Neural Correlates of Cognitive Disengagement Syndrome Symptoms in Children: A Magnetoencephalography Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measures
2.4. MEG Data Acquisition and Co-Registration with Structural MRI
2.5. Data Analyses
3. Results
3.1. Behavioral Data
3.1.1. RT
3.1.2. Accuracy
3.1.3. Attention Network
3.2. MEG Data
3.2.1. ERF
3.2.2. Source Localization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDS | Cognitive Disengagement Syndrome |
SCT | Sluggish Cognitive Tempo |
ADHD | Attention-Deficit/Hyperactivity Disorder |
ANT | Attention Network Test |
References
- Becker, S.P.; Willcutt, E.G.; Leopold, D.R.; Fredrick, J.W.; Smith, Z.R.; Jacobson, L.A.; Burns, G.L.; Mayes, S.D.; Waschbusch, D.A.; Froehlich, T.E.; et al. Report of a Work Group on Sluggish Cognitive Tempo: Key Research Directions and a Consensus Change in Terminology to Cognitive Disengagement Syndrome. J. Am. Acad. Child Adolesc. Psychiatry 2023, 62, 629–645. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.P.; Leopold, D.R.; Burns, G.L.; Jarrett, M.A.; Langberg, J.M.; Marshall, S.A.; McBurnett, K.; Waschbusch, D.A.; Willcutt, E.G. The Internal, External, and Diagnostic Validity of Sluggish Cognitive Tempo: A Meta-Analysis and Critical Review. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Sonuga-Barke, E.J.S.; Becker, S.P.; Bölte, S.; Castellanos, F.X.; Franke, B.; Newcorn, J.H.; Nigg, J.T.; Rohde, L.A.; Simonoff, E. Annual Research Review: Perspectives on progress in ADHD science–from characterization to cause. J. Child Psychol. Psychiatry 2022, 64, 506–532. [Google Scholar] [CrossRef] [PubMed]
- Kaçmaz, C.; Çelik, O.T.; Sağlam, M.; Kay, M.A.; İnci, R. Bibliometric Trends and Thematic Areas in Research on Cognitive Disengagement Syndrome in Children: A Comprehensive Review. Res. Child Adolesc. Psychopathol. 2024, 52, 671–711. [Google Scholar] [CrossRef]
- Tamm, L.; Epstein, J.N.; Orban, S.A.; Kofler, M.J.; Peugh, J.L.; Becker, S.P. Neurocognition in children with cognitive disengagement syndrome: Accurate but slow. Child Neuropsychol. 2023, 30, 221–240. [Google Scholar] [CrossRef]
- Creque, C.A.; Willcutt, E.G. Sluggish cognitive tempo and neuropsychological functioning. Res. Child Adolesc. Psychopathol. 2021, 49, 1001–1013. [Google Scholar] [CrossRef]
- Kofler, M.J.; Irwin, L.N.; Sarver, D.E.; Fosco, W.D.; Miller, C.E.; Spiegel, J.A.; Becker, S.P. What cognitive processes are “sluggish” in sluggish cognitive tempo? J. Consult. Clin. Psychol. 2019, 87, 1030–1042. [Google Scholar] [CrossRef]
- Weng, Y.; Wu, T.; Wei, Y.; Chen, L.; Liu, X.; Cai, K.; Chen, C. Unified and distinct cognitive control deficits in adolescents with cognitive disengagement syndrome and learning burnout. Front. Psychiatry 2024, 15, 1399122. [Google Scholar] [CrossRef]
- Nourani Jourjade, S.R.; Mashhadi, A.; Bigdeli, I.; Rasool Zadeh Tabatabai, S.K. Attention Deficit/Hyperactivity Disorder and Cognitive Disengagement Syndrome: The Mediating Role of Executive Functions in Iranian College Students. J. Jiroft. Univ. Med. Sci. 2024, 11, 1601–1612. [Google Scholar] [CrossRef]
- Wåhlstedt, C.; Bohlin, G. DSM-IV-defined inattention and sluggish cognitive tempo: Independent and interactive relations to neuropsychological factors and comorbidity. Child Neuropsychol. 2010, 16, 350–365. [Google Scholar] [CrossRef]
- Barkley, R.A.; Willcutt, E.; Jacobson, L.A. What is the cognitive deficit in sluggish cognitive tempo (SCT)? A review of neuropsychological research. ADHD Rep. 2022, 30, 1–10. [Google Scholar] [CrossRef]
- Becker, S.P.; Marshall, S.A.; McBurnett, K. Sluggish cognitive tempo in abnormal child psychology: An historical overview and introduction to the special section. J. Abnorm. Child Psychol. 2014, 42, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Baytunca, M.B.; Inci, S.B.; Ipci, M.; Kardas, B.; Bolat, G.U.; Ercan, E.S. The neurocognitive nature of children with ADHD comorbid sluggish cognitive tempo: Might SCT be a disorder of vigilance? Psychiatry Res. 2018, 270, 967–973. [Google Scholar] [CrossRef]
- Camprodon-Rosanas, E.; Pujol, J.; Martínez-Vilavella, G.; Blanco-Hinojo, L.; Medrano-Martorell, S.; Batlle, S.; Forns, J.; Ribas-Fitó, N.; Dolz, M.; Sunyer, J. Brain Structure and Function in School-Aged Children With Sluggish Cognitive Tempo Symptoms. J. Am. Acad. Child Adolesc. Psychiatry 2019, 58, 256–266. [Google Scholar] [CrossRef]
- Fassbender, C.; Krafft, C.E.; Schweitzer, J.B. Differentiating SCT and inattentive symptoms in ADHD using fMRI measures of cognitive control. NeuroImage Clin. 2015, 8, 390–397. [Google Scholar] [CrossRef]
- Karaman, A.K.; Sarıgedik, E.; Eryılmaz, O.K.; Küçükdağ, M.; Naldemir, İ.F. Cerebral blood flow differences in cognitive disengagement syndrome and attention deficit hyperactivity disorder: Doppler ultrasonography findings. J. Psychiatr. Res. 2025, 182, 161–165. [Google Scholar] [CrossRef]
- Petersen, S.E.; Posner, M.I. The Attention System of the Human Brain: 20 Years After. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef]
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Fan, J.; Fossella, J.; Sommer, T.; Wu, Y.; Posner, M.I. Mapping the genetic variation of executive attention onto brain activity. Proc. Natl. Acad. Sci. USA 2003, 100, 7406–7411. [Google Scholar] [CrossRef] [PubMed]
- Camprodon-Rosanas, E.; Ribas-Fitó, N.; Batlle, S.; Persavento, C.; Alvarez-Pedrerol, M.; Sunyer, J.; Forns, J. Association Between Sluggish Cognitive Tempo Symptoms and Attentional Network and Working Memory in Primary Schoolchildren. J. Atten. Disord. 2020, 24, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, A.; Tobia, V.; Fossati, A.; Somma, A.; Torelli, A.; Ogliari, A.L. The neuropsychological correlates of (sluggish) cognitive tempo scales in school-aged children. Child Neuropsychol. 2022, 29, 847–861. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, H.J. Normal executive attention but abnormal orienting attention in individuals with sluggish cognitive tempo. Int. J. Clin. Health Psychol. 2021, 21, 100199. [Google Scholar] [CrossRef]
- Krone, B.; Bédard, A.-C.; Schulz, K.; Ivanov, I.; Stein, M.; Newcorn, J. Neuropsychological correlates of ADHD: Indicators of different attentional profiles among youth with sluggish cognitive tempo. Front. Child Adolesc. Psychiatry 2023, 2, 1208660. [Google Scholar] [CrossRef]
- Becker, S.P.; Barkley, R.A. Field of daydreams? Integrating mind wandering in the study of sluggish cognitive tempo and ADHD. JCPP Adv. 2021, 1, e12002. [Google Scholar] [CrossRef]
- Kakigi, R.; Hoshiyama, M.; Shimojo, M.; Naka, D.; Yamasaki, H.; Watanabe, S.; Xiang, J.; Maeda, K.; Lam, K.; Itomi, K. The somatosensory evoked magnetic fields. Prog. Neurobiol. 2000, 61, 495–523. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Kaufman, A.; Kaufman, N. Kaufman Brief Intelligence Test (K-BIT-2); Pearson Assessment: Minneapolis, MN, USA, 2004. [Google Scholar]
- Becker, S.P.; Luebbe, A.M.; Joyce, A.M. The Child Concentration Inventory (CCI): Initial validation of a child self-report measure of sluggish cognitive tempo. Psychol. Assess. 2015, 27, 1037. [Google Scholar] [CrossRef]
- Holdaway, A.S.; Becker, S.P. Sluggish cognitive tempo and student–teacher relationship quality: Short-term longitudinal and concurrent associations. Sch. Psychol. Q. 2018, 33, 537. [Google Scholar] [CrossRef]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef]
- Rueda, M.R.; Fan, J.; McCandliss, B.D.; Halparin, J.D.; Gruber, D.B.; Lercari, L.P.; Posner, M.I. Development of attentional networks in childhood. Neuropsychologia 2004, 42, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Korman, A.; Samarasinghe, K.M.; Wang, X.; Zhang, F.; Qiao, H.; Sun, B.; Wang, F.; Fan, H.H.; Thompson, E.A. Volumetric imaging of brain activity with spatial-frequency decoding of neuromagnetic signals. J. Neurosci. Methods 2015, 239, 114–128. [Google Scholar] [CrossRef]
- Ren, J.; Yao, Q.; Tian, M.; Li, F.; Chen, Y.; Chen, Q.; Xiang, J.; Shi, J. Altered effective connectivity in migraine patients during emotional stimuli: A multi-frequency magnetoencephalography study. J. Headache Pain 2022, 23, 6. [Google Scholar] [CrossRef]
- Pardos, M.; Korostenskaja, M.; Xiang, J.; Fujiwara, H.; Lee, K.H.; Horn, P.S.; Byars, A.; Vannest, J.; Wang, Y.; Hemasilpin, N. Physical feature encoding and word recognition abilities are altered in children with intractable epilepsy: Preliminary neuromagnetic evidence. Behav. Neurol. 2015, 2015, 237436. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kim, J.S.; Chung, C.K. Neural correlates of immediate and delayed word recognition memory: An MEG study. Brain Res. 2008, 1240, 132–142. [Google Scholar] [CrossRef]
- Leiken, K.A.; Xiang, J.; Curry, E.; Fujiwara, H.; Rose, D.F.; Allen, J.R.; Kacperski, J.E.; O’Brien, H.L.; Kabbouche, M.A.; Powers, S.W.; et al. Quantitative neuromagnetic signatures of aberrant cortical excitability in pediatric chronic migraine. J. Headache Pain 2016, 17, 46. [Google Scholar] [CrossRef]
- Gummadavelli, A.; Wang, Y.; Guo, X.; Pardos, M.; Chu, H.; Liu, Y.; Horn, P.; Zhang, F.; Xiang, J. Spatiotemporal and frequency signatures of word recognition in the developing brain: A magnetoencephalographic study. Brain Res. 2013, 1498, 20–32. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, Y.; Chen, Y.; Liu, Y.; Kotecha, R.; Huo, X.; Rose, D.F.; Fujiwara, H.; Hemasilpin, N.; Lee, K.; et al. Noninvasive localization of epileptogenic zones with ictal high-frequency neuromagnetic signals: Case report. J. Neurosurg. Pediatr. 2010, 5, 113–122. [Google Scholar] [CrossRef]
- Xiang, J.; Luo, Q.; Kotecha, R.; Korman, A.; Zhang, F.; Luo, H.; Fujiwara, H.; Hemasilpin, N.; Rose, D.F. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals. Front. Neuroinform 2014, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Baillet, S.; Barnes, G.R.; Henson, R.N.; Hillebrand, A.; Jensen, O.; Jerbi, K.; Litvak, V.; Maess, B.; Oostenveld, R. Good practice for conducting and reporting MEG research. Neuroimage 2013, 65, 349–363. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Revelle, W.R. psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2017. [Google Scholar]
- Bates, D.; Sarkar, D.; Bates, M.D.; Matrix, L. The lme4 package. R Package Version 2007, 2, 74. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Adólfsdóttir, S.; Sørensen, L.; Lundervold, A.J. The attention network test: A characteristic pattern of deficits in children with ADHD. Behav. Brain Funct. 2008, 4, 1–9. [Google Scholar] [CrossRef]
- Federico, F.; Marotta, A.; Martella, D.; Casagrande, M. Development in attention functions and social processing: Evidence from the Attention Network Test. Br. J. Dev. Psychol. 2017, 35, 169–185. [Google Scholar] [CrossRef]
- Bieleninik, Ł.; Gradys, G.; Dzhambov, A.M.; Walczak-Kozłowska, T.; Lipowska, K.; Łada-Maśko, A.; Sitnik-Warchulska, K.; Anikiej-Wiczenbach, P.; Harciarek, M.; Lipowska, M. Attention deficit in primary-school-age children with attention deficit hyperactivity disorder measured with the attention network test: A systematic review and meta-analysis. Front. Neurosci. 2023, 17, 1246490. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.H. The Deficit of Early Selective Attention in Adults With Sluggish Cognitive Tempo: In Comparison With Those With Attention-Deficit/Hyperactivity Disorder. Front. Psychol. 2021, 12, 614213. [Google Scholar] [CrossRef]
- Gehring, W.J.; Fencsik, D.E. Functions of the medial frontal cortex in the processing of conflict and errors. J. Neurosci. 2001, 21, 9430–9437. [Google Scholar] [CrossRef]
- Ninomiya, T.; Noritake, A.; Ullsperger, M.; Isoda, M. Performance monitoring in the medial frontal cortex and related neural networks: From monitoring self actions to understanding others’ actions. Neurosci. Res. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Fu, Z.; Sajad, A.; Errington, S.P.; Schall, J.D.; Rutishauser, U. Neurophysiological mechanisms of error monitoring in human and non-human primates. Nat. Rev. Neurosci. 2023, 24, 153–172. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; McCandliss, B.D.; Fossella, J.; Flombaum, J.I.; Posner, M.I. The activation of attentional networks. NeuroImage 2005, 26, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.; Luu, P.; Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 2000, 4, 215–222. [Google Scholar] [CrossRef]
- Becker, S.P.; Braimah, A.; Dudley, J.A.; Tamm, L.; Epstein, J.N. Resting-State Functional Connectivity in a Community Sample of Children With a Range of Cognitive Disengagement Syndrome Symptoms. JAACAP Open 2024, in press. [CrossRef]
Age (at Inclusion Visit) | |
---|---|
8–12 years (M = 9.95, SD = 1.45) | |
IQ | |
84–135 (M = 109.51, SD = 12.76) | |
Sex | |
Female | n = 17 (37.2%) |
Male | n = 26 (62.8%) |
Race/Ethnicity | |
Black | n = 2 (4.7%) |
Hispanic | n = 1 (2.3%) |
Multiracial | n = 2 (4.7%) |
White | n = 38 (88.4%) |
Family Income | |
Up to USD 40,000 | n = 3 (7.0%) |
USD 40,001–USD 80,000 | n = 10 (23.3%) |
USD 80,001–USD 120,000 | n = 15 (34.9%) |
Over USD 120,000 | n = 15 (34.9%) |
ADHD Presentation | |
Inattentive presentation | n = 20 (46.5%) |
Combined presentation | n = 6 (14.0%) |
No ADHD | n = 17 (39.5%) |
Other Diagnoses | |
Oppositional defiant disorder | n = 4 (9.3%) |
Generalized anxiety disorder | n = 2 (4.7%) |
Social anxiety disorder | n = 2 (4.7%) |
Specific phobia | n = 1 (4.7%) |
Dysthymia | n = 1 (2.3%) |
Congruency | Cue | RT (ms) | Accuracy (100%) | Partial Correlation Between RT and CDS | Partial Correlation Between Accuracy and CDS | ||||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | r | p | r | p | ||
Congruent | No cue | 666.16 | 81.97 | 0.89 | 0.10 | −0.11 | 0.48 | 0.03 | 0.84 |
Center cue | 645.81 | 93.44 | 0.90 | 0.10 | 0.01 | 0.91 | 0.02 | 0.87 | |
Double cue | 637.92 | 88.05 | 0.90 | 0.10 | 0.05 | 0.97 | −0.03 | 0.83 | |
Spatial cue | 605.07 | 80.36 | 0.92 | 0.08 | −0.001 | 0.99 | −0.06 | 0.69 | |
Incongruent | No cue | 717.11 | 85.60 | 0.86 | 0.12 | −0.04 | 0.82 | −0.02 | 0.89 |
Center cue | 702.05 | 84.62 | 0.86 | 0.13 | −0.02 | 0.91 | −0.03 | 0.87 | |
Double cue | 689.89 | 92.94 | 0.90 | 0.10 | −0.09 | 0.56 | −0.04 | 0.83 | |
Spatial cue | 634.87 | 87.81 | 0.92 | 0.09 | −0.04 | 0.79 | 0.02 | 0.88 | |
Attention network score | Alerting | 27.73 | 30.03 | – | – | −0.07 | 0.65 | – | – |
Orienting | 53.96 | 30.96 | – | – | 0.07 | 0.68 | – | – | |
Executive | 47.24 | 25.28 | – | – | −0.10 | 0.54 | – | – |
Condition | M2 | M3 | ||
---|---|---|---|---|
M | SD | M | SD | |
No cue | 194.01 | 57.18 | 223.30 | 74.50 |
Center cue | 210.30 | 64.10 | 241.46 | 82.17 |
Double cue | 229.37 | 85.13 | 226.00 | 58.31 |
Spatial cue | 214.41 | 67.23 | 214.74 | 69.61 |
Congruent | 182.34 | 94.43 | 184.71 | 88.72 |
Incongruent | 212.98 | 79.50 | 239.98 | 79.50 |
ERF | Region of Interest | Congruency | M | SD |
---|---|---|---|---|
M2 | Medial prefrontal cortex | Congruent | 60.58 | 17.90 |
Incongruent | 45.33 | 34.62 | ||
Right superior parietal lobe | Congruent | 72.28 | 22.60 | |
Incongruent | 73.56 | 18.64 | ||
M3 | Medial prefrontal cortex | Congruent | 45.95 | 27.98 |
Incongruent | 39.71 | 34.50 | ||
Right superior parietal lobe | Congruent | 74.21 | 21.94 | |
Incongruent | 69.79 | 21.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Xiang, J.; Epstein, J.N.; Tamm, L.; Foster, J.A.; Becker, S.P. Neural Correlates of Cognitive Disengagement Syndrome Symptoms in Children: A Magnetoencephalography Study. Brain Sci. 2025, 15, 624. https://doi.org/10.3390/brainsci15060624
Yu X, Xiang J, Epstein JN, Tamm L, Foster JA, Becker SP. Neural Correlates of Cognitive Disengagement Syndrome Symptoms in Children: A Magnetoencephalography Study. Brain Sciences. 2025; 15(6):624. https://doi.org/10.3390/brainsci15060624
Chicago/Turabian StyleYu, Xiaoqian, Jing Xiang, Jeffery N. Epstein, Leanne Tamm, Josalyn A. Foster, and Stephen P. Becker. 2025. "Neural Correlates of Cognitive Disengagement Syndrome Symptoms in Children: A Magnetoencephalography Study" Brain Sciences 15, no. 6: 624. https://doi.org/10.3390/brainsci15060624
APA StyleYu, X., Xiang, J., Epstein, J. N., Tamm, L., Foster, J. A., & Becker, S. P. (2025). Neural Correlates of Cognitive Disengagement Syndrome Symptoms in Children: A Magnetoencephalography Study. Brain Sciences, 15(6), 624. https://doi.org/10.3390/brainsci15060624