Sleep in Juvenile Idiopathic Arthritis: An Exploratory Investigation of Heart Rate Variability
Abstract
:1. Introduction
2. Methods
2.1. Procedure and Participants
2.2. Recording and Sleep–Wake Conventional Analysis
2.3. Heart Rate Variability (HRV) Analysis During Sleep
2.4. Time Domain Analysis
2.5. Frequency Domain Analysis
2.6. Statistical Analysis
3. Results
3.1. Sleep Macroarchitecture
3.2. HRV Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.M.; et al. International League of Associations for Rheumatology. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar] [PubMed]
- El-Sayed, Z.A.; Mostafa, G.A.; Aly, G.S.; El-Shahed, G.S.; El-Aziz, M.M.; El-Emam, S.M. Cardiovascular autonomic function assessed by autonomic function tests and serum autonomic neuropeptides in Egyptian children and adolescents with rheumatic diseases. Rheumatology 2009, 48, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Valera, I.C.; Arias de la Rosa, I.; Roldán-Molina, R.; Ábalos-Aguilera, M.D.C.; Torres-Granados, C.; Patiño-Trives, A.; Luque-Tevar, M.; Ibáñez-Costa, A.; Guzmán-Ruiz, R.; Malagón, M.D.M.; et al. Subclinical cardiovascular risk signs in adults with juvenile idiopathic arthritis in sustained remission. Pediatr. Rheumatol. Online J. 2020, 18, 59. [Google Scholar] [CrossRef]
- Bonnet MH, Arand DL Heart rate variability: Sleep stage, time of the night, and arousal influences. Electroencephalogr. Clin. Neurophysiol. 1996, 102, 390–396.
- Berntson, G.G.; Bigger, J.T., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Alves, S.F.L.; Santos, T.A.B.P.S.; Lucena da Silva, M.L.; Cunha, K.C. Heart rate variability, sleep quality and physical activity in medical students. Sleep Epidemiol. 2025, 5, 100105. [Google Scholar] [CrossRef]
- da Estrela, C.; McGrath, J.; Booij, L.; Gouin, J.P. Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress. Ann. Behav. Med. 2021, 55, 155–164. [Google Scholar] [CrossRef]
- Vanoli, E.; Adamson, P.B.; Ba-Lin Pinna, G.D.; Lazzara, R.; Orr, W.C. Heart rate variability during specific sleep stages. A comparison of healthy subjects with patients after myocardial infarction. Circulation 1995, 91, 1918–1922. [Google Scholar] [CrossRef]
- Dekker, J.M.; Crow, R.S.; Folsom, A.R.; Hannan, P.J.; Liao, D.; Swenne, C.A.; Schouten, E.G. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The ARIC Study. Atherosclerosis Risk In Communities. Circulation 2000, 102, 1239–1244. [Google Scholar] [CrossRef]
- Burr, R.L. Interpretation of normalized spectral heart rate variability indices in sleep research: A critical review. Sleep 2007, 30, 913–919. [Google Scholar] [CrossRef]
- Boudreau, P.; Yeh, W.H.; Dumont, G.A.; Boivin, D.B. Circadian variation of heart rate variability across sleep stages. Sleep 2013, 36, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.; Casagrande, M. Heart Rate Variability and Pain: A Systematic Review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Salo, T.M.; Jula, A.M.; Piha, J.S.; Kantola, I.M.; Pelttari, L.; Rauhala, E.; Metsala, T.H.; Jalonen, J.O.; Voipio-Pulkki, L.M.; Viikari, J.S. Comparison of autonomic withdrawal in men with obstructive sleep apnea syndrome, systemic hypertension, and neither condition. Am. J. Cardiol. 2000, 85, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Mietus, J.E.; Peng, C.K.; Goldberger, A.L.; Crofford, L.J.; Chervin, R.D. Impaired Sleep Quality in Fibromyalgia: Detection and Quantification with ECG-based Cardiopulmonary Coupling Spectrograms. Sleep Med. 2010, 11, 497–498. [Google Scholar] [CrossRef]
- Del Rincón, I.; Williams, K.; Stern, M.P.; Freeman, G.L.; O’Leary, D.H.; Escalante, A. Association between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and healthy subjects. Arthritis Rheumatol. 2003, 48, 1833–1840. [Google Scholar] [CrossRef]
- Badke, C.M.; Marsillio, L.E.; Weese-Mayer, D.E.; Sanchez-Pinto, L.N. Autonomic Nervous System Dysfunction in Pediatric Sepsis. Front. Pediatr. 2018, 6, 280. [Google Scholar] [CrossRef]
- Koca, B.; Sahin, S.; Adrovic, A.; Barut, K.; Kasapcopur, O. Cardiac involvement in juvenile idiopathic arthritis. Rheumatol. Int. 2017, 37, 137–142. [Google Scholar] [CrossRef]
- Passarelli, C.M.; Roizenblatt, S.; Len, C.A.; Moreira, G.A.; Lopes, M.C.; Guilleminault, C.; Tufik, S.; Hilario, M.O. A case-control sleep study in children with polyarticular juvenile rheumatoid arthritis. J. Rheumatol. 2006, 33, 796–802. [Google Scholar]
- Lopes, M.C.; Guilleminault, C.; Rosa, A.; Passarelli, C.; Roizenblatt, S.; Tufik, S. Delta sleep instability in children with chronic arthritis. Braz. J. Med. Biol. Res. 2008, 41, 938–943. [Google Scholar] [CrossRef]
- Hochberg, M.C.; Chang, R.W.; Dwosh, I.; Lindsey, S.; Pincus, T.; Wolfe, F. The American College of Rheumatology 1991 revised criteria for the classification of global functional status in rheumatoid arthritis. Arthritis Rheumatol. 1992, 35, 498–502. [Google Scholar] [CrossRef]
- Rechtschaffen, A.; Kales, A. Manual of Standardized Terminology: Techniques and Scoring System for Sleep Stages of Human Subjects; UCLA Brain Information Service/Brain Research Institute: Los Angeles, CA, USA, 1968. [Google Scholar]
- American Sleep Disorders Association and Sleep Research Society. ASDA Report: EEG Arousals: Scoring Rules and Examples. Sleep 1992, 15, 173–184. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability: Standards of measurement physiological interpretation clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Lopes, M.C.; Spruyt, K.; Azevedo-Soster, L.; Rosa, A.; Guilleminault, C. Reduction in Parasympathetic Tone During Sleep in Children With Habitual Snoring. Front. Neurosci. 2019, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Jelenova, D.; Ociskova, M.; Prasko, J.; Hunkova, M.; Karaskova, E.; Kolarova, J.; Vydra, D.; Mihal, V. Heart rate variability in children with inflammatory bowel diseases. Neuroendocrinol. Lett. 2015, 36, 72–79. [Google Scholar]
- Kimura, Y.; Walco, G.A.; Sugarman, E.; Conte, P.M.; Schanberg, L.E. Treatment of pain in juvenile idiopathic arthritis: A survey of pediatric rheumatologists. Arthritis Rheumatol. 2006, 55, 81–85. [Google Scholar] [CrossRef]
- Carotti, M.; Salaffi, F.; Mangiacotti, M.; Cerioni, A.; Giuseppetti, G.M.; Grassi, W. Atherosclerosis in rheumatoid arthritis: The role of high-resolution B mode ultrasound in the measurement of the arterial intima-media thickness. Reumatismo 2007, 59, 38–49. [Google Scholar]
- Martín-Montero, A.; Gutiérrez-Tobal, G.C.; Gozal, D.; Barroso-García, V.; Álvarez, D.; Del Campo, F.; Kheirandish-Gozal, L.; Hornero, R. Bispectral Analysis of Heart Rate Variability to Characterize and Help Diagnose Pediatric Sleep Apnea. Entropy 2021, 23, 1016. [Google Scholar] [CrossRef]
- Dissanayake, H.U.; Bin, Y.S.; Ucak, S.; de Chazal, P.; Sutherland, K.; Cistulli, P.A. Association between autonomic function and obstructive sleep apnea: A systematic review. Sleep Med. Rev. 2021, 57, 101470. [Google Scholar] [CrossRef]
- Fournié, C.; Chouchou, F.; Dalleau, G.; Caderby, T.; Cabrera, Q.; Verkindt, C. Heart rate variability biofeedback in chronic disease management: A systematic review. Complement. Ther. Med. 2021, 60, 102750. [Google Scholar] [CrossRef]
- Bigger, J.T., Jr.; Albrecht, P.; Steinman, R.C.; Rolnitzky, L.M.; Fleiss, J.L.; Cohen, R.J. Comparison of time- and frequency domain-based measures of cardiac parasympathetic activity in Holter recordings after myocardial infarction. Am. J. Cardiol. 1989, 64, 536–538. [Google Scholar] [CrossRef]
- El-Hamad, F.; Immanuel, S.; Liu, X.; Pamula, Y.; Kontos, A.; Martin, J.; Kenney, D.; Kohler, M.; Porta, A.; Baumert, M. Altered nocturnal cardiovascular control in children with sleep disordered breathing. Sleep 2017, 40, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo ClinProc. 1993, 68, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Dampney, R.A.L. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 1994, 74, 323–364. [Google Scholar] [CrossRef]
- McCarley, R.W.; Massaquoi, S.G. Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J. Sleep Res. 1992, 1, 132–137. [Google Scholar] [CrossRef]
- Gallopin, T.; Fort, P.; Eggermann, E.; Cauli, B.; Luppi, P.H.; Rossier, J.; Audinat, E.; Muhlethaler, M.; Serafin, M. Identification of sleep-promoting neurons in vitro. Nature 2000, 404, 992–995. [Google Scholar] [CrossRef] [PubMed]
- McGinty, D.; Szymusiak, R. The sleep-wake switch: A neuronal alarm clock. Nat. Med. 2000, 6, 510–511. [Google Scholar] [CrossRef]
- Medic, G.; Wille, M.; Hemels, M.E. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 2017, 9, 151–161. [Google Scholar] [CrossRef]
- Chiaro, G.; Calandra-Buonaura, G.; Cecere, A.; Mignani, F.; Sambati, L.; Loddo, G.; Cortelli, P.; Provini, F. REM sleep behavior disorder, autonomic dysfunction and synuclein-related neurodegeneration: Where do we stand? Clin. Auton. Res. 2017, 28, 519–533. [Google Scholar] [CrossRef]
- Knight, E.L.; Giuliano, R.J.; Shank, S.W.; Clarke, M.M.; Almeida, D.M. Parasympathetic and sympathetic nervous systems interactively predict change in cognitive functioning in midlife adults. Psychophysiology 2020, 57, e13622. [Google Scholar] [CrossRef]
- Abinum, M.; Lane, J.P.; Wood, M.; Friswell, M.; Flood, T.J.; Foster, H.E. Infection-Related Death among Persons with Refractory Juvenile Idiopathic Arthritis. Emerg. Infect. Dis. 2016, 22, 1720–1727. [Google Scholar] [CrossRef]
- von Känel, R.; Nelesen, R.A.; Mills, P.J.; Ziegler, M.G.; Dimsdale, J.E. Relationship between heart rate variability, interleukin-6, and soluble tissue factor in healthy subjects. Brain Behav. Immun. 2008, 22, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Castilho, F.M.; Ribeiro, A.L.P.; Silva, J.L.P.; Sousa, M.R. Heart rate variability as predictor of mortality in sepsis: A prospective cohort study. PLoS ONE 2017, 12, e0180060. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, L.; Ma, D.; Wu, P.; Tang, Y.; Cui, X.; Xu, Z. Autonomic nervous function and low-grade inflammation in children with sleep-disordered breathing. Pediatr. Res. 2021, 91, 1834–1840. [Google Scholar] [CrossRef]
- Franco, O.S.; Júnior, A.O.S.; Signori, L.U.; Prietsch, S.O.M.; Zhang, L. Cardiac autonomic modulation assessed by heart rate variability in children with asthma. Pediatr. Pulmonol. 2020, 55, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Behera, A.K.; Sinha, R.; Parganiha, A.; Pande, B.; Sharma, R.; Pati, A.K. Circadian rhythmicity of heart rate variability and its impact on cardiac autonomic modulation in asthma. Chronobiol. Int. 2021, 38, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Lutfi, M.F. Autonomic modulations in patients with bronchial asthma based on short-term heart rate variability. Lung India 2012, 29, 254–258. [Google Scholar] [CrossRef]
- Usui, H.; Nishida, Y. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task. PLoS ONE 2017, 12, e0182611. [Google Scholar] [CrossRef]
- Ziegler, D.; Strom, A.; Strassburger, K.; Nowotny, B.; Zahiragic, L.; Nowotny, P.J.; Carstensen-Kirberg, M.; Herder, C.; Szendroedi, J.; Roden, M. Differential Patterns and Determinants of Cardiac Autonomic Nerve Dysfunction during Endotoxemia and Oral Fat Load in Humans. PLoS ONE 2015, 10, e0124242. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- Prakash, E.S. Sympathovagal balance from heart rate variability: An obituary’, but what is sympathovagal balance? Exp. Physiol. 2012, 97, 1140. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Bentho, O.; Park, M.Y.; Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 2011, 96, 1255–1261. [Google Scholar] [CrossRef]
- Eckberg, D.L. Sympathovagal balance: A critical appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef]
- Papaioannou, V.; Ioannis Pneumatikos, I.; Maglaveras, N. Association of heart rate variability and inflammatory response in patients with cardiovascular diseases: Current strngths and limitations. Front. Physiol. 2013, 4, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Vollono, C.; Gnoni, V.; Testani, E.; Dittoni, S.; Losurdo, A.; Colicchio, S.; Di Blasi, C.; Mazza, S.; Farina, B.; Della Marca, G. Heart rate variability in sleep-related migraine without aura. J. Clin. Sleep Med. 2013, 9, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Rainero, I.; Rubino, E.; Gallone, S.; Fenoglio, P.; Picci, L.R.; Giobbe, L.; Ostacoli, L.; Pinessi, L. Evidence for an association between mi graine and the hypocretin receptor 1 gene. J. Headache Pain 2011, 12, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Lane, R.D. The role of vagal function in the risk for cardiovascular disease and mortality. Biol. Psychol. 2007, 74, 224–242. [Google Scholar] [CrossRef]
- Gruca, M.; Zamojska, J.; Niewiadomska-Jarosik, K.; Wosiak, A.; Stasiak, A.; Sikorska, K.; Stańczyk, J.; Smolewska, E. Assessment of Cardiovascular Risk Factors in Patients with Juvenile Idiopathic Arthritis. Nutrients 2023, 15, 1700. [Google Scholar] [CrossRef]
- Ward, T.M.; Yuwen, W.; Voss, J.; Foell, D.; Gohar, F.; Ringold, S. Sleep Fragmentation and Biomarkers in Juvenile Idiopathic Arthritis. Biol. Res. Nurs. 2016, 18, 299–306. [Google Scholar] [CrossRef]
- Saidi, O.; Rochette, E.; Bourdier, P.; Ratel, S.; Merlin, E.; Pereira, B.; Duché, P. Sleep in children and adolescents with juvenile idiopathic arthritis: A systematic review and meta-analysis of case-control studies. Sleep 2022, 45, zsab233. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.-H.; Chen, H.-C.; Wang, L.-Y.; Chien, M.-Y. Effects of exercise training on sleep quality and heart rate variability in middle-aged and older adults with poor sleep quality: A randomized controlled trial. J. Clin. Sleep Med. 2020, 16, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Difrancesco, S.; Lamers, F.; Riese, H.; Merikangas, K.R.; Beekman, A.T.F.; van Hemert, A.M.; Schoevers, R.A.; Penninx, B.W.J.H. Sleep, circadian rhythm, and physical activity patterns in depressive and anxiety disorders: A 2-week ambulatory assessment study. Depress. Anxiety 2019, 36, 975–986. [Google Scholar] [CrossRef] [PubMed]
Controls (n = 10) | JIA (n = 10) | |
---|---|---|
Age (years) | 12.3 ± 2.5 | 12.9 ± 2.2 |
Girls:Boys | 5:5 | 5:5 |
Tanner scale | Stage 3 | Stage 3 |
Impaired joints (N) | 0 | 11.7 ± 11 |
Erythrocyte sedimentation rate | Not detected | 37.6 ± 27.4 |
Controls (n = 10) | JIA (n = 10) | Mann–Whitney U Test | p-Value | |
SL (min) | 11.1 ± 7.8 | 19.6 ± 17.0 | 39.5 | 0.4 |
TST (min) | 463.1 ± 36.6 | 420.7 ± 55.3 | 28 | 0.1 |
WASO (min) | 21.1 ± 12.7 | 47.3 ± 38.1 | 28.5 | 0.1 |
SE (%) | 95.4 ± 2.9 | 90.1 ± 7.1 | 26.5 | 0.1 |
N1 (min) | 20.5 ± 9.9 | 17.7 ± 9.4 | 42 | 0.6 |
N2 (min) | 266.8 ± 45.0 | 240.9 ± 37.7 | 30 | 0.1 |
SWS (min) | 89.1 ± 26.8 | 77.8 ± 27.1 | 44 | 0.7 |
REM (min) | 87.2 ± 22.5 | 83.5 ± 28.0 | 46.5 | 0.8 |
Arousal index | 2.7 ± 1.2 * | 10.7 ± 5.6 | 13 | 0.01 |
JIA | Friedman Anova | Control | Friedman Anova | |||||||
N2 | SWS | REM | X2(10.2)= | p-Value | N2 | SWS | REM | X2(10.2)= | p-Value | |
RRi | 805.2 ± 140.4 | 789.0 ± 148.8 | 779.0 ± 166.3 | 7.2 | 0.03 | 901.9 ± 142.8 | 901.9 ± 131.5 | 860.6 ± 119.2 | 1.90 | 0.39 |
SDNN | 62.8 ± 48.2 | 47.0 ± 38.5 | 72.0 ± 40.4 | 8.6 | 0.01 | 94.3 ± 48.6 | 94.6 ± 75.2 | 111.0 ± 53.0 | 1.4 | 0.50 |
RMSSD | 74.3 ± 60.8 | 59.0 ± 56.8 | 63.3 ± 58.9 | 5.06 | 0.08 | 98.5 ± 63.5 | 109.8 ± 96.9 | 99.8 ± 71.9 | 0.15 | 0.93 |
SDSD | 46.6 ± 40.4 | 35.4 ± 34.6 | 47.8 ± 42.4 | 4.05 | 0.13 | 68.6 ± 49.3 | 80.4 ± 83.0 | 80.6 ± 59.2 | 1.4 | 0.50 |
NN50 | 121.4 ± 108.6 | 90.6 ± 104.3 | 84.8 ± 90.96 | 0.67 | 0.72 | 156.7 ± 55.2 | 149.5 ± 75.4 | 124.2 ± 52.33 | 10.4 | 0.005 |
pNN50 | 36.5 ± 34.2 | 27.9 ± 33.5 | 25.7 ± 30.2 | 0.15 | 0.93 | 49.1 ± 20.9 | 47.1 ± 25.9 | 37.5 ± 18.0 | 9.8 | 0.008 |
VLF | 1407.8 ± 1552.3 | 852.6 ± 551.8 | 5872.3 ± 2786.5 | 12.2 | 0.002 | 4290.3 ± 4775.6 | 2494.5 ± 2657.7 | 6563.6 ± 3417.5 | 4.2 | 0.13 |
LF | 2100.1 ± 1578.2 | 1734.2 ± 1328.0 | 2155.1 ± 1422.5 | 3.2 | 0.02 | 3183.1 ± 1841.9 | 2544.2 ± 2210.9 | 2779.0 ± 1098.1 | 7.2 | 0.03 |
HF | 3635.1 ± 2224.3 | 2706.3 ± 1678.8 | 2031.3 ± 1545.0 | 11.4 | 0.003 | 3917.1 ± 2099.6 | 3727.7 ± 2552.6 | 3065.6 ± 2282.0 | 1.4 | 0.50 |
TP | 7322.3 ± 4197.1 | 5433.3 ± 2802.2 | 10338.0 ± 2856.6 | 9.8 | 0.008 | 11703.7 ± 5298.4 | 9108.5 ± 5251.9 | 12995.2 ± 2920.9 | 2.6 | 0.27 |
LF/HF | 1.1 ± 1.6 | 1.0 ± 1.3 | 2.1 ± 3.1 | 7.4 | 0.03 | 1.2 ± 1.2 | 0.8 ± 0.6 | 1.4 ± 1.4 | 7.2 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, M.C.; Roizenblatt, S.; Soster, L.M.A.; Spruyt, K. Sleep in Juvenile Idiopathic Arthritis: An Exploratory Investigation of Heart Rate Variability. Brain Sci. 2025, 15, 648. https://doi.org/10.3390/brainsci15060648
Lopes MC, Roizenblatt S, Soster LMA, Spruyt K. Sleep in Juvenile Idiopathic Arthritis: An Exploratory Investigation of Heart Rate Variability. Brain Sciences. 2025; 15(6):648. https://doi.org/10.3390/brainsci15060648
Chicago/Turabian StyleLopes, M. C., S. Roizenblatt, L. M. A. Soster, and K. Spruyt. 2025. "Sleep in Juvenile Idiopathic Arthritis: An Exploratory Investigation of Heart Rate Variability" Brain Sciences 15, no. 6: 648. https://doi.org/10.3390/brainsci15060648
APA StyleLopes, M. C., Roizenblatt, S., Soster, L. M. A., & Spruyt, K. (2025). Sleep in Juvenile Idiopathic Arthritis: An Exploratory Investigation of Heart Rate Variability. Brain Sciences, 15(6), 648. https://doi.org/10.3390/brainsci15060648