Anti-NMDA Receptor Encephalitis: A Narrative Review
Abstract
1. Introduction
2. Anti-NMDAR Encephalitis Epidemiological Data
3. Anti-NMDAR Encephalitis Molecular Pathogenesis
4. Is Anti-NMDAR Encephalitis a Rare Genetic Disease?
4.1. HLA-Related Genetic Influences in Anti-NMDAR Encephalitis
4.2. Non-HLA Genetic Pattern in Anti-NMDAR Encephalitis
5. Clinical Features of Anti-NMDA Receptor Encephalitis
6. Anti-NMDA Encephalitis Diagnostic Pearls
6.1. The Neurological Red Flags
6.2. Mental Health Red Flags
7. Therapeutic Strategies in Anti-NMDA Receptor Encephalitis
8. Long-Term Outcome in Anti-NMDA Receptor Encephalitis
9. Limitation and Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalmau, J.; Tüzün, E.; Wu, H.Y.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic anti–N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 2007, 61, 25–36. [Google Scholar] [CrossRef]
- Dalmau, J.; Lancaster, E.; Martinez-Hernandez, E.; Rosenfeld, M.R.; Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011, 10, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Bataller, L. Limbic encephalitis: The new cell membrane antigens and a proposal of clinical-immunological classification with therapeutic implications. Neurologia 2007, 22, 526–537. [Google Scholar]
- Wu, C.Y.; Wu, J.D.; Chen, C.C. The association of ovarian teratoma and anti-n-methyl-d-aspartate receptor encephalitis: An updated integrative review. Int. J. Mol. Sci. 2021, 22, 10911. [Google Scholar] [CrossRef] [PubMed]
- Barry, H.; Byrne, S.; Barrett, E.; Murphy, K.C.; Cotter, D.R. Anti-N-methyl-d-aspartate receptor encephalitis: Review of clinical presentation, diagnosis and treatment. BJPsych Bull. 2015, 39, 19–23. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kawai, H.; Okahisa, Y.; Tsutsui, K.; Kanbayashi, T.; Tanaka, K.; Mizuki, Y.; Takaki, M.; Yamada, N. Anti-N-methyl-D-aspartate receptor encephalitis in psychiatry. Acta Med. Okayama 2019, 73, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Warren, N.; Siskind, D.; O’Gorman, C. Refining the psychiatric syndrome of anti-N-methyl-D-aspartate receptor encephalitis. Acta Psychiatr. Scand. 2018, 138, 401–408. [Google Scholar] [CrossRef]
- Nosadini, M.; Thomas, T.; Eyre, M.; Anlar, B.; Armangue, T.; Benseler, S.M.; Cellucci, T.; Deiva, K.; Gallentine, W.; Gombolay, G.; et al. International consensus recommendations for the treatment of pediatric NMDAR antibody encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1052. [Google Scholar] [CrossRef]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef]
- Maat, P.; de Graaff, E.; van Beveren, N.M.; Hulsenboom, E.; Verdijk, R.M.; Koorengevel, K.; van Duijn, M.; Hooijkaas, H.; Hoogenraad, C.; Sillevis Smitt, P.A. Psychiatric phenomena as initial manifestation of encephalitis by anti-NMDAR antibodies. Acta Neuropsychiatr. 2013, 25, 128–136. [Google Scholar] [CrossRef]
- Steiner, J.; Walter, M.; Glanz, W.; Sarnyai, Z.; Bernstein, H.G.; Vielhaber, S.; Kastner, A.; Skalej, M.; Jordan, W.; Schiltz, K.; et al. Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: Specific relevance of IgG NR1a antibodies for distinction from N-methyl-D aspartate glutamate receptor encephalitis. JAMA Psychiatry 2013, 70, 271–278. [Google Scholar] [CrossRef]
- Tsutsui, K.; Kanbayashi, T.; Tanaka, K.; Boku, S.; Ito, W.; Tokunaga, J.; Mori, A.; Hishikawa, Y.; Shimizu, T.; Nishino, S. Anti-NMDA receptor antibody detected in encephalitis, schizophrenia, and narcolepsy with psychotic features. BMC Psychiatry 2012, 12, 37. [Google Scholar] [CrossRef]
- Senda, M.; Bessho, K.; Oshima, E.; Sakamoto, S.; Tanaka, K.; Tsutsui, K.; Kanbayashi, T.; Takaki, M.; Yoshimura, B. Anti-inflammatory therapy and immunotherapy were partially effective in a patient with anti-N-methyl-D-aspartate receptor antibodies and a special subgroup of treatment-resistant schizophrenia. J. Clin. Psychopharmacol. 2016, 36, 92–93. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, B.; Takaki, M. Anti-NMDA receptor antibody positivity and presentations without seizure, involuntary movement, hypoventilation, or tumor: A systematic review of the literature. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 267–274. [Google Scholar] [CrossRef]
- Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangue, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol. 2013, 12, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Granerod, J.; Ambrose, H.E.; Davies, N.W.S.; Clewley, J.P.; Walsh, A.L.; Morgan, D.; Cunningham, R.; Zuckerman, M.; Mutton, K.J.; Solomon, T.; et al. Causes of encephalitis and differences in their clinical presentations in England: A multicentre, population-based prospective study. Lancet Infect. Dis. 2010, 10, 835–844. [Google Scholar] [CrossRef]
- Maneta, E.; Garcia, G. Psychiatric manifestations of anti-NMDA receptor encephalitis: Neurobiological underpinnings and differential diagnostic implications. Psychosomatics 2014, 55, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zandi, M.S.; Irani, S.R.; Lang, B.; Waters, P.; Jones, P.B.; McKenna, P.; Coles, A.J.; Vincent, A.; Lennox, B.R. Disease-relevant autoantibodies in first episode schizophrenia. J. Neurol. 2011, 258, 686–688. [Google Scholar] [CrossRef]
- Kayser, M.S.; Titulaer, M.J.; Gresa-Arribas, N.; Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti–N-methyl-D-aspartate receptor encephalitis. JAMA Neurol. 2013, 70, 1133–1139. [Google Scholar] [CrossRef]
- Hughes, E.G.; Peng, X.; Gleichman, A.J.; Lai, M.; Zhou, L.; Tsou, R.; Parsons, T.D.; Lynch, D.R.; Dalmau, J.; Balice-Gordon, R.J. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 2010, 30, 5866–5875. [Google Scholar] [CrossRef]
- Lynch, D.R.; Anegawa, N.J.; Verdoorn, T.; Pritchett, D.B. N-methyl-D-aspartate receptors: Different subunit requirements for binding of glutamate antagonists, glycine antagonists, and channel-blocking agents. Mol. Pharmacol. 1994, 45, 540–545. [Google Scholar] [CrossRef]
- Gleichman, A.J.; Spruce, L.A.; Dalmau, J.; Seeholzer, S.H.; Lynch, D.R. Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain. J. Neurosci. 2012, 32, 11082–11094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tanaka, K.; Sun, P.; Nakata, M.; Yamamoto, R.; Sakimura, K.; Matsui, M.; Kato, N. Suppression of synaptic plasticity by cerebrospinal fluid from anti-NMDA receptor encephalitis patients. Neurobiol. Dis. 2012, 45, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tanaka, K.; Wang, L.; Ishigaki, Y.; Kato, N. Induction of memory deficit in mice with chronic exposure to cerebrospinal fluid from patients with anti-N-methyl-D-aspartate receptor encephalitis. Tohoku J. Exp. Med. 2015, 237, 329–338. [Google Scholar] [CrossRef]
- Planaguma, J.; Leypoldt, F.; Mannara, F.; Gutierrez-Cuesta, J.; Martin-Garcia, E.; Aguilar, E.; Titulaer, M.J.; Petit-Pedrol, M.; Jain, A.; Balice-Gordon, R.; et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015, 138, 94–109. [Google Scholar] [CrossRef]
- Muñiz-Castrillo, S.; Haesebaert, J.; Thomas, L.; Vogrig, A.; Pinto, A.-L.; Picard, G.; Blanc, C.; Do, L.-D.; Joubert, B.; Berzero, G. Clinical and prognostic value of immunogenetic characteristics in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e974. [Google Scholar] [CrossRef] [PubMed]
- Ciano-Petersen, N.L.; Cabezudo-García, P.; Muñiz-Castrillo, S.; Honnorat, J.; Serrano-Castro, P.J.; Oliver-Martos, B. Current Status of Biomarkers in Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Int. J. Mol. Sci. 2021, 22, 13127. [Google Scholar] [CrossRef]
- Segal, Y.; Nisnboym, M.; Regev, K.; Arnon, K.; Kolb, H.; Fahoum, F.; Aizenstein, O.; Paran, Y.; Louzoun, Y.; Israeli, S.; et al. New Insights on DR and DQ Human Leukocyte Antigens in Anti-LGI1 Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200103. [Google Scholar] [CrossRef]
- Peris Sempere, V.; Luo, G.; Muñiz-Castrillo, S.; Pinto, A.L.; Picard, G.; Rogemond, V.; Titulaer, M.J.; Finke, C.; Leypoldt, F.; Kuhlenbäumer, G.; et al. HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis. Front. Immunol. 2024, 15, 1423149. [Google Scholar] [CrossRef]
- Tietz, A.K.; Angstwurm, K.; Baumgartner, T.; Doppler, K.; Eisenhut, K.; Elisak, M.; Franke, A.; Golombeck, K.S.; Handreka, R.; Kaufmann, M.; et al. Genome-wide Association Study Identifies 2 New Loci Associated with Anti-NMDAR Encephalitis. Neurol Neuroimmunol. Neuroinflamm. 2021, 8, e1085. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, X.; Shu, Y.; Qu, X.; Wang, Q.; Liu, X.; Hu, F.-Y.; Liu, J.; Lian, Y.; He, B.-M.; et al. Genome-Wide Association Study Identifies IFIH1 and HLA-DQB1*05,02 Loci Associated with Anti-NMDAR Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2024, 11, e200221. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Qiu, W.; Zheng, J.; Sun, X.; Yin, J.; Yang, X.; Yue, X.; Chen, C.; Deng, Z.; Li, S.; et al. HLA class II allele DRB1*16,02 is associated with anti-NMDAR encephalitis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Isobe, N. Link between HLA alleles and anti-NMDAR encephalitis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 626. [Google Scholar] [CrossRef] [PubMed]
- Anurat, K.; Watcharakuldilok, P.; Sakpichaisakul, K.; Khongkhatithum, C.; Mahasirimongkol, S.; Kunhapan, P.; Inunchot, W.; Wattanapokayakit, S.; Munggaranonchai, O.; Thampratankul, L. HLA-DRB1∗1502 is Associated with Anti-N-Methyl-D-aspartate Receptor Encephalitis in Thai Children. Pediatr. Neurol. 2022, 134, 93–99. [Google Scholar] [CrossRef]
- Shu, Y.; Guo, J.; Ma, X.; Yan, Y.; Wang, Y.; Chen, C.; Sun, X.; Wang, H.; Yin, J.; Long, Y.; et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is associated with IRF7, BANK1 and TBX21 polymorphisms in two populations. Eur. J. Neurol. 2021, 28, 595–601. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Son, K.; d’Alexandry d’Orengiani, A.-L.P.H.; Min, J.-Y. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry. Sci. Rep. 2017, 7, 43893. [Google Scholar] [CrossRef]
- Vacondio, D.; Nogueira Pinto, H.; Coenen, L.; Mulder, I.A.; Fontijn, R.; van Het Hof, B.; Fung, W.K.; Jongejan, A.; Kooij, G.; Zelcer, N.; et al. Liver X receptor alpha ensures blood-brain barrier function by suppressing SNAI2. Cell Death Dis. 2023, 14, 781. [Google Scholar] [CrossRef]
- Wouters, E.; de Wit, N.M.; Vanmol, J.; van der Pol, S.M.A.; van Het Hof, B.; Sommer, D.; Loix, M.; Geerts, D.; Gustafsson, J.A.; Steffensen, K.R.; et al. Liver X Receptor Alpha Is Important in Maintaining Blood-Brain Barrier Function. Front. Immunol. 2019, 10, 1811. [Google Scholar] [CrossRef]
- Wang, Z.; Sadovnick, A.D.; Traboulsee, A.L.; Ross, J.P.; Bernales, C.Q.; Encarnacion, M.; Yee, I.M.; de Lemos, M.; Greenwood, T.; Lee, J.D.; et al. Nuclear Receptor NR1H3 in Familial Multiple Sclerosis. Neuron 2016, 90, 948–954. [Google Scholar] [CrossRef]
- Hu, H.; Kahrizi, K.; Musante, L.; Fattahi, Z.; Herwig, R.; Hosseini, M.; Oppitz, C.; Abedini, S.S.; Suckow, V.; Larti, F.; et al. Genetics of intellectual disability in consanguineous families. Mol. Psychiatry 2019, 24, 1027–1039. [Google Scholar] [CrossRef]
- Schneeberger, P.E.; Kortüm, F.; Korenke, G.C.; Alawi, M.; Santer, R.; Woidy, M.; Buhas, D.; Fox, S.; Juusola, J.; Alfadhel, M.; et al. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020, 143, 2437–2453. [Google Scholar] [CrossRef]
- Bryceson, Y.T.; Pende, D.; Maul-Pavicic, A.; Gilmour, K.C.; Ufheil, H.; Vraetz, T.; Chiang, S.C.; Marcenaro, S.; Meazza, R.; Bondzio, I.; et al. A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood 2012, 119, 2754–2763. [Google Scholar] [CrossRef] [PubMed]
- Bao, N.; Han, J.; Zhou, H. A protein with broad functions: Damage-specific DNA-binding protein 2. Mol. Biol. Rep. 2022, 49, 12181–12192. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Baba, Y.; Shinohara, H.; Kang, S.; Nojima, S.; Kimura, T.; Ito, D.; Yoshida, Y.; Maeda, Y.; Sarashina-Kida, H.; et al. LRRK1 is critical in the regulation of B-cell responses and CARMA1-dependent NF-κB activation. Sci. Rep. 2016, 6, 25738. [Google Scholar] [CrossRef]
- Chorin, O.; Chowers, G.; Agbariah, R.; Karklinsky, S.; Barel, O.; Bar-Joseph, I.; Reznik-Wolf, H.; Shamash, J.; Pode-Shakked, B.; Jacobson, J.M.; et al. Broadening the phenotype of LRRK1 mutations—Features of malignant osteopetrosis and optic nerve atrophy with intrafamilial variable expressivity. Eur. J. Med. Genet. 2022, 65, 104383. [Google Scholar] [CrossRef]
- Reimer, J.M.; Dickey, A.M.; Lin, Y.X.; Abrisch, R.G.; Mathea, S.; Chatterjee, D.; Fay, E.J.; Knapp, S.; Daugherty, M.D.; Reck-Peterson, S.L.; et al. Structure of LRRK1 and mechanisms of autoinhibition and activation. Nat. Struct. Mol. Biol. 2023, 30, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570. [Google Scholar] [CrossRef]
- Kato, H.; Takeuchi, O.; Sato, S.; Yoneyama, M.; Yamamoto, M.; Matsui, K.; Uematsu, S.; Jung, A.; Kawai, T.; Ishii, K.J.; et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441, 101–105. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Z.; Li, L.; Yang, Y.; Zhang, J.; Wang, L.; Yuan, J.; Li, Y. The Role of Alternative Splicing Factors, DDB2-Related Ageing and DNA Damage Repair in the Progression and Prognosis of Stomach Adenocarcinoma Patients. Genes 2023, 14, 39. [Google Scholar] [CrossRef]
- Wang, L.; Paudyal, S.C.; Kang, Y.; Owa, M.; Liang, F.-X.; Spektor, A.; Knaut, H.; Sánchez, I.; Dynlacht, B.D. Regulators of tubulin polyglutamylation control nuclear shape and cilium disassembly by balancing microtubule and actin assembly. Cell Res. 2022, 32, 190–209. [Google Scholar] [CrossRef]
- Khalili, N.; Fahlavi, G.; Ghazavi, A.; Eshraghi, M. Psychiatric onset of anti-NMDAR encephalitis in a young woman: A case report and literature review. Neuroimmunol. Rep. 2022, 2, 100069. [Google Scholar]
- Armangue, T.; Leypoldt, F.; Dalmau, J. Autoimmune encephalitis as differential diagnosis of infectious encephalitis. Curr. Opin. Neurol. 2014, 27, 361–368. [Google Scholar] [CrossRef]
- Iizuka, T.; Sakai, F.; Ide, T.; Monzen, T.; Yoshii, S.; Iigaya, M.; Suzuki, K.; Lynch, D.R.; Suzuki, N.; Hata, T.; et al. Anti-NMDA receptor encephalitis in Japan: Long-term outcome without tumor removal. Neurology 2008, 70, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Wandinger, K.P.; Saschenbrecker, S.; Stoecker, W.; Dalmau, J. Anti-NMDA-receptor encephalitis: A severe, multistage, treatable disorder presenting with psychosis. J. Neuroimmunol. 2011, 231, 86–91. [Google Scholar] [CrossRef]
- Dalmau, J.; Geis, C.; Graus, F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol. Rev. 2017, 97, 839–887. [Google Scholar] [CrossRef]
- Fink, M.; Fricchione, G.; Rummans, T.; Shorter, E. Catatonia is a systemic medical syndrome. Acta Psychiatr. Scand. 2016, 133, 250–251. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med. 2018, 378, 840–851. [Google Scholar] [CrossRef]
- Ando, Y.; Shimazaki, H.; Shiota, K.; Tetsuka, S.; Nakao, K.; Shimada, T.; Kurata, K.; Kuroda, J.; Yamashita, A.; Sato, H.; et al. Prevalence of elevated serum anti-N-methyl-D-aspartate receptor antibody titers in patients presenting exclusively with psychiatric symptoms: A comparative follow-up study. BMC Psychiatry 2016, 16, 226. [Google Scholar] [CrossRef]
- Irani, S.R.; Vincent, A. NMDA receptor antibody encephalitis. Curr. Neurol. Neurosci. Rep. 2011, 11, 298–304. [Google Scholar] [CrossRef]
- Barry, H.; Hardiman, O.; Healy, D.G.; Keogan, M.; Moroney, J.; Molnar, P.P.; Cotter, D.R.; Murphy, K.C. Anti-NMDA receptor encephalitis: An important differential diagnosis in psychosis. Br. J. Psychiatry 2011, 199, 508–509. [Google Scholar] [CrossRef]
- Fazal, J.; Sadiq, N.; Bowen, M.; Wali, M.W.; Sawlani, V.; Saiju, J. Imaging findings in autoimmune encephalitis: A retrospective review. J. Neurol. Neurosurg. Psychiatry 2018, 89, A17. [Google Scholar] [CrossRef]
- Schmitt, S.E.; Pargeon, K.; Frechette, E.S.; Hirsch, L.J.; Dalmau, J.; Friedman, D. Extreme delta brush: A unique EEG pattern in adults with anti-NMDA receptor encephalitis. Clin. Neurophysiol. 2012, 123, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Florance, N.R.; Davis, R.L.; Lam, C.; Szperka, C.; Zhou, L.; Ahmad, S.; Campen, C.J.; Moss, H.; Peter, N.; Gleichman, A.J.; et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann. Neurol. 2009, 66, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.C.; Gill, D.; Webster, R.; Howman-Giles, R.; Dale, R.C. Cortical hypometabolism demonstrated by PET in relapsing NMDA receptor encephalitis. Pediatr. Neurol. 2010, 43, 217–220. [Google Scholar] [CrossRef]
- Maeder-Ingvar, M.; Prior, J.O.; Irani, S.R.; Rey, V.; Vincent, A.; Rossetti, A.O. FDG-PET hyperactivity in basal ganglia correlating with clinical course in anti-NDMA-R antibodies encephalitis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Dale, R.C.; Irani, S.R.; Brilot, F.; Pillai, S.; Webster, R.; Gill, D.; Lang, B.; Vincent, A. N-methyl-D aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann. Neurol. 2009, 66, 704–709. [Google Scholar] [CrossRef]
- Dericioglu, N.; Vural, A.; Acar, P.; Agayeva, N.; Ismailova, V.; Kurne, A.; Saka, E.; Arsava, E.M.; Topcuoglu, M.A. Antiepileptic treatment for anti-NMDA receptor encephalitis: The need for video-EEG monitoring. Epileptic Disord. 2013, 2, 166–170. [Google Scholar] [CrossRef]
- Hopker, S.W.; Brockington, I.F. Psychosis following hydatidiform mole in a patient with recurrent puerperal psychosis. Br. J. Psychiatry 1991, 158, 122–123. [Google Scholar] [CrossRef]
- Gresa-Arribas, N.; Titulaer, M.J.; Torrents, A.; Aguilar, E.; McCracken, L.; Leypoldt, F.; Gleichman, A.J.; Balice-Gordon, R.; Rosenfeld, M.R.; Lynch, D.; et al. Antibody titers at diagnosis and during follow-up of anti-NMDA receptor encephalitis: A retrospective study. Lancet Neurol. 2014, 13, 167–177. [Google Scholar] [CrossRef]
- Liba, Z.; Sebronova, V.; Komarek, V.; Sediva, A.; Sedlacek, P. Prevalence and treatment of anti-NMDA receptor encephalitis. Lancet Neurol. 2013, 12, 424–425. [Google Scholar] [CrossRef]
- Chapman, M.R.; Vause, H.E. Anti-NMDA receptor encephalitis: Diagnosis, psychiatric presentation, and treatment. Am. J. Psychiatry 2011, 168, 245–251. [Google Scholar] [CrossRef]
- Fink, M.; Taylor, M.A. The catatonia syndrome: Forgotten but not gone. Arch. Gen. Psychiatry 2009, 66, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Braakman, H.M.; Moers-Hornikx, V.M.; Arts, B.M.; Hupperts, R.M.; Nicolai, J. Pearls and oysters: Electroconvulsive therapy in anti-NMDA receptor encephalitis. Neurology 2011, 75, 44–46. [Google Scholar]
- Watkins, C.J.; Pei, Q.; Newberry, N.R. Differential effects of electroconvulsive shock on the glutamate receptor mRNAs, for NR2A, NR2B and mGluR5b. Brain Res. Mol. Brain Res. 1998, 61, 108–113. [Google Scholar] [CrossRef]
- Finke, C.; Kopp, U.A.; Pruss, H.; Dalmau, J.; Wandinger, K.P.; Ploner, C.J. Cognitive deficits following anti-NMDA receptor encephalitis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Irani, S.R.; Bera, K.; Waters, P.; Zuliani, L.; Maxwell, S.; Zandi, M.S.; Friese, M.A.; Galea, I.; Kullmann, D.M.; Beeson, D.; et al. N-methyl-D-aspartate antibody encephalitis: Temporal progression of clinical and paraclinical observations in a predominantly nonparaneoplastic disorder of both sexes. Brain 2010, 133, 1655–1667. [Google Scholar] [CrossRef]
- Bakker, O.B.; Claringbould, A.; Westra, H.-J.; Wiersma, H.; Boulogne, F.; Võsa, U.; Urzúa-Traslaviña, C.G.; Mulcahy Symmons, S.; Zidan, M.M.M.; Sadler, M.C.; et al. Identification of rare disease genes as drivers of common diseases through tissue-specific gene regulatory networks. Sci. Rep. 2024, 14, 30206. [Google Scholar] [CrossRef] [PubMed]
- Streață, I.; Caramizaru, A.; Riza, A.-L.; Șerban-Sosoi, S.; Pîrvu, A.; Cara, M.-L.; Cucu, M.-G.; Dobrescu, A.M.; Group, R.-N.-I.; Group, C.P.N.O.; et al. Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability—Data from a Romanian Cohort. Diagnostics 2022, 12, 3137. [Google Scholar] [CrossRef]
- Malik, D.; Simon, D.W.; Thakkar, K.; Rajan, D.S.; Kernan, K.F. Genetic variation in genes of inborn errors of immunity in children with unexplained encephalitis. Genes Immun. 2022, 23, 235–239. [Google Scholar] [CrossRef]
- Albu, C.V.; Sandu, R.E.; Barbulescu, A.L.; Tartea, E.A.; Burada, E.; Taisescu, O.; Vreju, F.A.; Boldeanu, M.V.; Boldeanu, L.; Enescu, A.; et al. The relationship between the acute confusing state and the comorbidities of the elderly patient. Rev. Chim. 2019, 70, 2415–2419. [Google Scholar] [CrossRef]
- Gherghina, F.L.; Tica, A.A.; Deliu, E.; Abood, M.E.; Brailoiu, G.C.; Brailoiu, E. Effects of VPAC1 activation in nucleus ambiguus neurons. Brain Res. 2017, 1657, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Păun, O.; Cercel, R.A.; Radu, R.I.; Raicea, V.C.; Pîrşcoveanu, D.F.; Honţaru, S.O.; Zorilă, M.V.; Mogoantă, L. Histopathological lesions induced by stroke in the encephalon. Rom. J. Morphol. Embryol. 2023, 64, 389–398. [Google Scholar] [CrossRef] [PubMed]
Gene Function | Genes | Mutation Type | Gene Localization |
---|---|---|---|
Pro-inflammatory states and impaired immune system regulation | |||
ATP/ITP signalling pathway and antigen processing | ACP 2 | Germline mutation Potential causative mutation | Chromosome 11 [1] |
Regulation of inflammation and lipid metabolism | NR1H3 | Potential causative mutation | Chromosome 11 [1] |
Connect TNFR1 with MAP kinase activation and arachidonic acid release [2]/TNFalpha signalling pathway | MADD | Germline/Potential causative | Chromosome 11 [1] |
Innate immune response against viruses; anti-tumor factor | IRF7 | Potential causative polymorphism | Chromosome 11 [6] |
Innate immune response through interferon (IFN) signaling pathway | IFIH1 | Potential causative missense mutation | Chromosome 2 [11] |
Th1 cell function, activate IFN-gamma and CXCR3; regulator of antiviral B-cell responses [8] | TBX21 | Potential causative polymorphism | Chromosome 17 [6,7] |
B-cell function regulation | BANK1 | Potential causative polymorphism | Chromosome 4 [6] |
Immune cell development, activation, and survival | |||
B-cell development and survival intracellular trafficking [5] | LRRK1 | Potential causative | Chromosome 15 [1] |
Cytoskeletal organization, nuclear morphology, and cilium disassembly [4] | C11ORF49/CSTPP1 | Potential causative | Chromosome 11 [1] |
Chromosome 9 [9] | GRIN1 | Pathogenic mutation | Intellectual disability; NMDA receptor trafficking and function [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pădureanu, V.; Dop, D.; Pădureanu, R.; Pîrșcoveanu, D.F.V.; Olaru, G.; Streata, I.; Bugă, A.M. Anti-NMDA Receptor Encephalitis: A Narrative Review. Brain Sci. 2025, 15, 518. https://doi.org/10.3390/brainsci15050518
Pădureanu V, Dop D, Pădureanu R, Pîrșcoveanu DFV, Olaru G, Streata I, Bugă AM. Anti-NMDA Receptor Encephalitis: A Narrative Review. Brain Sciences. 2025; 15(5):518. https://doi.org/10.3390/brainsci15050518
Chicago/Turabian StylePădureanu, Vlad, Dalia Dop, Rodica Pădureanu, Denisa Floriana Vasilica Pîrșcoveanu, Gabriela Olaru, Ioana Streata, and Ana Maria Bugă. 2025. "Anti-NMDA Receptor Encephalitis: A Narrative Review" Brain Sciences 15, no. 5: 518. https://doi.org/10.3390/brainsci15050518
APA StylePădureanu, V., Dop, D., Pădureanu, R., Pîrșcoveanu, D. F. V., Olaru, G., Streata, I., & Bugă, A. M. (2025). Anti-NMDA Receptor Encephalitis: A Narrative Review. Brain Sciences, 15(5), 518. https://doi.org/10.3390/brainsci15050518