Do Cortisol Levels Play a Role in Suicidal Behaviors and Non-Suicidal Self-Injuries in Children and Adolescents?—A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Literature Search Strategy
2.3. Study Selection and Screening
2.4. Statistical Considerations
2.5. Risk of Bias and Quality Appraisal
3. Results
3.1. Unstimulated (Baseline) Cortisol Concentrations
3.1.1. Suicidal Behaviors
3.1.2. NSSI
3.2. Hair Cortisol Concentration
3.3. Stimulated Cortisol Levels
3.3.1. Suicidal Behaviors
3.3.2. NSSI
3.3.3. Cortisol Levels in DST
4. Discussion
4.1. Summary of Findings
4.2. Methodological Limitations
4.3. Clinical Implications
4.4. Future Research Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NSSI | Non-suicidal self-injury |
SB | Suicidal behavior |
DST | Dexamethasone Suppression Test |
HPA | Hypothalamic–pituitary–adrenal |
ACE | Adverse childhood experience |
HCC | Hair cortisol concentration |
CAR | Cortisol awakening response |
TSST | Trier Social Stress Test |
MAST | Maastricht Acute Stress Test |
CPT | Cold Pressor Test |
AUCi | Area under the curve with respect to increase |
AUCg | Area under the curve with respect to ground |
References
- Victor, S.E.; Klonsky, E.D. Correlates of Suicide Attempts among Self-Injurers: A Meta-Analysis. Clin. Psychol. Rev. 2014, 34, 277–286. [Google Scholar] [CrossRef]
- Hawton, K.; Saunders, K.E.A.; O’Connor, R.C. Self-harm and suicide in adolescents. Lancet 2012, 379, 2373–2382. [Google Scholar] [CrossRef]
- Howarth, E.J.; O’Connor, D.B.; Panagioti, M.; Hodkinson, A.; Wilding, S.; Johnson, J. Are Stressful Life Events Prospectively Associated with Increased Suicidal Ideation and Behaviour? A Systematic Review and Meta-Analysis. J. Affect. Disord. 2020, 266, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Wingenfeld, K.; Wolf, O.T. HPA Axis Alterations in Mental Disorders: Impact on Memory and Its Relevance for Therapeutic Interventions. CNS Neurosci. Ther. 2011, 17, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Mackin, P. HPA Axis Function in Mood Disorders. Psychiatry 2006, 5, 166–169. [Google Scholar] [CrossRef]
- Madalena, K.M.; Lerch, J.K. The Effect of Glucocorticoid and Glucocorticoid Receptor Interactions on Brain, Spinal Cord, and Glial Cell Plasticity. Neural Plast. 2017, 2017, 8640970. [Google Scholar] [CrossRef]
- Mora, F.; Segovia, G.; Del Arco, A.; De Blas, M.; Garrido, P. Stress, Neurotransmitters, Corticosterone and Body-Brain Integration. Brain Res. 2012, 1476, 140–148. [Google Scholar] [CrossRef]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 32726. [Google Scholar] [CrossRef]
- Meyer, J.H.; Cervenka, S.; Kim, M.J.; Kreisl, W.C.; Henter, I.D.; Innis, R.B. Neuroinflammation in Psychiatric Disorders: PET Imaging and Promising New Targets. Lancet Psychiatry 2020, 7, 37–45. [Google Scholar] [CrossRef]
- Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and Psychiatric Illness. J. Neuroinflam. 2013, 10, 43. [Google Scholar] [CrossRef]
- Bauer, M.E.; Teixeira, A.L. Inflammation in Psychiatric Disorders: What Comes First? Ann. N. Y. Acad. Sci. 2019, 1437, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The Role of Early Life Stress in HPA Axis and Anxiety. In Anxiety Disorders: Rethinking and Understanding Recent Discoveries; Kim, Y.-K., Ed.; Springer: Singapore, 2020; pp. 141–153. [Google Scholar]
- Belvederi Murri, M.; Prestia, D.; Mondelli, V.; Pariante, C.; Patti, S.; Olivieri, B.; Arzani, C.; Masotti, M.; Respino, M.; Antonioli, M.; et al. The HPA Axis in Bipolar Disorder: Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2016, 63, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M.; Schatzberg, A.F. HPA Axis in Major Depression: Cortisol, Clinical Symptomatology and Genetic Variation Predict Cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, J.; Juszczyk, G.; Gawrońska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef]
- Cherian, K.; Schatzberg, A.F.; Keller, J. HPA Axis in Psychotic Major Depression and Schizophrenia Spectrum Disorders: Cortisol, Clinical Symptomatology, and Cognition. Schizophr. Res. 2019, 213, 72–79. [Google Scholar] [CrossRef]
- Russell, A.L.; Tasker, J.G.; Lucion, A.B.; Fiedler, J.; Munhoz, C.D.; Wu, T.Y.J.; Deak, T. Factors promoting vulnerability to dysregulated stress reactivity and stress-related disease. J. Neuroendocrinol. 2018, 30, e12641. [Google Scholar] [CrossRef]
- Lopez-Castroman, J.; Olié, E.; Courtet, P. Stress and Vulnerability: A Developing Model for Suicidal Risk. In Suicide: Phenomenology and Neurobiology, 1st ed.; Olié, E., Courtet, P., Eds.; Springer: Cham, Switzerland, 2014; pp. 87–100. [Google Scholar] [CrossRef]
- Kuburi, S.; Ewing, L.; Hamza, C.A.; Goldstein, A.L. A Daily Diary Study of the Relation between Stress and Nonsuicidal Self-Injury and the Moderating Role of Emotion Dysregulation in Emerging Adulthood. J. Youth Adolesc. 2024, 53, 1605–1614. [Google Scholar] [CrossRef]
- Sukhera, J. Narrative reviews: Flexible, rigorous, and practical. J. Grad. Med. Educ. 2022, 14, 414–417. [Google Scholar] [CrossRef]
- Sahi, A.K.; Varshney, N.; Sidu, R.K.; Poddar, S.; Pallawi; Singh, K.; Mahto, S.K. Clinical Implications of Cortisol and Bioanalytical Methods for Their Determination in Various Biological Matrices. In Immunodiagnostic Technologies from Laboratory to Point-of-Care Testing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 133–146. [Google Scholar] [CrossRef]
- Jung, C.; Greco, S.; Nguyen, H.H.T.; Ho, J.T.; Lewis, J.G.; Torpy, D.J.; Inder, W.J. Plasma, Salivary and Urinary Cortisol Levels Following Physiological and Stress Doses of Hydrocortisone in Normal Volunteers. BMC Endocr. Disord. 2014, 14, 91. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The “Trier Social Stress Test”—A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef]
- Clow, A.; Hucklebridge, F.; Stalder, T.; Evans, P.; Thorn, L. The Cortisol Awakening Response: More than a Measure of HPA Axis Function. Neurosci. Biobehav. Rev. 2010, 35, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Law, R.; Clow, A. Stress, the Cortisol Awakening Response and Cognitive Function. Int. Rev. Neurobiol. 2020, 150, 187–217. [Google Scholar] [PubMed]
- Wessa, M.; Rohleder, N.; Kirschbaum, C.; Flor, H. Altered Cortisol Awakening Response in Posttraumatic Stress Disorder. Psychoneuroendocrinology 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Berger, M.; Kraeuter, A.K.; Romanik, D.; Malouf, P.; Amminger, G.P.; Sarnyai, Z. Cortisol Awakening Response in Patients with Psychosis: Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2016, 68, 157–166. [Google Scholar] [CrossRef]
- Dedovic, K.; Ngiam, J. The Cortisol Awakening Response and Major Depression: Examining the Evidence. Neuropsychiatr. Dis. Treat. 2015, 11, 1181–1189. [Google Scholar] [CrossRef]
- Genis-Mendoza, A.D.; Dionisio-García, D.M.; Gonzalez-Castro, T.B.; Tovilla-Zaráte, C.A.; Juárez-Rojop, I.E.; López-Narváez, M.L.; Castillo-Avila, R.G.; Nicolini, H. Increased Levels of Cortisol in Individuals with Suicide Attempt and Its Relation with the Number of Suicide Attempts and Depression. Front. Psychiatry 2022, 13, 912021. [Google Scholar] [CrossRef]
- Choi, W.; Kang, H.J.; Kim, J.W.; Kim, H.K.; Kang, H.C.; Lee, J.Y.; Kim, S.W.; Stewart, R.; Kim, J.M. Associations of Serum Cortisol Levels, Stress Perception, and Stressful Events with Suicidal Behaviors in Patients with Depressive Disorders. J. Affect. Disord. 2022, 297, 147–154. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, H.J.; Kim, J.W.; Choi, W.; Lee, J.Y.; Kim, S.W.; Shin, I.S.; Kim, M.G.; Chun, B.J.; Stewart, R. Multiple Serum Biomarkers for Predicting Suicidal Behaviours in Depressive Patients Receiving Pharmacotherapy. Psychol. Med. 2023, 53, 1722–1733. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Branley-Bell, D.; Green, J.A.; Ferguson, E.; O’Carroll, R.E.; O’Connor, R.C. Effects of Childhood Trauma, Daily Stress, and Emotions on Daily Cortisol Levels in Individuals Vulnerable to Suicide. J. Abnorm. Psychol. 2020, 129, 116–126. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Branley-Bell, D.; Green, J.A.; Ferguson, E.; O’Carroll, R.E.; O’Connor, R.C. Resilience and Vulnerability Factors Influence the Cortisol Awakening Response in Individuals Vulnerable to Suicide. J. Psychiatr. Res. 2021, 142, 166–174. [Google Scholar] [CrossRef]
- Mathew, S.J.; Coplan, J.D.; Goetz, R.R.; Feder, A.; Greenwald, S.; Dahl, R.E.; Ryan, N.D.; Mann, J.J.; Weissman, M.M. Differentiating Depressed Adolescent 24 h Cortisol Secretion in Light of Their Adult Clinical Outcome. Neuropsychopharmacology 2003, 28, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Young, R. Trauma, Attempted Suicide, and Morning Cortisol in a Community Sample of Adolescents. J. Trauma Stress 2010, 23, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Reichl, C.; Heyer, A.; Brunner, R.; Parzer, P.; Völker, J.M.; Resch, F.; Kaess, M. Hypothalamic-Pituitary-Adrenal Axis, Childhood Adversity and Adolescent Nonsuicidal Self-Injury. Psychoneuroendocrinology 2016, 74, 255–263. [Google Scholar] [CrossRef]
- Flach, E.; Koenig, J.; van der Venne, P.; Parzer, P.; Resch, F.; Kaess, M. Hypothalamic-Pituitary-Thyroid Axis Function in Female Adolescent Nonsuicidal Self-Injury and Its Association with Comorbid Borderline Personality Disorder and Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110345. [Google Scholar] [CrossRef]
- Reichl, C.; Schär, S.; Lerch, S.; Hedinger, N.; Brunner, R.; Koenig, J.; Kaess, M. Two-Year Course of Non-Suicidal Self-Injury in an Adolescent Clinical Cohort: The Role of Childhood Adversity in Interaction with Cortisol Secretion. Psychoneuroendocrinology 2024, 167, 107093. [Google Scholar] [CrossRef]
- Melhem, N.M.; Munroe, S.; Marsland, A.; Gray, K.; Brent, D.; Porta, G.; Douaihy, A.; Laudenslager, M.L.; DePietro, F.; Diler, R.; et al. Blunted HPA Axis Activity Prior to Suicide Attempt and Increased Inflammation in Attempters. Psychoneuroendocrinology 2017, 77, 259–268. [Google Scholar] [CrossRef]
- Karabatsiakis, A.; de Punder, K.; Salinas-Manrique, J.; Todt, M.; Dietrich, D.E. Hair Cortisol Level Might Be Indicative for a 3PM Approach towards Suicide Risk Assessment in Depression: Comparative Analysis of Mentally Stable and Depressed Individuals versus Individuals after Completing Suicide. EPMA J. 2022, 13, 373–380. [Google Scholar] [CrossRef]
- Reichl, C.; Brunner, R.; Bender, N.; Parzer, P.; Koenig, J.; Resch, F.; Kaess, M. Adolescent Nonsuicidal Self-Injury and Cortisol Response to the Retrieval of Adversity: A Sibling Study. Psychoneuroendocrinology 2019, 110, 104460. [Google Scholar] [CrossRef]
- Melhem, N.M.; Keilp, J.G.; Porta, G.; Oquendo, M.A.; Burke, A.; Stanley, B.; Cooper, T.B.; Mann, J.J.; Brent, D.A. Blunted HPA Axis Activity in Suicide Attempters Compared to Those at High Risk for Suicidal Behavior. Neuropsychopharmacology 2016, 41, 1447–1456. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Green, J.A.; Ferguson, E.; O’Carroll, R.E.; O’Connor, R.C. Cortisol Reactivity and Suicidal Behavior: Investigating the Role of Hypothalamic-Pituitary-Adrenal Axis Responses to Stress in Suicide Attempters and Ideators. Psychoneuroendocrinology 2017, 75, 44–53. [Google Scholar] [CrossRef]
- Keilp, J.G.; Stanley, B.H.; Beers, S.R.; Melhem, N.M.; Burke, A.K.; Cooper, T.B.; Oquendo, M.A.; Brent, D.A.; Mann, J.J. Further Evidence of Low Baseline Cortisol Levels in Suicide Attempters. J. Affect Disord. 2016, 190, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Alacreu-Crespo, A.; Hidalgo, V.; Girod, C.; Olié, E.; Courtet, P. The Impulsiveness Level Influences the Salivary Cortisol Response and Social Stress Sensitivity in Suicidal Patients. J. Psychiatr. Res. 2022, 156, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Stanley, B.; Michel, C.A.; Galfalvy, H.C.; Keilp, J.G.; Rizk, M.M.; Richardson-Vejlgaard, R.; Oquendo, M.A.; Mann, J.J. Suicidal Subtypes, Stress Responsivity and Impulsive Aggression. Psychiatry Res. 2019, 280, 112486. [Google Scholar] [CrossRef]
- Herzog, S.; Galfalvy, H.; Keilp, J.G.; Mann, J.J.; Sublette, M.E.; Burke, A.; Oquendo, M.A.; Stanley, B.H. Relationship of Stress-Reactive Cortisol to Suicidal Intent of Prior Attempts in Major Depression. Psychiatry Res. 2023, 327, 115315. [Google Scholar] [CrossRef]
- Shalev, A.; Porta, G.; Biernesser, C.; Zelazny, J.; Walker-Payne, M.; Melhem, N.; Brent, D. Cortisol Response to Stress as a Predictor for Suicidal Ideation in Youth. J. Affect Disord. 2019, 257, 438–444. [Google Scholar] [CrossRef]
- Giletta, M.; Calhoun, C.D.; Hastings, P.D.; Rudolph, K.D.; Nock, M.K.; Prinstein, M.J. Multi-Level Risk Factors for Suicidal Ideation Among at-Risk Adolescent Females: The Role of Hypothalamic-Pituitary-Adrenal Axis Responses to Stress. J. Abnorm. Child Psychol. 2015, 43, 767–779. [Google Scholar] [CrossRef]
- Eisenlohr-Moul, T.A.; Miller, A.B.; Giletta, M.; Hastings, P.D.; Rudolph, K.D.; Nock, M.K.; Prinstein, M.J. HPA Axis Response and Psychosocial Stress as Interactive Predictors of Suicidal Ideation and Behavior in Adolescent Females: A Multilevel Diathesis-Stress Framework. Neuropsychopharmacology 2018, 43, 2664–2673. [Google Scholar] [CrossRef]
- Koenig, J.; Rinnewitz, L.; Warth, M.; Hillecke, T.K.; Brunner, R.; Resch, F.; Kaess, M. Psychobiological Response to Pain in Female Adolescents with Nonsuicidal Self-Injury. J. Psychiatry Neurosci. 2017, 42, 206–215. [Google Scholar] [CrossRef]
- van der Venne, P.; Mürner-Lavanchy, I.; Höper, S.; Koenig, J.; Kaess, M. Physiological Response to Pain in Female Adolescents with Nonsuicidal Self-Injury as a Function of Severity. J. Affect Disord. 2023, 339, 92–99. [Google Scholar] [CrossRef]
- Beauchaine, T.P.; Crowell, S.E.; Hsiao, R.C. Post-Dexamethasone Cortisol, Self-Inflicted Injury, and Suicidal Ideation Among Depressed Adolescent Girls. J. Abnorm. Child Psychol. 2015, 43, 607–616. [Google Scholar] [CrossRef]
- Hernández-Díaz, Y.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; López-Narváez, M.L.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Genis-Mendoza, A.D.; Nicolini, H. The Role of Peripheral Cortisol Levels in Suicide Behavior: A Systematic Review and Meta-Analysis of 30 Studies. Psychiatry Res. 2020, 293, 113448. [Google Scholar] [CrossRef] [PubMed]
- Wiebenga, J.X.M.; Dickhoff, J.; Mérelle, S.Y.M.; Eikelenboom, M.; Heering, H.D.; Gilissen, R.; van Oppen, P.; Penninx, B.W.J.H. Prevalence, Course, and Determinants of Suicide Ideation and Attempts in Patients with a Depressive and/or Anxiety Disorder: A Review of NESDA Findings. J. Affect. Disord. 2021, 282, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Short, S.J.; Stalder, T.; Marceau, K.; Entringer, S.; Moog, N.K.; Shirtcliff, E.A.; Buss, C. Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology 2016, 71, 12–18. [Google Scholar] [CrossRef]
- Torrecilla, P.; Barrantes-Vidal, N. Examining the relationship between hair cortisol with stress-related and transdiagnostic subclinical measures. Front. Psychiatry 2021, 12, 746155. [Google Scholar] [CrossRef]
- Grass, J.; Miller, R.; Carlitz, E.H.; Patrovsky, F.; Gao, W.; Kirschbaum, C.; Stalder, T. In vitro influence of light radiation on hair steroid concentrations. Psychoneuroendocrinology 2016, 73, 109–116. [Google Scholar] [CrossRef]
- Stalder, T.; Steudte-Schmiedgen, S.; Alexander, N.; Klucken, T.; Vater, A.; Wichmann, S.; Kirschbaum, C.; Miller, R. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology 2017, 77, 261–274. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Tietze, A.; Skoluda, N.; Dettenborn, L. Hair as a retrospective calendar of cortisol production—Increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 2009, 34, 32–37. [Google Scholar] [CrossRef]
- Herane Vives, A.; De Angel, V.; Papadopoulos, A.; Strawbridge, R.; Wise, T.; Young, A.H.; Arnone, D.; Cleare, A.J. The Relationship between Cortisol, Stress and Psychiatric Illness: New Insights Using Hair Analysis. J. Psychiatr. Res. 2015, 70, 38–49. [Google Scholar] [CrossRef]
- Koumantarou Malisiova, E.; Mourikis, I.; Darviri, C.; Nicolaides, N.C.; Zervas, I.M.; Papageorgiou, C.; Chrousos, G.P. Hair Cortisol Concentrations in Mental Disorders: A Systematic Review. Physiol. Behav. 2021, 229, 113244. [Google Scholar] [CrossRef]
- Probst, M.; Bulbulian, R.; Knapp, C. Hemodynamic Responses to the Stroop and Cold Presser Tests after Submaximal Cycling Exercise in Normotensive Males. Physiol. Behav. 1997, 62, 1229–1235. [Google Scholar] [CrossRef]
- Smeets, T.; Cornelisse, S.; Quaedflieg, C.W.E.M.; Meyer, T.; Jelicic, M.; Merckelbach, H. Introducing the Maastricht Acute Stress Test (MAST): A Quick and Non-Invasive Approach to Elicit Robust Autonomic and Glucocorticoid Stress Responses. Psychoneuroendocrinology 2012, 37, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Pruessner, J.C.; Kirschbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two Formulas for Computation of the Area under the Curve Represent Measures of Total Hormone Concentration versus Time-Dependent Change. Psychoneuroendocrinology 2003, 28, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Goreis, A.; Prillinger, K.; Bedus, C.; Lipp, R.; Mayer, A.; Nater, U.M.; Koenig, J.; Plener, P.L.; Kothgassner, O.D. Physiological Stress Reactivity and Self-Harm: A Meta-Analysis. Psychoneuroendocrinology 2023, 143, 106406. [Google Scholar] [CrossRef] [PubMed]
- Zorn, J.V.; Schür, R.R.; Boks, M.P.; Kahn, R.S.; Joëls, M.; Vinkers, C.H. Cortisol Stress Reactivity across Psychiatric Disorders: A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2017, 77, 25–36. [Google Scholar] [CrossRef]
- Drews, E.; Fertuck, E.A.; Koenig, J.; Kaess, M.; Arntz, A. Hypothalamic-Pituitary-Adrenal Axis Functioning in Borderline Personality Disorder: A Meta-Analysis. Neurosci. Biobehav. Rev. 2019, 105, 316–334. [Google Scholar] [CrossRef]
- Fleseriu, M.; Auchus, R.; Bancos, I.; Ben-Shlomo, A.; Bertherat, J.; Biermasz, N.R.; Boguszewski, C.L.; Bronstein, M.D.; Buchfelder, M.; Carmichael, J.D.; et al. Consensus on Diagnosis and Management of Cushing’s Disease: A Guideline Update. Lancet Diabetes Endocrinol. 2021, 9, 107–124. [Google Scholar] [CrossRef]
- Direk, N.; Dekker, M.J.H.J.; Luik, A.I.; Kirschbaum, C.; De Rijke, Y.B.; Hofman, A.; Hoogendijk, W.J.G.; Tiemeier, H. The Very Low-Dose Dexamethasone Suppression Test in the General Population: A Cross-Sectional Study. PLoS ONE 2016, 11, e0164348. [Google Scholar] [CrossRef]
- Spaan, P.; Verrijp, T.; Michielsen, P.J.S.; Birkenhager, T.K.; Hoogendijk, W.J.G.; Roza, S.J. The Dexamethasone Suppression Test as a Biomarker for Suicidal Behavior: A Systematic Review and Meta-Analysis. J. Affect Disord. 2024, 247, 220–227. [Google Scholar] [CrossRef]
- Mikneviciute, G.; Pulopulos, M.M.; Allaert, J.; Armellini, A.; Rimmele, U.; Kliegel, M.; Ballhausen, N. Adult age differences in the psychophysiological response to acute stress. Psychoneuroendocrinology 2023, 153, 106111. [Google Scholar] [CrossRef]
- Naeem, A.N.; Guldin, S.; Ghoreishizadeh, S.S. Electrochemical Sensors for Cortisol: A Review. IEEE Sens. J. 2024, 24, 1452–1461. [Google Scholar] [CrossRef]
- Tang, P.; He, F. A Wearable Electrochemical Sensor Based on a Molecularly Imprinted Polymer Integrated with a Copper Benzene-1, 3, 5-Tricarboxylate Metal-Organic Framework for the On-Body Monitoring of Cortisol in Sweat. Polymer 2024, 16, 2289. [Google Scholar] [CrossRef]
- Weber, C.J.; Clay, O.M.; Lycan, R.E.; Anderson, G.K.; Simoska, O. Advances in Electrochemical Biosensor Design for the Detection of the Stress Biomarker Cortisol. Anal. Bioanal. Chem. 2024, 416, 87–106. [Google Scholar] [CrossRef]
Authors [Ref No.] | Year | Mean Age (yrs) | N and Characteristics of Participants | Type of Study | Cortisol Measurement, Test | Main Results | Main Limitations | NOS Score | Selection | Comparability | Exposure |
---|---|---|---|---|---|---|---|---|---|---|---|
Genis-Mendoza et al. [29] | 2022 | 32.88 | Suicide attempt: 56, healthy controls: 56 | Cross-sectional | Unstimulated cortisol (plasma) | Elevated baseline plasma cortisol levels in suicide attempt group compared to healthy controls. | Small sample size. Missing key factors: important variables like hormone use and therapy were not considered. Non-response data missing: no information on non-respondents, affecting reliability. | 6/9 | 3/4 | 1/2 | 2/3 |
Choi et al. [30] | 2022 | range 17–85 | Depressive disorder: 1094, healthy controls: 884 | Longitudinal | Unstimulated cortisol (blood) | Elevated blood cortisol levels correlated with future suicide attempts. | Reliance on self-reported stress data. | 8/9 | 3/4 | 2/2 | 3/3 |
Kim et al. [31] | 2023 | range 17–86 | Depressive disorder: 1094, healthy controls: 884 | Longitudinal | Unstimulated cortisol (blood) | Combined cortisol with other markers (such as total cholesterol and folate) predicted future suicide attempts. | Biomarker measurement at baseline only. Small numerical differences in biomarkers. Low number of suicide events. Lack of consideration for early antidepressant effects. Broad age range. | 8/9 | 3/4 | 2/2 | 3/3 |
O'Connor et al. [32] | 2020 | 27.74 (range 18–63) | Suicide attempts: 53, suicidal ideation: 52, control: 49 | Longitudinal | Unstimulated cortisol (saliva) | Lower CAR and flatter cortisol slopes in suicide attempt group, association with increased suicidal ideation. | Small sample size. Retrospective self-report bias: the Childhood Trauma Questionnaire (CTQ) used for assessing childhood trauma relies on retrospective self-reports. Lack of clinical diagnoses: the study did not assess formal psychiatric diagnoses. | 9/9 | 4/4 | 2/2 | 3/3 |
O'Connor et al. [33] | 2021 | 27.74 (range 18–63) | Suicide attempts: 53, suicidal ideation: 52, control: 49 | Longitudinal | Unstimulated cortisol (saliva) | Lower CAR associated with psychological risk factors for suicide. | Small sample size. Retrospective self-report bias: the Childhood Trauma Questionnaire (CTQ) used for assessing childhood trauma relies on retrospective self-reports. Lack of clinical diagnoses: the study did not assess formal psychiatric diagnoses. | 9/9 | 4/4 | 2/2 | 3/3 |
Mathew et al. [34] | 2003 | first day: 15.00 years, follow up: ~7 years later | Healthy adolescents: 35, major depressive disorder adolescents: 42 | Longitudinal | Unstimulated cortisol (blood) | Higher pre-sleep cortisol levels in MDD and suicide attempt group, lower levels of post-sleep cortisol. | High rate of control group conversion to depression. Small sample size. Potential retrospective recall bias. | 8/9 | 3/4 | 2/2 | 3/3 |
Young [35] | 2010 | 15.3 | Adolescents: 501 | Cross-sectional | Unstimulated cortisol (blood) | No association between cortisol and trauma, suicide attempts, or ideation. | Inconsistent findings and small effect sizes: Gender interactions. Trauma assessment limitations: lack of differentiation between recent and distant trauma. Non-representative sample. Single-time-point saliva cortisol assessments. | 8/9 | 3/4 | 2/2 | 3/3 |
Reichl et al. [36] | 2016 | 16.25 (range 14–18) | NSSI: 26, control: 26 | Cross-sectional | Unstimulated cortisol (saliva), HCC | Elevated CAR in NSSI group, no differences in baseline cortisol, no differences in HCC. | Small sample size. Exclusion criteria: adolescents with acute suicidality, or other specific conditions were excluded. Missing data imputation. No long-term follow-up. | 9/9 | 4/4 | 2/2 | 3/3 |
Flach et al. [37] | 2021 | range 12–17 | NSSI adolescents: 117, control: 41 | Cross-sectional | Unstimulated cortisol (blood) | No association between baseline cortisol levels and NSSI. | Gender bias: small proportion of male participants. Single-time-point cortisol assessments. | 8/9 | 4/4 | 2/2 | 2/3 |
Reichl et al. [38] | 2024 | 15.00 (range 12–17) | NSSI adolescents: 51 | Longitudinal | Unstimulated cortisol (saliva), HCC | No main effect of ACEs or HPA axis on NSSI, interactive effect predicting NSSI frequency. | Small sample size. Inconsistent treatment across participants. Retrospective assessment of ACEs. Limited cortisol measurement: Cortisol was only measured on a few days (two or three) at limited time points. Missing data handling. | 8/9 | 3/4 | 2/2 | 3/3 |
Melhem et al. [39] | 2017 | 23 (range 15–30) | Suicide attempt: 38, suicidal ideation: 40, healthy controls: 37 | Cross-sectional | HCC (hair) | Lower HCC in suicide attempt group compared to ideation and control groups. | Sample bias and representativeness: only a subset of the larger sample participated in the TSST. Exclusion criteria: adolescents with NSSI were excluded. Task modifications: the TSST was modified. | 9/9 | 4/4 | 2/2 | 3/3 |
Karabatsiakis et al. [40] | 2022 | Not reported | Suicide completers: 45, depressed: 20, healthy controls: 12 | Cross-sectional | HCC (hair) | Higher HCC in suicide completers compared to controls, intermediate in depressed group. | Gender bias: the control and MDD groups only included women, while the SC group included men and women. Single biomaterial focus: only hair cortisol level. Unmeasured hair characteristics: key factors like hair type, color, and treatment (except for visible bleaching) were not considered. | 9/9 | 4/4 | 2/2 | 3/3 |
Reichl et al. [41] | 2019 | 15.7 | NSSI adolescents: 16, siblings: 15 | Cross-sectional | HCC (hair) | Higher HCC in NSSI group compared to controls. | Small sample size. Heterogeneous sibling group: the sibling group varied in terms of birth order, gender, and psychopathology. | 8/9 | 3/4 | 2/2 | 3/3 |
Melhem et al. [42] | 2016 | 23.3 (range 16–38) | Offspring of parents with mood disorder, n= 208 (offspring with SA (n = 20), offspring with SRB (n = 20), NS offspring (n = 168), healthy controls, (n = 35)) | Cross-sectional | AUCg and AUCi (saliva), TSST | Lower total cortisol output (AUCg) in offspring of suicide attempters, no differences in cortisol reactivity (AUCi) to the TSST. | Smal healthy control group. Exclusion criteria: adolescents with NSSI only were excluded. Task modifications: the TSST was modified. | 7/9 | 3/4 | 2/2 | 2/3 |
O'Connor et al. [43] | 2017 | 26.84 (range 18–62) | Suicide attempt: 49, suicidal ideation: 55, healthy controls: 48 | Cross-sectional | AUCg and AUCi (saliva), MAST | Lower AUCg in response to the MAST in suicide attempt group, intermediate levels in suicidal ideation group, no AUCi differences. | Exclusion criteria: several participants were excluded for reasons like negative reactions to the stress test. Lack of clinical diagnoses for psychiatric disorders. | 9/9 | 4/4 | 2/2 | 3/3 |
Keilp et al. [44] | 2016 | 38.73 | Mood disorders: 22 suicide attempters, 47 non-attempters | Cross-sectional | AUCi and AUCg (saliva), TSST | No differences in AUCi or AUCg; lower baseline cortisol in suicide attempters. | Sample size. Non-experimental control: the study's design was not entirely experimental, as it relied on a pilot social stress task and variations in procedural factors, | 6/9 | 1/4 | 2/2 | 3/3 |
Alacreu-Crespo et al. [45] | 2022 | 39.26 | Depressed individuals: 67 (SA n= 41, without SA n = 26) | Cross-sectional | AUCi (saliva), TSST | Higher cortisol response to the TSST (AUCi) in suicide attempters with low depressive symptoms and high impulsivity. | Lack of healthy control group. Small sample size. | 7/9 | 3/4 | 2/2 | 2/3 |
Stanley et al. [46] | 2019 | 31.9 | Suicide attempt: 35, healthy controls: 37 | Cross-sectional | AUCg and AUCi (saliva), TSST | Elevated baseline cortisol, AUCg, and AUCi in subgroup with high impulsivity and aggression. | Lack of healthy control group, Small sample size. | 6/9 | 2/4 | 2/2 | 2/3 |
Herzog et al. [47] | 2023 | 33.07 | Suicide attempt: 68 | Cross-sectional | AUCg and AUCi (saliva), TSST | Lower AUCg and AUCi in high suicidal intent group compared to low intent. | Lack of healthy control group. Small sample size. Gender bias: small proportion of male participants. | 8/9 | 4/4 | 2/2 | 2/3 |
Shalev et al. [48] | 2019 | 12.3 | Bereaved: 114, non-bereaved controls: 109 | Cross-sectional | AUCi (saliva), TSST | Higher AUCi in those with more severe suicidal ideation. | Timing of the stressor task (TSST). Limited generalizability. The study focuses on offspring bereaved by sudden parental death. Potential selection bias. | 6/9 | 2/4 | 2/2 | 2/3 |
Giletta et al. [49] | 2015 | 14.13 | Adolescent females at risk for SBs: 138 | Longitudinal | AUCi (saliva), TSST | Hyperreactive and blunted group more likely to report suicidal ideation at baseline and 3 months later. | Focus on suicidal ideation only. Self-reported measures to assess predictors. Lack of control group. Gender bias: only female participants. | 9/9 | 4/4 | 2/2 | 3/3 |
Eisenlohr-Moul et al. [50] | 2018 | 14.69 (range 12–16) | Adolescent females at risk for SBs: 220 | Longitudinal | AUCi (saliva), TSST | Blunted cortisol response to stress predicted future SBs, peer stress increased SB risk in blunted group. | Lack of healthy control group. Gender bias: only female participants. | 7/9 | 3/4 | 1/2 | 3/3 |
Koenig et al. [51] | 2017 | 15.27 | NSSI adolescents: 30, control: 30 | Cross-sectional | AUCi (saliva), Cold Pressor Test | Greater cortisol increase in NSSI group following painful cold pressor test compared to controls. | Lack of multiple cortisol samples. Comorbid disorders: n = 18 participants had comorbid BPD, but the sample size was too small to explore differences in pain responses between those with only NSSI and those with NSSI and BPD. Self-reported drug use. | 9/9 | 4/4 | 2/2 | 3/3 |
van der Venne et al. [52] | 2023 | 14.8 | NSSI adolescents: 164, control: 45 | Cross-sectional | AUCi (saliva), cold pressor test | Increased cortisol secretion after thermal pain in NSSI group, severity of NSSI affects cortisol response. | Sole use of NSSI frequency as an indicator. Differences between heat pain and actual NSSI methods. Gender bias: only female participants. | 8/9 | 3/4 | 2/2 | 3/3 |
Beauchaine et al. [53] | 2015 | 15.7 (depression), 16.3 (depression + NSSI) | Depression and NSSI: 28 (depression only), 29 (depression + NSSI) | Cross-sectional | DST (serum) | Lower cortisol levels after DST linked to suicidal ideation and self-inflicted injury. | No assessment of pubertal status. No measurement of pre-DST cortisol. Small sample size. Potential bias from blood draw reactions. Gender bias: only female participants. | 6/9 | 3/4 | 1/2 | 2/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sporniak, B.; Szewczuk-Bogusławska, M. Do Cortisol Levels Play a Role in Suicidal Behaviors and Non-Suicidal Self-Injuries in Children and Adolescents?—A Narrative Review. Brain Sci. 2025, 15, 287. https://doi.org/10.3390/brainsci15030287
Sporniak B, Szewczuk-Bogusławska M. Do Cortisol Levels Play a Role in Suicidal Behaviors and Non-Suicidal Self-Injuries in Children and Adolescents?—A Narrative Review. Brain Sciences. 2025; 15(3):287. https://doi.org/10.3390/brainsci15030287
Chicago/Turabian StyleSporniak, Bartłomiej, and Monika Szewczuk-Bogusławska. 2025. "Do Cortisol Levels Play a Role in Suicidal Behaviors and Non-Suicidal Self-Injuries in Children and Adolescents?—A Narrative Review" Brain Sciences 15, no. 3: 287. https://doi.org/10.3390/brainsci15030287
APA StyleSporniak, B., & Szewczuk-Bogusławska, M. (2025). Do Cortisol Levels Play a Role in Suicidal Behaviors and Non-Suicidal Self-Injuries in Children and Adolescents?—A Narrative Review. Brain Sciences, 15(3), 287. https://doi.org/10.3390/brainsci15030287