosis: A systematic review and network meta-analysis of randomized trials. Front. Neurol. 2024, 15, 1479476. [Google Scholar] [CrossRef]
- Guo, L.Y.; Lozinski, B.; Yong, V.W. Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. J. Neurosci. Res. 2020, 98, 509–523. [Google Scholar] [CrossRef]
- Osorio-Querejeta, I.; Sáenz-Cuesta, M.; Munõz-Culla, M.; Otaegui, D. Models for Studying Myelination, Demyelination and Remyelination. Neuromol. Med. 2017, 19, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Fasczewski, K.S.; Gill, D.L.; Rothberger, S.M. Physical activity motivation and benefits in people with multiple sclerosis. Disabil. Rehabil. 2017, 40, 1517–1523. [Google Scholar] [CrossRef]
- Denic, A.; Johnson, A.J.; Bieber, A.J.; Warrington, A.E.; Rodriguez, M.; Pirko, I. The relevance of animal models in multiple sclerosis research. Pathophysiology 2011, 18, 21–29. [Google Scholar] [CrossRef]
- Torkildsen, Ø.; Brunborg, L.A.; Myhr, K.-M.; Bø, L. The cuprizone model for demyelination. Acta Neurol. Scand. 2013, 117, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Leo, H.; Kipp, M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int. J. Mol. Sci. 2022, 23, 16093. [Google Scholar] [CrossRef]
- Skripuletz, T.; Gudi, V.; Hackstette, D.; Stangel, M. De- and remyelination in the CNS white and grey matter induced by cuprizone: The old, the new, and the unexpected. Histol. Histopathol. 2011, 26, 1585–1597. [Google Scholar] [CrossRef]
- Merkler, D.; Klinker, F.; Jürgens, T.; Glaser, R.; Paulus, W.; Brinkmann, B.G.; Sereda, M.; Guedes, R.C.A.; Stadelmann-Nessler, C.; Brück, W.; et al. Propagation of spreading depression inversely correlates with cortical myelin content. Ann. Neurol. 2009, 66, 355–365. [Google Scholar] [CrossRef]
- Matsushima, G.K.; Morell, P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 2001, 11, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Zhen, W.; Liu, A.; Lu, J.; Zhang, W.; Tattersall, D.; Wang, J. An Alternative Cuprizone-Induced Demyelination and Remyelination Mouse Model. ASN Neuro 2017, 9, 1759091417725174. [Google Scholar] [CrossRef]
- Barnett, M.H.; Prineas, J.W. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Ann. Neurol. 2004, 55, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, J.; Jurema Santos, G.C.; da Silva, H.T.; Loizon, E.; Souza, V.O.N.; Vidal, H.; Guedes, R.C.A.; Costa-Silva, J.H.; Aragão, R.S.; Pirola, L.; et al. Effects of maternal low-protein diet and spontaneous physical activity on the transcription of neurotrophic factors in the placenta and the brains of mothers and offspring rats. J. Devel. Orig. Health Dis. 2020, 12, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Ozmerdivenli, R.; Bulut, S.; Bayar, H.; Karacabey, K.; Ciloglu, F.; Peker, I.; Tan, U. Effects of Exercise on Visual Evoked Potentials. Int. J. Neurosci. 2005, 115, 1043–1050. [Google Scholar] [CrossRef]
- Won, J.; Alfini, A.J.; Weiss, L.R.; Michelson, C.S.; Callow, D.D.; Ranadive, S.M.; Gentili, R.J.; Smith, J.C. Semantic Memory Activation After Acute Exercise in Healthy Older Adults. J. Internat. Neuropsychol. Soc. 2019, 25, 557–568. [Google Scholar] [CrossRef]
- Latimer, C.S.; Searcy, J.L.; Bridges, M.T.; Brewer, L.D.; Popovic, J.; Blalock, E.M.; Landfield, P.W.; Thibault, O.; Porter, N.M. Reversal of Glial and Neurovascular Markers of Unhealthy Brain Aging by Exercise in Middle-Aged Female Mice. PLoS ONE 2011, 6, e26812. [Google Scholar] [CrossRef]
- Brown, J.; Cooper-Kuhn, C.M.; Kempermann, G.; Van, P.H.; Winkler, J.; Gage, F.H.; Kuhn, H.G. An environment that is enriched by physical activity stimulates hippocampal but not olfactory bulb neurogenesis. Europ. J. Neurosci. 2003, 17, 2042–2046. [Google Scholar] [CrossRef]
- Nguemeni, C.; McDonald, M.W.; Jeffers, M.S.; Livingston-Thomas, J.; Lagace, D.; Corbett, D. Short- and Long-term Exposure to Low and High Dose Running Produce Differential Effects on Hippocampal Neurogenesis. Neuroscience 2018, 369, 202–211. [Google Scholar] [CrossRef]
- Van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431. [Google Scholar] [CrossRef]
- Black, J.E.; Isaacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Greenough, W.T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis in the cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. USA 1990, 87, 5568–5572. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Black, J.E.; Greenough, W.T. Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 1992, 12, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Swain, R.A.; Harris, A.B.; Wiener, E.C.; Dutka, M.V.; Morris, H.D.; Theien, B.E.; Konda, S.; Engberg, K.; Lauterbur, P.C.; Greenough, W.T. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 2003, 117, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.B.; Soares, G.S.F.; Vitor, S.M.; Andrade-da-Costa, B.L.S.; Castellano, B.; Guedes, R.C.A. Spreading depression features and Iba1 immunoreactivity in the cerebral cortex of developing rats submitted to treadmill exercise after treatment with monosodium glutamate. Int. J. Devl. Neurosci. 2014, 33, 98–105. [Google Scholar] [CrossRef]
- Leão, A.A.P. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 1944, 7, 359–390. [Google Scholar] [CrossRef]
- Lauritzen, M.; Strong, A.J. Spreading depression of Leão’ and its emerging relevance to acute brain injury in humans. J. Cereb. Blood Flow Metab. 2017, 37, 1553–1570. [Google Scholar] [CrossRef]
- Guedes, R.C.A.; Araújo, M.G.R.; Verçosa, T.C.; Bion, F.M.; Sá, A.L.; Pereira, A., Jr.; Abadie-Guedes, R. Evidence of an inverse correlation between serotonergic activity and spreading depression propagation in the rat cortex. Brain Res. 2017, 1672, 29–34. [Google Scholar] [CrossRef]
- Morais, A.; Liu, T.-T.; Qin, T.; Sadhegian, H.; Ay, I.; Yagmur, D.; Mendes da Silva, R.; Chung, D.; Simon, B.; Guedes, R.C.A.; et al. Vagus nerve stimulation inhibits cortical spreading depression exclusively via central mechanisms. PAIN 2020, 161, 1661–1669. [Google Scholar] [CrossRef]
- Eldar, R.; Marincek, C. Physical activity for elderly persons with neurological impairment: A review. Scand. J. Rehabil. Med. 2000, 32, 99–103. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Smith, A.D.; Zigmond, M.J. Can the brain be protected through exercise? Lessons from an Animal Model of Parkinsonism. Exp. Neurol. 2003, 184, 31–39. [Google Scholar] [CrossRef]
- Zanotto, T.; Galperin, I.; Kumar, D.P.; Mirelman, A.; Yehezkyahu, S.; Regev, K.; Karni, A.; Schmitz-Hübsch, T.; Paul, F.; Lynch, S.G.; et al. Effects of a 6-Week Treadmill Training With and Without Virtual Reality on Frailty in People With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2025, 106, 187–194. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Rubio-Zarapuz, A.; Belinchón-deMiguel, P.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024, 13, 1940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, P.; Shen, X.; Tian, S.; Wu, Y.; Zhu, Y.; Jia, J.; Wu, J.; Hu, H. Early Exercise Protects the Blood-Brain Barrier from Ischemic Brain Injury via the Regulation of MMP-9 and Occludin in Rats. Int. J. Mol. Sci. 2013, 14, 11096–11112. [Google Scholar] [CrossRef] [PubMed]
- Ochi, H. Sports and Physical Exercise in Multiple Sclerosis. Brain Nerve 2019, 71, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.C.A.; Abadie-Guedes, R. Brain Aging and Electrophysiological Signaling: Revisiting the Spreading Depression Model. Front. Aging Neurosci. 2019, 11, 136. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Mendes-da-Silva, R.F.; Cunha-Lopes, A.A.; Bandim-da-Silva, M.E.; Cavalcanti, G.A.; Rodrigues, A.R.O.; Andrade-da-Costa, B.L.S.; Guedes, R.C.A. Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: A cortical spreading depression and malondialdehyde analysis. Neuropharmacology 2014, 86, 155–160. [Google Scholar] [CrossRef]
- Francisco, E.S.; Mendes-da-Silva, R.F.; Lima-de-Castro, C.B.; Soares, G.S.F.; Guedes, R.C.A. Taurine/pilocarpine interaction in the malnourished rat brain: A behavioral, electrophysiological and immunohistochemical analysis. Front. Neurosci. 2019, 13, 981. [Google Scholar] [CrossRef]
- Smith, P. Animal models of multiple sclerosis. Curr. Protoc. 2021, 1, e185. [Google Scholar] [CrossRef]
- Patro, N.; Naik, A.A.; Patro, I.K. Developmental Changes in Oligodendrocyte Genesis, Myelination, and Associated Behavioral Dysfunction in a Rat Model of Intra-generational Protein Malnutrition. Molecular Neurobiol. 2019, 56, 595–610. [Google Scholar] [CrossRef]
- Rocha-de-Melo, A.P.; Cavalcanti, J.B.; Barros, A.S.; Guedes, R.C.A. Manipulation of rat litter size during suckling influences cortical spreading depression after weaning and at adulthood. Nutr. Neurosci. 2006, 9, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Carson, M.J. Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis. Glia 2002, 40, 218–231. [Google Scholar] [CrossRef]
- Pereira-Iglesias, M.; Maldonado-Teixido, J.; Melero, A.; Piriz, J.; Galea, E.; Ransohoff, R.M.; Sierra, A. Microglia as hunters or gatherers of brain synapses. Nat. Neurosci. 2024, 28, 15–23. [Google Scholar] [CrossRef]
- Largo, C.; Ibarz, J.M.; Herreras, O. Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J. Neurophysiol. 1997, 78, 295–307. [Google Scholar] [CrossRef]
- Tagge, I.; O’Connor, A.; Chaudhary, P.; Pollaro, J.; Berlow, Y.; Chalupsky, M.; Bourdette, D.; Woltjer, R.; Johnson, M.; Rooney, W. SpatioTemporal Patterns of Demyelination and Remyelination in the Cuprizone Mouse Model. PLoS ONE 2016, 11, e0152480. [Google Scholar] [CrossRef]
- Tatsumi, K.; Okuda, H.; Morita-Takemura, S.; Tanaka, T.; Isonishi, A.; Shinjo, T.; Terada, Y.; Wanaka, A. Voluntary Exercise Induces Astrocytic Structural Plasticity in the Globus Pallidus. Front. Cell Neurosci. 2016, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Hugues, N.; Pellegrino, C.; Rivera, C.; Berton, E.; Pin-Barre, C.; Laurin, J. Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke? Int. J. Mol. Sci. 2021, 22, 3003. [Google Scholar] [CrossRef] [PubMed]
- Cruise, K.E.; Bucks, R.S.; Loftus, A.M.; Newton, R.U.; Pegoraro, R.; Thomas, M.G. Exercise and Parkinson’s: Benefits for cognition and quality of life. Acta Neurol. Scand. 2011, 123, 13–19. [Google Scholar] [CrossRef]
- Heyn, P.; Abreu, B.C.; Ottenbacher, K.J. The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Arch. Phys. Med. Rehabil. 2004, 85, 1694–1704. [Google Scholar] [CrossRef]
- Krityakiarana, W.; Espinosa-Jeffrey, A.; Ghiani, C.A.; Zhao, P.M.; Topaldjikian, N.; Gomez-Pinilla, F.; Yamaguchi, M.; Kotchabhakdi, N.; de Vellis, J. Voluntary exercise increases oligodendrogenesis in spinal cord. Int. J. Neurosci. 2010, 120, 280–290. [Google Scholar] [CrossRef]
- Mandolesi, G.; Bullitta, S.; Fresegna, D.; De Vito, F.; Rizzo, F.R.; Musella, A.; Guadalupi, L.; Vanni, V.; Bassi, M.S.; Buttari, F.; et al. Voluntary running wheel attenuates motor deterioration and brain damage in cuprizone-induced demyelination. Neurobiol Dis. 2019, 129, 102–117. [Google Scholar] [CrossRef]
- Gentile, A.; Musella, A.; De Vito, F.; Rizzo, F.R.; Fresegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Bassi, M.S.; Buttari, F.; et al. Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis. Front. Immunol. 2019, 10, 2197. [Google Scholar] [CrossRef]
- Accioly, N.E.; Guedes, R.C.A. Topical cortical application of ovarian hormones and modulation of brain electrical activity: Analysis of spreading depression in well-nourished and malnourished female rats. Nutr. Neurosci. 2020, 23, 887–895. [Google Scholar] [CrossRef]
- Xavier, S.; Younesi, S.; Sominsky, L.; Spencer, S.J. Inhibiting microglia exacerbates the early effects of cuprizone in males in a rat model of multiple sclerosis, with no effect in females. Front. Neurol. 2023, 14, 989132. [Google Scholar] [CrossRef]
- Landzhov, B.; Gaydarski, L.; Stanchev, S.; Kostadinova, I.; Iliev, A.; Kotov, G.; Rashev, P.; Mourdjeva, M.; Pupaki, D.; Stamenov, N. A Morphological and Behavioral Study of Demyelination and Remyelination in the Cuprizone Model: Insights into APLNR and NG2+ Cell Dynamics. Int. J. Mol. Sci. 2024, 25, 13011. [Google Scholar] [CrossRef]
Groups (n) | Exercise Condition | Dietary Treatment |
---|---|---|
1 (9) | Exercised | Con |
2 (10) | Sedentary | Con |
3 (11) | Exercised | Cup-5w |
4 (10) | Sedentary | Cup-5w |
5 (10) | Exercised | Cup-5w/Con-6w |
6 (8) | Sedentary | Cup-5w/Con-6w |
Groups | Weight (in g) at 30 Days (n) | Weight (in g) at 60 Days (n) |
---|---|---|
Control, sedentary | 86.4 ± 14.3 (10) | 240.2 ± 13.1 (9) |
Control, exercised | 87.4 ± 12.3 (9) | 201.3 ± 19.5 (9) # |
Cuprizone-treated, sedentary | 56.8 ± 16.8 (10) * | 181.3 ± 16.8 (9) * |
Cuprizone-treated, exercised | 56.1 ± 10.7 (11) * | 151.7 ± 18.4 (9) *# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima-de-Castro, C.B.; Accioly, N.E.; Soares, G.d.S.F.; dos-Santos, C.N.; Prieto, S.C.G.; Guedes, R.C.A. Treadmill Exercise Impact on Brain Electrophysiological and Glial Immunoreactivity in Cuprizone-Treated Rats. Brain Sci. 2025, 15, 686. https://doi.org/10.3390/brainsci15070686
Lima-de-Castro CB, Accioly NE, Soares GdSF, dos-Santos CN, Prieto SCG, Guedes RCA. Treadmill Exercise Impact on Brain Electrophysiological and Glial Immunoreactivity in Cuprizone-Treated Rats. Brain Sciences. 2025; 15(7):686. https://doi.org/10.3390/brainsci15070686
Chicago/Turabian StyleLima-de-Castro, Cássia Borges, Noranege Epifânio Accioly, Geórgia de Sousa Ferreira Soares, Catarina Nicácio dos-Santos, Sonia Carolina Guerrero Prieto, and Rubem Carlos Araujo Guedes. 2025. "Treadmill Exercise Impact on Brain Electrophysiological and Glial Immunoreactivity in Cuprizone-Treated Rats" Brain Sciences 15, no. 7: 686. https://doi.org/10.3390/brainsci15070686
APA StyleLima-de-Castro, C. B., Accioly, N. E., Soares, G. d. S. F., dos-Santos, C. N., Prieto, S. C. G., & Guedes, R. C. A. (2025). Treadmill Exercise Impact on Brain Electrophysiological and Glial Immunoreactivity in Cuprizone-Treated Rats. Brain Sciences, 15(7), 686. https://doi.org/10.3390/brainsci15070686