Separating Subjective from Objective Food Value in the Human Insula: An Exploratory Study Using Intracranial EEG
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Insular Response to and Subjective Rating of Visual Food Stimuli
2.3. iEEG Recording and Analyses
2.4. Statistical Analyses
2.4.1. Group Analyses
2.4.2. Exploratory Correlation Analyses
3. Results
3.1. Group Analyses
3.2. Exploratory Correlation Analyses
4. Discussion
4.1. The Insula’s Response to External Food Cues Is Modulated by Changes in Homeostasis
4.2. The Mid-Insula, a Food Cue Integration Hub?
4.3. Tying Insular Activity to Subjective Experiences and Implicit Nutritional Data
4.4. Nutritional Content Signalling Within the Insula Operates Largely Independently of Subjective Value
4.5. Limits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shura, R.D.; Hurley, R.A.; Taber, K.H. Insular Cortex: Structural and Functional Neuroanatomy. J. Neuropsychiatry Clin. Neurosci. 2014, 26, 276–282. [Google Scholar] [CrossRef]
- Flynn, F.G. Anatomy of the insula functional and clinical correlates. Aphasiology 1999, 13, 55–57. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Nomi, J.S.; Hébert-Seropian, B.; Ghaziri, J.; Boucher, O. Structure and Function of the Human Insula. J. Clin. Neurophysiol. 2017, 34, 300–306. [Google Scholar] [CrossRef]
- Ghaziri, J.; Tucholka, A.; Girard, G.; Houde, J.C.; Boucher, O.; Gilbert, G.; Descoteaux, M.; Lippé, S.; Rainville, P.; Nguyen, D.K. The Corticocortical Structural Connectivity of the Human Insula. Cereb. Cortex 2017, 27, 1216–1228. [Google Scholar] [CrossRef]
- Ghaziri, J.; Tucholka, A.; Girard, G.; Boucher, O.; Houde, J.C.; Descoteaux, M.; Obaid, S.; Gilbert, G.; Rouleau, I.; Nguyen, D.K. Subcortical structural connectivity of insular subregions. Sci. Rep. 2018, 8, 8596. [Google Scholar] [CrossRef]
- Small, D.M.; Zaldh, D.H.; Jones-Gotman, M.; Zatorre, R.J.; Pardo, J.V.; Frey, S.; Petrides, M. Human cortical gustatory areas: A review of functional neuroimaging data. Neuroreport 1999, 10, 7–14. [Google Scholar] [CrossRef]
- Small, D.M. Taste representation in the human insula. Brain Struct. Funct. 2010, 214, 551–561. [Google Scholar] [CrossRef]
- Rolls, E.T. Functions of the anterior insula in taste, autonomic, and related functions. Brain Cogn. 2016, 110, 4–19. [Google Scholar] [CrossRef]
- Chikazoe, J.; Lee, D.H.; Kriegeskorte, N.; Anderson, A.K. Distinct representations of basic taste qualities in human gustatory cortex. Nat. Commun. 2019, 10, 1048. [Google Scholar] [CrossRef]
- Avery, J.A.; Liu, A.G.; Ingeholm, J.E.; Riddell, C.D.; Gotts, S.J.; Martin, A. Taste Quality Representation in the Human Brain. J. Neurosci. 2020, 40, 1042–1052. [Google Scholar] [CrossRef]
- Veldhuizen, M.G.; Albrecht, J.; Zelano, C.; Boesveldt, S.; Breslin, P.; Lundström, J.N. Identification of human gustatory cortex by activation likelihood estimation. Hum. Brain Mapp. 2011, 32, 2256–2266. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Miller, L.A.; McGrillen, K. The lateralization of gustatory function and the flow of information from tongue to cortex. Neuropsychologia 2013, 51, 1408–1416. [Google Scholar] [CrossRef]
- van der Laan, L.N.; de Ridder, D.T.D.; Viergever, M.A.; Smeets, P.A.M. The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues. NeuroImage 2011, 55, 296–303. [Google Scholar] [CrossRef]
- Simmons, W.K.; Rapuano, K.M.; Kallman, S.J.; Ingeholm, J.E.; Miller, B.; Gotts, S.J.; Avery, J.A.; Hall, K.D.; Martin, A. Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nat. Neurosci. 2013, 16, 1551–1552. [Google Scholar] [CrossRef]
- Avery, J.A.; Gotts, S.J.; Kerr, K.L.; Burrows, K.; Ingeholm, J.E.; Bodurka, J.; Martin, A.; Kyle Simmons, W. Convergent gustatory and viscerosensory processing in the human dorsal mid-insula. Hum. Brain Mapp. 2017, 38, 2150–2164. [Google Scholar] [CrossRef]
- Avery, J.A.; Kerr, K.L.; Ingelhom, J.E.; Burrows, K.; Bodurka, J.; Simmons, W.K. A common gustatory and interoceptive representation in the human mid-insula. Hum. Brain Mapp. 2015, 38, 2996–3006. [Google Scholar] [CrossRef]
- Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 2015, 16, 419–429. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Millidge, B.; Seth, A.K.; Buckley, C.L. Predictive Coding: A Theoretical and Experimental Review. arXiv 2021, arXiv:2107.12979. [Google Scholar]
- Barbas, H.; Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 1997, 7, 635–646. [Google Scholar] [CrossRef]
- Avery, J.A.; Burrows, K.; Kerr, K.L.; Bodurka, J.; Khalsa, S.S.; Paulus, M.P.; Simmons, W.K. How the Brain Wants What the Body Needs: The Neural Basis of Positive Alliesthesia. Neuropsychopharmacology 2017, 42, 822–830. [Google Scholar] [CrossRef]
- Avery, J.A.; Powell, J.N.; FBreslin, F.J.; Lepping, R.J.; Martin, L.E.; Patrician, T.M.; Donnelly, J.E.; Savage, C.R.; Simmons, A.N. Obesity is associated with altered mid-insula functional connectivity to limbic regions underlying appetitive responses to foods. J. Psychopharmacol. 2017, 31, 1475–1484. [Google Scholar] [CrossRef]
- Livneh, Y.; Sugden, A.U.; Madara, J.C.; Essner, R.A.; Flores, V.I.; Sugden, L.A.; Resch, J.M.; Lowell, B.B.; Andermann, M.L. Estimation of Current and Future Physiological States in Insular Cortex. Neuron 2020, 105, 1094–1111.e1010. [Google Scholar] [CrossRef]
- Holtz, K.; Pané-Farré, C.A.; Wendt, J.; Lotze, M.; Hamm, A.O. Brain activation during anticipation of interoceptive threat. NeuroImage 2012, 61, 857–865. [Google Scholar] [CrossRef]
- Lovero, K.L.; Simmons, A.N.; Aron, J.L.; Paulus, M.P. Anterior insular cortex anticipates impending stimulus significance. Neuroimage 2009, 45, 976–983. [Google Scholar] [CrossRef]
- Strigo, I.A.; Matthews, S.C.; Simmons, A.N. Right anterior insula hypoactivity during anticipation of homeostatic shifts in major depressive disorder. Psychosom. Med. 2010, 72, 316–323. [Google Scholar] [CrossRef]
- de Araujo, I.E.; Schatzker, M.; Small, D.M. Rethinking Food Reward. Annu. Rev. Psychol. 2020, 71, 139–164. [Google Scholar] [CrossRef]
- Saper, C.B.; Chou, T.C.; Elmquist, J.K. The need to feed: Homeostatic and hedonic control of eating. Neuron 2002, 36, 199–211. [Google Scholar] [CrossRef]
- Glendinning, J.I.; Beltran, F.; Benton, L.; Cheng, S.; Gieseke, J.; Gillman, J.; Spain, H.N. Taste does not determine daily intake of dilute sugar solutions in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1333–R1341. [Google Scholar] [CrossRef]
- Ren, X.; Ferreira, J.G.; Zhou, L.; Shammah-Lagnado, S.J.; Yeckel, C.W.; de Araujo, I.E. Nutrient selection in the absence of taste receptor signalling. J. Neurosci. 2010, 30, 8012–8023. [Google Scholar] [CrossRef]
- Zandstra, E.H.; De Graaf, C.; Mela, D.J.; Van Staveren, W.A. Short- and long-term effects of changes in pleasantness on food intake. Appetite 2000, 34, 253–260. [Google Scholar] [CrossRef]
- Finlayson, G.; King, N.; Blundell, J. The role of implicit wanting in relation to explicit liking and wanting for food: Implications for appetite control. Appetite 2008, 50, 120–127. [Google Scholar] [CrossRef]
- Wall, K.M.; Farruggia, M.C.; Perszyk, E.E.; Kanyamibwa, A.; Fromm, S.; Davis, X.S.; Dalenberg, J.R.; DiFeliceantonio, A.G.; Small, D.M. No evidence for an association between obesity and milkshake liking. Int. J. Obes. 2020, 44, 1668–1677. [Google Scholar] [CrossRef]
- Holman, G.L. Intragastric reinforcement effect. J. Comp. Physiol. Psychol. 1969, 69, 432–441. [Google Scholar] [CrossRef]
- Yeomans, M.R.; Leitch, M.; Gould, N.J.; Mobini, S. Differential hedonic, sensory and behavioral changes associated with flavor-nutrient and flavor-flavor learning. Physiol. Behav. 2008, 93, 798–806. [Google Scholar] [CrossRef]
- Surbeck, W.; Bouthillier, A.; Weil, A.G.; Crevier, L.; Carmant, L.; Lortie, A.; Major, P.; Nguyen, D.K. The combination of subdural and depth electrodes for intracranial EEG investigation of suspected insular (perisylvian) epilepsy. Epilepsia 2011, 52, 458–466. [Google Scholar] [CrossRef]
- Lachaux, J.P.; Rudrauf, D.; Kahane, P. Intracranial EEG and human brain mapping. J. Physiol. Paris. 2003, 97, 613–628. [Google Scholar] [CrossRef]
- Blechert, J.; Lender, A.; Polk, S.; Busch, N.A.; Ohla, K. Food-Pics_Extended-An Image Database for Experimental Research on Eating and Appetite: Additional Images, Normative Ratings and an Updated Review. Front. Psychol. 2019, 10, 307. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef]
- Thorpe, S.; Fize, D.; Marlot, C. Speed of processing in the human visual system. Nature 1996, 381, 520–522. [Google Scholar] [CrossRef]
- Brideau-Duquette, M.; Boucher, O.; Tremblay, J.; Robert, M.; Bouthillier, A.; Lepore, F.; Nguyen, D.K. Insular Cortex Response to Static Visual Sexual Stimuli. J. Psychophysiol. 2021, 36, 83–99. [Google Scholar] [CrossRef]
- Citherlet, D.; Boucher, O.; Tremblay, J.; Robert, M.; Gallagher, A.; Bouthillier, A.; Lepore, F.; Nguyen, D.K. Role of the insula in top-down processing: An intracranial EEG study using a visual oddball detection paradigm. Brain Struct. Funct. 2019, 224, 2045–2059. [Google Scholar] [CrossRef]
- Page, K.A.; Seo, D.; Belfort-DeAguiar, R.; Lacadie, C.; Dzuira, J.; Naik, S.; Amarnath, S.; Constable, R.T.; Sherwin, R.S.; Sinha, R. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J. Clin. Invest. 2011, 121, 4161–4169. [Google Scholar] [CrossRef]
- Small, D.M.; Zatorre, R.J.; Dagher, A.; Evans, A.C.; Jones-Gotman, M. Changes in brain activity related to eating chocolate: From pleasure to aversion. Brain 2001, 124, 1720–1733. [Google Scholar] [CrossRef]
- Stice, E.; Burger, K.; Yokum, S. Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. Neuroimage 2013, 67, 322–330. [Google Scholar] [CrossRef]
- Uher, R.; Treasure, J.; Heining, M.; Brammer, M.J.; Campbell, I.C. Cerebral processing of food-related stimuli: Effects of fasting and gender. Behav. Brain Res. 2006, 169, 111–119. [Google Scholar] [CrossRef]
- Simmons, W.K.; Burrows, K.; Avery, J.A.; Kerr, K.L.; Bodurka, J.; Savage, C.R.; Drevets, W.C. Depression-Related Increases and Decreases in Appetite: Dissociable Patterns of Aberrant Activity in Reward and Interoceptive Neurocircuitry. Am. J. Psychiatry 2016, 173, 418–428. [Google Scholar] [CrossRef]
- van Meer, F.; van der Laan, L.N.; Adan, R.A.H.; Viergever, M.A.; Smeets, P.A.M. What you see is what you eat: An ALE meta-analysis of the neural correlates of food viewing in children and adolescents. NeuroImage 2015, 104, 35–43. [Google Scholar] [CrossRef]
- Brown, S.B.; van Steenbergen, H.; Band, G.P.; de Rover, M.; Nieuwenhuis, S. Functional significance of the emotion-related late positive potential. Front. Hum. Neurosci. 2012, 6, 33. [Google Scholar] [CrossRef]
- Kogo, N.; Trengove, C. Is predictive coding theory articulated enough to be testable? Front. Comput. Neurosci. 2015, 9, 111. [Google Scholar] [CrossRef]
- Lauffs, M.M.; Geoghan, S.A.; Favrod, O.; Herzog, M.H.; Preuschoff, K. Risk prediction error signalling: A two-component response? NeuroImage 2020, 214, 116766. [Google Scholar] [CrossRef]
- Harsay, H.A.; Spaan, M.; Wijnen, J.G.; Ridderinkhof, K.R. Error awareness and salience processing in the oddball task: Shared neural mechanisms. Front. Hum. Neurosci. 2012, 6, 246. [Google Scholar] [CrossRef]
- Bradley, M.M.; Miccoli, L.; Escrig, M.A.; Lang, P.J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 2008, 45, 602–607. [Google Scholar] [CrossRef]
- Koss, M.C. Pupillary dilation as an index of central nervous system alpha 2-adrenoceptor activation. J. Pharmacol. Methods 1986, 15, 1–19. [Google Scholar] [CrossRef]
- Preuschoff, K.; Hart, B.M.; Einhäuser, W. Pupil Dilation Signals Surprise: Evidence for Noradrenaline’s Role in Decision Making. Front. Neurosci. 2011, 5, 115. [Google Scholar] [CrossRef]
- Friedman, D.; Hakerem, G.; Sutton, S.; Fleiss, J.L. Effect of stimulus uncertainty on the pupillary dilation response and the vertex evoked potential. Electroencephalogr. Clin. Neurophysiol. 1973, 34, 475–484. [Google Scholar] [CrossRef]
- Preuschoff, K.; Quartz, S.R.; Brossaerts, P. Human insula activation reflects risk prediction errors as well as risk. J. Neurosci. 2008, 28, 2745–2752. [Google Scholar] [CrossRef]
- Roquet, D.; Conti, F. Disentangling the Association between the Insula and the Autonomic Nervous System. J. Neurosci. 2021, 41, 3051–3053. [Google Scholar] [CrossRef]
- Kucyi, A.; Parvizi, J. Pupillary Dynamics Link Spontaneous and Task-Evoked Activations Recorded Directly from Human Insula. J. Neurosci. 2020, 40, 6207–6218. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Cohen, J. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef]
- Harris, D.J.; Arthur, T.; Vine, S.J.; Liu, J.; Abd Rahman, H.R.; Han, F.; Wilson, M.R. Task-evoked pupillary responses track precision-weighted prediction errors and learning rate during interceptive visuomotor actions. Sci. Rep. 2022, 12, 22098. [Google Scholar] [CrossRef]
- Stice, E.; Burger, K.S.; Yokum, S. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am. J. Clin. Nutr. 2013, 98, 1377–1384. [Google Scholar] [CrossRef]
- de Araujo, I.E.; Geha, P.; Small, D.M. Orosensory and Homeostatic Functions of the Insular Taste Cortex. Chem. Percept. 2012, 5, 64–79. [Google Scholar] [CrossRef]
- Kringelbach, M. The pleasure of food: Underlying brain mechanisms of eating and other pleasures. Flavour 2015, 4, 20. [Google Scholar] [CrossRef]
- Frank, S.; Kullman, S.; Veit, R. Food related processes in the insular cortex. Front. Human. Neurosci. 2013, 23, 499. [Google Scholar] [CrossRef]
- Dagher, A. Functional brain imaging of appetite. Trends Endocrinol. Metab. TEM 2012, 23, 250–260. [Google Scholar] [CrossRef]
- Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. 2002, 3, 655–666. [Google Scholar] [CrossRef]
- Kurth, F.; Zilles, K.; Fox, P.T.; Laird, A.R.; Eickhoff, S.B. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 2010, 214, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Morales, I.; Berridge, K.C. ‘Liking’ and ‘wanting’ in eating and food reward: Brain mechanisms and clinical implications. Physiol. Behav. 2020, 227, 113152. [Google Scholar] [CrossRef]
- Dimitropoulos, A.; Tkach, J.; Ho, A.; Kennedy, J. Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite 2012, 58, 303–312. [Google Scholar] [CrossRef]
- Hébert-Seropian, B.; Boucher, O.; Jutras-Aswad, D.; Nguyen, D.K. Uncommon case of complete loss of hunger following an isolated left insular stroke. Neurocase 2021, 27, 349–353. [Google Scholar] [CrossRef]
- Hébert-Seropian, B.; Boucher, O.; Citherlet, D.; Roy-Côté, F.; Gravel, V.; Bouthillier, A. Decreased self-reported appetite following insular cortex resection in patients with epilepsy. Appetite 2021, 166, 105479. [Google Scholar] [CrossRef]
- Simmons, W.K.; DeVille, D.C. Interoceptive contributions to healthy eating and obesity. Curr. Opin. Psychol. 2017, 17, 106–112. [Google Scholar] [CrossRef]
- Roberts, C.A.; Giesbrecht, T.; Fallon, N.; Thomas, A.; Mela, D.J.; Kirkham, T.C. A Systematic Review and Activation Likelihood Estimation Meta-Analysis of fMRI Studies on Sweet Taste in Humans. J. Nutr. 2020, 150, 1619–1630. [Google Scholar] [CrossRef]
- Haase, L.; Cerf-Ducastel, B.; Buracas, G.; Murphy, C. On-line psychophysical data acquisition and event-related fMRI protocol optimized for the investigation of brain activation in response to gustatory stimuli. J. Neurosci. Methods 2007, 159, 98–107. [Google Scholar] [CrossRef]
- Eiler, W.J.A.; Dzemidzic, M.; Soeurt, C.M.; Carron, C.R.; Oberlin, B.G.; Considine, R.V.; Harezlak, J.; Kareken, D.A. Family history of alcoholism and the human brain response to oral sucrose. NeuroImage Clin. 2018, 17, 1036–1046. [Google Scholar] [CrossRef]
- de Araujo, I.E.; Kringelbach, M.L.; Rolls, E.T.; McGlone, F. Human cortical responses to water in the mouth, and the effects of thirst. J. Neurophysiol. 2003, 90, 1865–1876. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Telang, F.; Jayne, M.; Ma, J.; Rao, M.; Zhu, W.; Wong, C.T.; Pappas, N.R.; Geliebter, A.; et al. Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage 2004, 21, 1790–1797. [Google Scholar] [CrossRef]
- Sawada, R.; Sato, W.; Minemoto, K.; Fushiki, T. Hunger promotes the detection of high-fat food. Appetite 2019, 142, 104377. [Google Scholar] [CrossRef]
- Otterbring, T.; Folwarczny, M.; Gidlöf, K. Hunger effects on option quality for hedonic and utilitarian food products. Food Qual. Prefer. 2023, 103, 104693. [Google Scholar] [CrossRef]
- Shiv, B.; Fedorikhin, A. Heart and Mind in Conflict: The Interplay of Affect and Cognition in Consumer Decision Making. J. Consum. Res. 1999, 26, 278–292. [Google Scholar] [CrossRef]
- de Araujo, I.E.; Lin, T.; Veldhuizen, M.G.; Small, D.M. Metabolic regulation of brain response to food cues. Curr. Biol. 2013, 23, 878–883. [Google Scholar] [CrossRef]
- Kroemer, N.B.; Krebs, L.; Kobiella, A.; Grimm, O.; Vollstädt-Klein, S.; Wolfensteller, U.; Kling, R.; Bidlingmaier, M.; Zimmermann, U.S.; Smolka, M.N. (Still) longing for food: Insulin reactivity modulates response to food pictures. Hum. Brain Mapp. 2013, 34, 2367–2380. [Google Scholar] [CrossRef]
- Bohórquez, D.V.; Shahid, R.A.; Erdmann, A.; Kreger, A.M.; Wang, Y.; Calakos, N.; Wang, F.; Liddle, R.A. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 2015, 125, 782–786. [Google Scholar] [CrossRef]
- Han, W.; Tellez, L.A.; Perkins, M.H.; Perez, I.O.; Qu, T.; Ferreira, J.; Ferreira, T.L.; Quinn, D.; Liu, Z.W.; Gao, X.B.; et al. A Neural Circuit for Gut-Induced Reward. Cell 2018, 175, 665–678.e623. [Google Scholar] [CrossRef]
- Jarero-Basulto, J.J.; Gasca-Martínez, Y.; Rivera-Cervantes, M.C.; Ureña-Guerrero, M.E.; Feria-Velasco, A.I.; Beas-Zarate3, C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals 2018, 11, 17. [Google Scholar] [CrossRef]
- Scharfman, H.E. Epilepsy as an Example of Neural Plasticity. Neuroscientist 2008, 8, 154–173. [Google Scholar] [CrossRef]
- Spetter, M.S.; Malekshahi, R.; Birbaumer, N.; Lührs, M.; van der Veer, A.H.; Scheffler, K.; Spuckti, S.; Preissl, H.; Veit, R.; Hallschmid, M. Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real-time fMRI feedback study. Appetite 2017, 112, 188–195. [Google Scholar] [CrossRef]
- Knyahnytska, Y.O.; Blumberger, D.M.; Daskalakis, Z.J.; Zomorrodi, R.; Kaplan, A.S. Insula H-coil deep transcranial magnetic stimulation in severe and enduring anorexia nervosa (SE-AN): A pilot study. Neuropsychiatr. Dis. Treat. 2019, 15, 2247–2256. [Google Scholar] [CrossRef]
- Ibrahim, C.; Tang, V.M.; Blumberger, D.M.; Malik, S.; Tyndale, R.F.; Trevizol, A.P.; Barr, M.S.; Daskalakis, Z.J.; Zangen, A.; Le Foll, B. Efficacy of insula deep repetitive transcranial magnetic stimulation combined with varenicline for smoking cessation: A randomized, double-blind, sham controlled trial. Brain Stimul. 2023, 16, 1501–1509. [Google Scholar] [CrossRef]
Pt. | Sex | Age (y) | Age 1st Sz (y) | Extra-Ins. Con. | Ins. Con. | Bipolar Con. for Analysis | Pre-Surgical Cerebral MRI Findings | Sz. Focus | Post-Testing Surgery |
---|---|---|---|---|---|---|---|---|---|
1 | f | 37 | 23 | R (C, F); L (C, F) | 27 | 14 (7 R [2 aI, 1 mI, 4 pI]; 7 L [1 aI, 1 mI, 5 pI]) | Normal | R cingulate | R cingular cortectomy |
2 | m | 54 | 22 | R (F, T) | 15 | 8 R (4 aI, 1 mI, 3 pI) | Normal | R hippocampo-amygdalar | None |
3 | f | 33 | 2 | L (F, T) | 13 | 10 L (6 aI, 2 mI, 2 pI) | Normal (s/p L antero-temporal lobectomy 2 y prior) | L temporo-insular | L temporal lobectomy and L inferior insulectomy |
4 | m | 30 | 24 | R (F, T, P, O) | 9 | 5 R (4 aI, 1 mI) | R occipital nodules | R occipital (nodules) | Laser ablation of R occipital nodules |
5 | m | 36 | 14 | R (F, C) | 12 | 6 R (1 mI, 5 pI) | Normal | Unclear | None |
6 | m | 57 | 25 | R (T, O); L (T, O) | 14 | 10 (6 R [5 aI, 1 mI]; 4 L [2 aI, 1 mI, 1 pi]) | Encephalomalacia in bilateral occipital region | Hippocampi (bilateral) | None |
7 | m | 44 | 12 | R (F, T) | 4 | 3 R (3 aI) | R cortical dysplasia type II | Unclear (possibly bitemporal) | R frontal cortectomy |
8 | f | 21 | 14 | R (C, F) | 8 | 4 R (2 mI, 2 pI) | Normal (s/p R frontal cortectomy 3 y prior) | R frontal and R centro-temporal | Completion of R frontal cortectomy |
Prandial State | ERP Interval | Stimuli | Signed (+/−) Amplitude | Unsigned (+) Amplitude | Paired Differences (Unsigned Values) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | t | df | p | |||
Hungry | 150–250 ms | Food | 0.56 | 2.33 | 9.87 | 3.80 | 0.50 | 1.80 | 2.15 | 59 | 0.018 |
Non-Food | −0.14 | 3.77 | 9.37 | 3.51 | |||||||
350–450 ms | Food | 0.61 | 4.43 | 10.95 | 4.21 | 0.71 | 1.86 | 2.97 | 59 | 0.002 | |
Non-Food | 0.13 | 3.77 | 10.24 | 4.25 | |||||||
Satiated | 150–250 ms | Food | 0.46 | 3.69 | 10.38 | 3.98 | 0.68 | 1.85 | 2.86 | 59 | 0.003 |
Non-Food | −0.33 | 3.56 | 9.70 | 3.79 | |||||||
350–450 ms | Food | 0.68 | 4.33 | 10.47 | 3.88 | −0.17 | 2.47 | −0.54 | 59 | 0.295 | |
Non-Food | 0.19 | 4.31 | 10.64 | 4.38 |
ERP Interval | Prandial State | Signed (+/−) Amplitude | Unsigned (+) Amplitude | Paired Differences (Unsigned Values) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | t | df | p | ||
150–250 ms | Hungry | 0.56 | 2.33 | 9.87 | 3.80 | −0.51 | 2.08 | −1.90 | 59 | 0.031 |
Satiated | 0.46 | 3.69 | 10.38 | 3.98 | ||||||
350–450 ms | Hungry | 0.61 | 4.43 | 10.95 | 4.21 | 0.49 | 1.97 | 1.92 | 59 | 0.030 |
Satiated | 0.68 | 4.33 | 10.47 | 3.88 |
ERP Interval | Prandial State | Anterior (n = 22) | Middle (n = 13) | Posterior (n = 25) | F (4, 55) a | |||
---|---|---|---|---|---|---|---|---|
Signed | Unsigned | Signed | Unsigned | Signed | Unsigned | |||
150–250 ms | Hungry | 0.12 (2.37) | 10.00 (4.59) | 1.63 (2.92) | 11.27 (2.32) | 0.38 (1.84) | 9.03 (3.55) | 1.54 |
Satiated | 0.69 (4.24) | 10.45 (4.95) | 2.07 (4.54) | 12.13 (2.97) | −0.57 (2.21) | 9.42 (3.23) | 2.06 | |
350–450 ms | Hungry | 0.64 (4.36) | 11.10 (4.84) | 2.77 (4.26) | 12.12 (2.61) | −0.54 (4.32) | 10.22 (4.28) | 0.89 |
Satiated | 0.97 (4.88) | 10.59 (4.89) | 1.40 (4.19) | 12.00 (2.40) | 0.06 (3.98) | 9.56 (3.34) | 1.75 |
Significant Correlation | Crosstabulation | |||||
---|---|---|---|---|---|---|
Variables | Yes | No | df | X2 | p | |
Prandial state | Hungry | 3 | 237 | 1 | 2.33 | 0.13 |
Satiated | 8 | 232 | ||||
ERP interval | Early | 6 | 234 | 1 | 0.09 | 0.76 |
Late | 5 | 235 | ||||
Laterality | Right | 10 | 302 | - | - a | 0.11 |
Left | 1 | 167 | ||||
Anatomical subregion | Anterior | 0 | 176 | - | 8.07 b | 0.01 |
Middle | 3 | 101 | ||||
Posterior | 8 | 192 |
Significant Correlation | Crosstabulation | |||||
---|---|---|---|---|---|---|
Variables | Yes | No | df | X2 | p | |
Prandial state | Hungry | 17 | 463 | 1 | 6.70 | 0.01 |
Satiated | 5 | 475 | ||||
ERP intervals a | Early | 8 | 472 | 1 | 1.68 | 0.20 |
Late | 14 | 466 | ||||
Laterality | Right | 15 | 609 | 1 | 0.1 | 0.75 |
Left | 7 | 329 | ||||
Anatomical subregion | Anterior | 6 | 346 | 2 | 0.95 | 0.62 |
Middle | 6 | 202 | ||||
Posterior | 10 | 390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hébert-Seropian, B.; Boucher, O.; Citherlet, D.; Robert, M.; Richer, F.; Nguyen, D.K. Separating Subjective from Objective Food Value in the Human Insula: An Exploratory Study Using Intracranial EEG. Brain Sci. 2025, 15, 593. https://doi.org/10.3390/brainsci15060593
Hébert-Seropian B, Boucher O, Citherlet D, Robert M, Richer F, Nguyen DK. Separating Subjective from Objective Food Value in the Human Insula: An Exploratory Study Using Intracranial EEG. Brain Sciences. 2025; 15(6):593. https://doi.org/10.3390/brainsci15060593
Chicago/Turabian StyleHébert-Seropian, Benjamin, Olivier Boucher, Daphné Citherlet, Manon Robert, François Richer, and Dang Khoa Nguyen. 2025. "Separating Subjective from Objective Food Value in the Human Insula: An Exploratory Study Using Intracranial EEG" Brain Sciences 15, no. 6: 593. https://doi.org/10.3390/brainsci15060593
APA StyleHébert-Seropian, B., Boucher, O., Citherlet, D., Robert, M., Richer, F., & Nguyen, D. K. (2025). Separating Subjective from Objective Food Value in the Human Insula: An Exploratory Study Using Intracranial EEG. Brain Sciences, 15(6), 593. https://doi.org/10.3390/brainsci15060593