Individual Differences in the Neurocognitive Effect of Movement During Executive Functioning in Children with ADHD: Impact of Subtype, Severity, and Gender
Abstract
:1. Introduction
1.1. Key Individual Difference Factors in ADHD: Subtype, Severity, and Gender
1.1.1. ADHD Subtype
1.1.2. ADHD Severity
1.1.3. Gender
1.2. Study Objectives
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Demographic Questionnaire
2.2.2. Vanderbilt ADHD Diagnostic Parent Rating Scale (VADPRS)
2.2.3. Executive Functioning: Stroop Task
2.2.4. Heart Rate
2.2.5. Left DLPFC Activity Using Functional Near-Infrared Spectroscopy (fNIRS)
2.3. Design
2.3.1. Movement Condition
2.3.2. Stationary Condition
2.4. Procedure
2.5. Determining ADHD Subtype
2.6. Determining ADHD Severity
2.7. Statistical Analysis
2.7.1. fNIRS and Left DLPFC Activity
2.7.2. Executive Functioning
3. Results
3.1. fNIRS and Left DLPFC Activity
3.1.1. ADHD Subtype
3.1.2. ADHD Severity
3.1.3. Gender
3.2. Executive Functioning
3.2.1. ADHD Subtype
3.2.2. ADHD Severity
3.2.3. Gender
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADHD-I | Attention-Deficit Hyperactivity Disorder (Inattentive) |
ADHD-H/I | Attention-Deficit Hyperactivity Disorder (Hyperactive/Impulsive) |
ADHD-C | Attention-Deficit Hyperactivity Disorder (Combined Hyperactive/Inattentive) |
DLPFC | Dorsolateral prefrontal cortex |
References
- Antshel, K.M.; Hier, B.O.; Barkley, R.A. Executive Functioning Theory and ADHD. In Handbook of Executive Functioning; Springer: New York, NY, USA, 2014; pp. 107–120. [Google Scholar]
- Van Riper, S.M.; Tempest, G.D.; Piccirilli, A.; Ma, Q.; Reiss, A.L. Aerobic Exercise, Cognitive Performance, and Brain Activity in Adolescents with Attention-Deficit/Hyperactivity Disorder. Med. Sci. Sports Exerc. 2023, 55, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, M.; Görlich, E.; Loyens, S.; Wong, J.; Paas, F. Effects of Desk-Bike Cycling on Phonological Working Memory Performance in Adolescents with Attention Deficit Hyperactivity Disorder. Front. Educ. 2022, 7, 841576. [Google Scholar] [CrossRef]
- Zang, Y.-F.; Jin, Z.; Weng, X.-C.; Zhang, L.; Zeng, Y.-W.; Yang, L.; Wang, Y.-F.; Seidman, L.J.; Faraone, S.V. Functional MRI in attention-deficit hyperactivity disorder: Evidence for hypofrontality. Brain Dev. 2005, 27, 544–550. [Google Scholar] [CrossRef]
- Ueda, S.; Ota, T.; Iida, J.; Yamamuro, K.; Yoshino, H.; Kishimoto, N.; Kishimoto, T. Reduced prefrontal hemodynamic response in adult attention-deficit hyperactivity disorder as measured by near-infrared spectroscopy. Psychiatry Clin. Neurosci. 2018, 72, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Ehlis, A.C.; Bähne, C.G.; Jacob, C.P.; Herrmann, M.J.; Fallgatter, A.J. Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: A functional near-infrared spectroscopy (fNIRS) study. J. Psychiatr. Res. 2008, 42, 1060–1067. [Google Scholar] [CrossRef]
- Hyodo, K.; Dan, I.; Suwabe, K.; Kyutoku, Y.; Yamada, Y.; Akahori, M.; Byun, K.; Kato, M.; Soya, H. Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiol. Aging 2012, 33, 2621–2632. [Google Scholar] [CrossRef]
- Miao, S.; Han, J.; Gu, Y.; Wang, X.; Song, W.; Li, D.; Liu, Z.; Yang, J.; Li, X. Reduced Prefrontal Cortex Activation in Children with Attention-Deficit/Hyperactivity Disorder during Go/No-Go Task: A Functional Near-Infrared Spectroscopy Study. Front. Neurosci. 2017, 11, 367. [Google Scholar] [CrossRef]
- Negoro, H.; Sawada, M.; Iida, J.; Ota, T.; Tanaka, S.; Kishimoto, T. Prefrontal Dysfunction in Attention-Deficit/Hyperactivity Disorder as Measured by Near-Infrared Spectroscopy. Child Psychiatry Hum. Dev. 2010, 41, 193–203. [Google Scholar] [CrossRef]
- Weber, P.; Lütschg, J.; Fahnenstich, H. Cerebral hemodynamic changes in response to an executive function task in children with attention-deficit hyperactivity disorder measured by near-infrared spectroscopy. J. Dev. Behav. Pediatr. 2005, 26, 105–111. [Google Scholar] [CrossRef]
- Galvez-Contreras, A.Y.; Vargas-de la Cruz, I.; Beltran-Navarro, B.; Gonzalez-Castaneda, R.E.; Gonzalez-Perez, O. Therapeutic approaches for ADHD by developmental stage and clinical presentation. Int. J. Environ. Res. Public Health 2022, 19, 12880. [Google Scholar] [CrossRef]
- Corkum, P.; Tannock, R.; Moldofsky, H. Sleep Disturbances in Children with Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry 1998, 37, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Rommel, A.S.; Lichtenstein, P.; Rydell, M.; Kuja-Halkola, R.; Asherson, P.; Kuntsi, J.; Larsson, H. Is physical activity causally associated with symptoms of attention-deficit/hyperactivity disorder? J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 565–570. [Google Scholar] [CrossRef]
- Cuffe, S.P.; Moore, C.G.; McKeown, R. ADHD and health services utilization in the National Health Interview Survey. J. Atten. Disord. 2009, 12, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.; Fowler, T.; Langley, K.; Whittinger, N.; Thapar, A. Five years on: Public sector service use related to mental health in young people with ADHD or hyperkinetic disorder five years after diagnosis. Child Adolesc. Ment. Health 2008, 13, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Vanheusden, K.; van der Ende, J.; Mulder, C.L.; van Lenthe, F.J.; Verhulst, F.C.; Mackenbach, J.P. The use of mental health services among young adults with emotional and behavioural problems: Equal use for equal needs? Soc. Psychiatry Psychiatr. Epidemiol. 2008, 43, 808–815. [Google Scholar] [CrossRef]
- Hébert, J.; Cand, A.P.; Joober, R. Adherence to Psychostimulant Medication in Children with. J. Can. Acad. Child Adolesc. Psychiatry 2013, 22, 317–324. [Google Scholar]
- Martin, J. Why are females less likely to be diagnosed with ADHD in childhood than males? Lancet Psychiatry 2024, 11, 303–310. [Google Scholar] [CrossRef]
- Fuchs, L.S.; Schumacher, R.F.; Sterba, S.K.; Long, J.; Namkung, J.; Malone, A.; Changas, P. Does working memory moderate the effects of fraction intervention? An aptitude–treatment interaction. J. Educ. Psychol. 2014, 106, 499–514. [Google Scholar] [CrossRef]
- Snow, R.E. Aptitude-treatment interaction as a framework for research on individual differences in psychotherapy. J. Consult. Clin. Psychol. 1991, 59, 205–216. [Google Scholar] [CrossRef]
- Mercurio, L.Y.; Amanullah, S.; Gill, N.; Gjelsvik, A. Children with ADHD engage in less physical activity. J. Atten. Disord. 2021, 25, 1187–1195. [Google Scholar] [CrossRef]
- Christiansen, L.; Beck, M.M.; Bilenberg, N.; Wienecke, J.; Astrup, A.; Lundbye-Jensen, J. Effects of exercise on cognitive performance in children and adolescents with ADHD: Potential mechanisms and evidence-based recommendations. J. Clin. Med. 2019, 8, 841. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.L.; Hoza, B.; Linnea, K.; McQuade, J.D.; Tomb, M.; Vaughn, A.J.; Shoulberg, E.K.; Hook, H. Pilot physical activity intervention reduces severity of ADHD symptoms in young children. J. Atten. Disord. 2013, 17, 70–82. [Google Scholar] [CrossRef]
- Wigal, S.B.; Emmerson, N.; Gehricke, J.-G.; Galassetti, P. Exercise: Applications to childhood ADHD. J. Atten. Disord. 2013, 17, 279–290. [Google Scholar] [CrossRef]
- Huang, T.; Gu, Q.; Deng, Z.; Tsai, C.; Xue, Y.; Zhang, J.; Zou, L.; Chen, Z.; Wang, K. Executive Function Performance in Young Adults When Cycling at an Active Workstation: An fNIRS Study. Int. J. Environ. Res. Public Health 2019, 16, 1119. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Li, G.; Ye, J.; Wu, M.; Xu, R.; Hu, M. Effects of combined physical and cognitive training on executive function of adolescent shooting athletes: A functional near-infrared spectroscopy study. Sports Med. Health Sci. 2023, 5, 220–228. [Google Scholar] [CrossRef]
- Chainay, H.; Joubert, C.; Massol, S. Behavioural and ERP effects of cognitive and combined cognitive and physical training on working memory and executive function in healthy older adults. Adv. Cogn. Psychol. 2021, 17, 58–69. [Google Scholar] [CrossRef]
- Heisz, J.J.; Clark, I.B.; Bonin, K.; Paolucci, E.M.; Michalski, B.; Becker, S.; Fahnestock, M. The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors. J. Cogn. Neurosci. 2017, 29, 1895–1907. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Ha, C.H. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ. Health Prev. Med. 2017, 22, 27. [Google Scholar] [CrossRef] [PubMed]
- Endo, K.; Matsukawa, K.; Liang, N.; Nakatsuka, C.; Tsuchimochi, H.; Okamura, H.; Hamaoka, T. Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. J. Physiol. Sci. 2013, 63, 287–298. [Google Scholar] [CrossRef]
- Hoy, B.-A.; Bi, M.; Lam, M.; Krishnasamy, G.; Abdalmalak, A.; Fenesi, B. Hyperactivity in ADHD: Friend or foe? Brain Sci. 2024, 14, 719. [Google Scholar] [CrossRef]
- Sarver, D.E.; Rapport, M.D.; Kofler, M.J.; Raiker, J.S.; Friedman, L.M. Hyperactivity in Attention-Deficit/Hyperactivity Disorder (ADHD): Impairing Deficit or Compensatory Behavior? J. Abnorm. Child Psychol. 2015, 43, 1219–1232. [Google Scholar] [CrossRef]
- Benzing, V.; Chang, Y.-K.; Schmidt, M. Acute Physical Activity Enhances Executive Functions in Children with ADHD. Sci. Rep. 2018, 8, 12382. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, H.; Gottlieb, M.D.; Ogrodnik, M.; Graham, J.D.; Fenesi, B. The Differential Impact of Acute Exercise and Mindfulness Meditation on Executive Functioning and Psycho-Emotional Well-Being in Children and Youth with ADHD. Front. Psychol. 2021, 12, 660845. [Google Scholar] [CrossRef]
- Koch, E.D.; Freitag, C.M.; Mayer, J.S.; Medda, J.; Reif, A.; Grimm, O.; Ramos-Quiroga, J.A.; Sanchez, J.P.; Asherson, P.; Kuntsi, J.; et al. The dynamical association between physical activity and affect in the daily life of individuals with ADHD. Eur. Neuropsychopharmacol. 2022, 57, 69–74. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Saliba, B.J.; Raine, L.B.; Picchietti, D.L.; Hillman, C.H. Exercise Improves Behavioral, Neurocognitive, and Scholastic Performance in Children with Attention-Deficit/Hyperactivity Disorder. J. Pediatr. 2013, 162, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y. Impact of physical exercise on children with attention deficit hyperactivity disorders: Evidence through a meta-analysis. Medicine 2019, 98, e17980. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.D.; Bremer, E.; Fenesi, B.; Cairney, J. Examining the Acute Effects of Classroom-Based Physical Activity Breaks on Executive Functioning in 11- to 14-Year-Old Children: Single and Additive Moderation Effects of Physical Fitness. Front. Pediatr. 2021, 9, 688251. [Google Scholar] [CrossRef]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 114. [Google Scholar] [CrossRef]
- Drummy, C.; Murtagh, E.M.; McKee, D.P.; Breslin, G.; Davison, G.W.; Murphy, M.H. The effect of a classroom activity break on physical activity levels and adiposity in primary school children. J. Paediatr. Child Health 2016, 52, 745–749. [Google Scholar] [CrossRef]
- Rommel, A.S.; Halperin, J.M.; Mill, J.; Asherson, P.; Kuntsi, J. Protection from genetic diathesis in attention-deficit/hyperactivity disorder: Possible complementary roles of exercise. J. Am. Acad. Child Adolesc. Psychiatry 2013, 52, 900–910. [Google Scholar] [CrossRef]
- Hartanto, T.A.; Krafft, C.E.; Iosif, A.M.; Schweitzer, J.B. A trial-by-trial analysis reveals more intense physical activity is associated with better cognitive control performance in attention-deficit/hyperactivity disorder. Child Neuropsychol. 2016, 22, 618–626. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Adams, Z.W.; Derefinko, K.J.; Milich, R.; Fillmore, M.T. Inhibitory functioning across ADHD subtypes: Recent findings, clinical implications, and future directions. Dev. Disabil. Res. Rev. 2008, 14, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Attention-deficit disorder (attention-deficit/hyperactivity disorder without hyperactivity): A neurobiologically and behaviorally distinct disorder from attention-deficit/hyperactivity disorder (with hyperactivity). Dev. Psychopathol. 2005, 17, 807–825. [Google Scholar] [CrossRef]
- Mu, S.; Wu, H.; Zhang, J.; Chang, C. Structural brain changes and associated symptoms of ADHD subtypes in children. Cereb. Cortex 2022, 32, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Solanto, M.V.; Pope-Boyd, S.A.; Tryon, W.W.; Stepak, B. Social Functioning in Predominantly Inattentive and Combined Subtypes of Children with ADHD. J. Atten. Disord. 2009, 13, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Salvi, V.; Migliarese, G.; Venturi, V.; Rossi, F.; Torriero, S.; Viganò, V.; Cerveri, G.; Mencacci, C. ADHD in adults: Clinical subtypes and associated characteristics. Riv. di Psichiatr. 2019, 54, 84–89. [Google Scholar]
- Milich, R.; Balentine, A.C.; Lynam, D.R. ADHD Combined Type and ADHD Predominantly Inattentive Type Are Distinct and Unrelated Disorders. Clin. Psychol. Sci. Pract. 2001, 8, 463–488. [Google Scholar] [CrossRef]
- Larsson, H.; Lichtenstein, P.; Larsson, J.O. Genetic Contributions to the Development of ADHD Subtypes from Childhood to Adolescence. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 973–981. [Google Scholar] [CrossRef]
- Xie, Y.; Gao, X.; Song, Y.; Zhu, X.; Chen, M.; Yang, L.; Ren, Y. Effectiveness of Physical Activity Intervention on ADHD Symptoms: A Systematic Review and Meta-Analysis. Front. Psychiatry 2021, 12, 706625. [Google Scholar] [CrossRef]
- Cerrillo-Urbina, A.J.; García-Hermoso, A.; Sánchez-Lopez, M.; Pardo-Guijarro, M.J.; Santos Gómez, J.L.; Martínez-Vizcaíno, V. The effects of physical exercise in children with attention deficit hyperactivity disorder: A systematic review and meta-analysis of randomized control trials. Child Care Health Dev. 2015, 41, 779–788. [Google Scholar] [CrossRef]
- Laurent, J.S.; Watts, R.; Adise, S.; Allgaier, N.; Chaarani, B.; Garavan, H.; Potter, A.; Mackey, S. Associations Among Body Mass Index, Cortical Thickness, and Executive Function in Children. JAMA Pediatr. 2020, 174, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Ontiveros, N.; Wiklund, C.A.; Ohlis, A.; Ekblom, Ö. The Role of Physical Activity in the Association Between ADHD and Emotional Dysregulation. J. Affect. Disord. 2025, 376, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ronan, L.; Alexander-Bloch, A.; Fletcher, P.C. Childhood Obesity, Cortical Structure, and Executive Function in Healthy Children. Cereb. Cortex 2019, 30, 2519–2528. [Google Scholar] [CrossRef]
- Cortese, S.; Kelly, C.; Chabernaud, C.; Proal, E.; Di Martino, A.; Milham, M.P.; Castellanos, F.X. Toward Systems Neuroscience of ADHD: A Meta-Analysis of 55 fMRI Studies. Am. J. Psychiatry 2012, 169, 1038–1055. [Google Scholar] [CrossRef] [PubMed]
- Dumontheil, I. Adolescent Brain Development. Curr. Opin. Behav. Sci. 2016, 10, 39–44. [Google Scholar] [CrossRef]
- Loyer Carbonneau, M.; Demers, M.; Bigras, M.; Guay, M.-C. Meta-Analysis of Sex Differences in ADHD Symptoms and Associated Cognitive Deficits. J. Atten. Disord. 2021, 25, 1640–1656. [Google Scholar] [CrossRef]
- Brown, N.M.; Brown, S.N.; Briggs, R.D.; Germán, M.; Belamarich, P.F.; Oyeku, S.O. Associations Between Adverse Childhood Experiences and ADHD Diagnosis and Severity. Acad. Pediatr. 2017, 17, 349–355. [Google Scholar] [CrossRef]
- Fenesi, B.; Kramer, E.; Kim, J.A. Split-Attention and Coherence Principles in Multimedia Instruction Can Rescue Performance for Learners with Lower Working Memory Capacity. Appl. Cogn. Psychol. 2016, 30, 691–699. [Google Scholar] [CrossRef]
- Fenesi, B.; Sana, F.; Kim, J.A.; Shore, D.I. Reconceptualizing Working Memory in Educational Research. Educ. Psychol. Rev. 2015, 27, 333–351. [Google Scholar] [CrossRef]
- Hinshaw, S.P. Preadolescent Girls with Attention-Deficit/Hyperactivity Disorder: I. Background Characteristics, Comorbidity, Cognitive and Social Functioning, and Parenting Practices. J. Consult. Clin. Psychol. 2002, 70, 1086–1098. [Google Scholar] [CrossRef]
- Quinn, P.O. Attention-Deficit/Hyperactivity Disorder and Its Comorbidities in Women and Girls: An Evolving Picture. Curr. Psychiatry Rep. 2008, 10, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Willcutt, E.G. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Fedele, D.A.; Lefler, E.K.; Hartung, C.M.; Canu, W.H. Sex Differences in the Manifestation of ADHD in Emerging Adults. J. Atten. Disord. 2012, 16, 109–117. [Google Scholar] [CrossRef]
- Robison, R.J.; Reimherr, F.W.; Marchant, B.K.; Faraone, S.V.; Adler, L.A.; West, S.A. Gender Differences in 2 Clinical Trials of Adults with Attention-Deficit/Hyperactivity Disorder: A Retrospective Data Analysis. J. Clin. Psychiatry 2008, 69, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Slobodin, O.; Davidovitch, M. Gender Differences in Objective and Subjective Measures of ADHD Among Clinic-Referred Children. Front. Hum. Neurosci. 2019, 13, 441. [Google Scholar] [CrossRef]
- Sharp, W.S.; Walter, J.M.; Marsh, W.L.; Ritchie, G.F.; Hamburger, S.D.; Castellanos, F.X. ADHD in Girls: Clinical Comparability of a Research Sample. J. Am. Acad. Child Adolesc. Psychiatry 1999, 38, 40–47. [Google Scholar] [CrossRef]
- Spencer, T.; Biederman, J.; Wilens, T.; Doyle, R.; Surman, C.; Prince, J.; Mick, E.; Aleardi, M.; Herzig, K.; Faraone, S. A Large, Double-Blind, Randomized Clinical Trial of Methylphenidate in the Treatment of Adults with Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2005, 57, 456–463. [Google Scholar] [CrossRef]
- Staller, J.; Faraone, S.V. Attention-Deficit Hyperactivity Disorder in Girls: Epidemiology and Management. CNS Drugs 2006, 20, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Rucklidge, J.J. Gender differences in ADHD: Implications for psychosocial treatments. Expert Rev. Neurother. 2008, 8, 643–655. [Google Scholar] [CrossRef]
- Rapport, M.D.; Bolden, J.; Kofler, M.J.; Sarver, D.E.; Raiker, J.S.; Alderson, R.M. Hyperactivity in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): A Ubiquitous Core Symptom or Manifestation of Working Memory Deficits? J. Abnorm. Child Psychol. 2009, 37, 521–534. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 2010, 50, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Almajidy, R.K.; Mankodiya, K.; Abtahi, M.; Hofmann, U.G. A Newcomer’s Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev. Biomed. Eng. 2020, 13, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.G.; Dennis, A.; Bandettini, P.A.; Johansen-Berg, H. The Effects of Aerobic Activity on Brain Structure. Front. Psychol. 2012, 3, 86. [Google Scholar] [CrossRef]
- Banaschewski, T.; Coghill, D.; Santosh, P.; Zuddas, A.; Asherson, P.; Buitelaar, J.; Danckaerts, M.; Döpfner, M.; Faraone, S.V.; Rothenberger, A.; et al. Long-Acting Medications for the Hyperkinetic Disorders: A Systematic Review and European Treatment Guideline. Eur. Child Adolesc. Psychiatry 2006, 15, 476–495. [Google Scholar] [CrossRef] [PubMed]
- Adólfsdóttir, S.; Sørensen, L.; Lundervold, A.J. The Attention Network Test: A Characteristic Pattern of Deficits in Children with ADHD. Behav. Brain Funct. 2008, 4, 9. [Google Scholar] [CrossRef]
- Konrad, K.; Neufang, S.; Hanisch, C.; Fink, G.R.; Herpertz-Dahlmann, B. Dysfunctional Attentional Networks in Children with Attention Deficit/Hyperactivity Disorder: Evidence from an Event-Related Functional Magnetic Resonance Imaging Study. Biol. Psychiatry 2006, 59, 643–651. [Google Scholar] [CrossRef]
Characteristic | n |
---|---|
Age of Child (years), mean (SD) | 9.6 (1.57) |
Age of Guardian (years), mean (SD) | 40.82 (7.21) |
Sex of Participant | |
Male | 17 (61) |
Female | 11 (39) |
Sex of Guardian | |
Male | 6 (21) |
Female | 22 (79) |
Guardian’s Education Level (n) | |
Some high school, no diploma | 0 (0) |
High school graduate, diploma, or the equivalent | 1 (4) |
Some college credit, no degree | 2 (7) |
Trade/technical/vocational training | 3 (11) |
Associate degree | 4 (15) |
Bachelor’s degree | 9 (33) |
Master’s degree | 5 (19) |
Professional degree | 2 (7) |
No response | 1 (4) |
Guardian’s Employment (n) | |
Employed for wages | 19 (68) |
Self-employed | 5 (18) |
Out of work | 2 (7) |
Homemaker | 1 (4) |
Student | 1 (4) |
Household Income | |
Prefer not to say | 2 (7) |
<USD 30,000 | 1 (4) |
USD 30,000–40,000 | 0 (0) |
USD 40,000–50,000 | 1 (4) |
USD 50,000–60,000 | 3 (11) |
USD 60,000–70,000 | 3 (11) |
USD 70,000–80,000 | 0 (0) |
USD 80,000–90,000 | 2 (7) |
USD 90,000–100,000 | 3 (11) |
>USD 100,000 | 12 (44) |
Age of ADHD diagnosis (n) | |
Unsure | 3 (11) |
3–5 | 4 (14) |
6–8 | 15 (54) |
9–12 | 6 (21) |
ADHD Subtype (n) | |
Predominantly inattentive | 5 (18) |
Predominantly hyperactive/impulsive | 6 (11) |
Combined subtype | 17 (61) |
ADHD Severity (n) | |
Low | 10 (36) |
Moderate | 9 (32) |
High | 9 (32) |
Currently Taking Medication | |
No response | 4 (14) |
Yes | 17 (61) |
No | 7 (25) |
Other Diagnosis Present | |
Yes | 9 (32) |
No | 19 (68) |
Medicated for Another Diagnosis | |
Yes | 6 (21) |
No | 22 (79) |
Inattentive (n = 5) | Hyperactive/Impulsive (n = 6) | Combined (n = 17) | ||||
---|---|---|---|---|---|---|
Stationary M (SD) | Movement M (SD) | Stationary M (SD) | Movement M (SD) | Stationary M (SD) | Movement M (SD) | |
Congruent RT | 1077 (577) | 931 (306) | 1621 (1663) | 1004 (227) | 1117 (547) | 1010 (366) |
Incongruent RT | 916 (290) | 1011 (117) | 1173 (608) | 1256 (421) | 1251 (464) | 1092 (494) |
Congruent PC | 0.95 (0.11) | 0.84 (0.15) | 0.91 (0.21) | 0.95 (0.11) | 0.98 (0.06) | 0.96 (0.12) |
Incongruent PC | 0.82 (0.18) | 0.91 (0.13) | 0.82 (0.21) | 0.96 (0.11) | 0.93 (0.11) | 0.94 (0.12) |
Low Severity | Moderate Severity | High Severity | ||||
---|---|---|---|---|---|---|
Stationary M (SD) (n = 10) | Movement M (SD) (n = 10) | Stationary M (SD) (n = 9) | Movement M (SD) (n = 9) | Stationary M (SD) (n = 9) | Movement M (SD) (n = 9) | |
Congruent RT | 1272 (1325) | 1010 (275) | 1145 (480) | 829 (224) | 1230 (659) | 1144 (418) |
Incongruent RT | 1106 (521) | 1011 (239) | 1143 (379) | 1028 (334) | 1283 (538) | 1310 (622) |
Congruent PC | 0.95 (0.16) | 0.90 (0.17) | 0.97 (0.08) | 0.92 (0.12) | 0.97 (0.09) | 1.00 (0.00) |
Incongruent PC | 0.82 (0.16) | 0.90 (0.13) | 0.92 (0.17) | 0.97 (0.08) | 0.93 (0.11) | 0.94 (0.12) |
Males | Females | |||
---|---|---|---|---|
Stationary M(SD) (n = 17) | Movement M(SD) (n = 17) | Stationary M(SD) (n = 11) | Movement M(SD) (n = 11) | |
Congruent RT | 1292 (1025) | 1013 (380) | 1105 (643) | 967 (219) |
Incongruent RT | 1213 (472) | 1151 (508) | 1117 (494) | 1054 (289) |
Congruent PC | 0.95 (0.13) | 0.97 (0.09) | 0.98 (0.08) | 0.89 (0.17) |
Incongruent PC | 0.89 (0.16) | 0.94 (0.11) | 0.87 (0.16) | 0.93 (0.12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoy, B.-A.; Feehely, M.; Bi, M.; Lam, M.; Abdalmalak, A.; Fenesi, B. Individual Differences in the Neurocognitive Effect of Movement During Executive Functioning in Children with ADHD: Impact of Subtype, Severity, and Gender. Brain Sci. 2025, 15, 623. https://doi.org/10.3390/brainsci15060623
Hoy B-A, Feehely M, Bi M, Lam M, Abdalmalak A, Fenesi B. Individual Differences in the Neurocognitive Effect of Movement During Executive Functioning in Children with ADHD: Impact of Subtype, Severity, and Gender. Brain Sciences. 2025; 15(6):623. https://doi.org/10.3390/brainsci15060623
Chicago/Turabian StyleHoy, Beverly-Ann, Maya Feehely, Michelle Bi, Matthew Lam, Androu Abdalmalak, and Barbara Fenesi. 2025. "Individual Differences in the Neurocognitive Effect of Movement During Executive Functioning in Children with ADHD: Impact of Subtype, Severity, and Gender" Brain Sciences 15, no. 6: 623. https://doi.org/10.3390/brainsci15060623
APA StyleHoy, B.-A., Feehely, M., Bi, M., Lam, M., Abdalmalak, A., & Fenesi, B. (2025). Individual Differences in the Neurocognitive Effect of Movement During Executive Functioning in Children with ADHD: Impact of Subtype, Severity, and Gender. Brain Sciences, 15(6), 623. https://doi.org/10.3390/brainsci15060623