Cognitive–Motor Coupling in Multiple Sclerosis: Do Chronological Age and Physical Activity Matter?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Outcome Measures
2.3. Procedures
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trapp, B.D.; Nave, K.A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008, 31, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.B.; Holtzer, R.; Motl, R.W.; Foley, F.W.; Kaur, S.; Hojnacki, D.; Weinstock-Guttman, B. Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. J. Int. Neuropsychol. Soc. 2011, 17, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Cadavid, D.; Sandroff, B.M.; Pilutti, L.A.; Pula, J.H.; Benedict, R.H.B. Cognitive processing speed has minimal influence on the construct validity of Multiple Sclerosis Walking Scale-12 scores. J. Neurol. Sci. 2013, 335, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Leone, C.; Feys, P.; Moumdjian, L.; D’Amico, E.; Zappia, M.; Patti, F. Cognitive-motor dual-task interference: A systematic review of neural correlates. Neurosci. Biobehav. Rev. 2017, 75, 348–360. [Google Scholar] [CrossRef]
- Leone, C.; Moumdjian, L.; Patti, F.; Vanzeir, E.; Baert, I.; Veldkamp, R.; Van Wijmeersch, B.; Feys, P. Comparing 16 dfferent dual-tasking paradigms in individuals with multiple sclerosis and healthy controls: Working memory tasks indicate cognitive-motor interference. Front. Neurol. 2020, 11, 918. [Google Scholar] [CrossRef]
- Veldkamp, R.; Baert, I.; Kalron, A.; Tacchino, A.; D’hooge, M.; Vanzeir, E.; Van Geel, F.; Raats, J.; Goetschalckx, M.; Brichetto, G.; et al. Structured cognitive-motor dual task training compared to single mobility training in persons with multiple sclerosis, a multicenter RCT. J. Clin. Med. 2019, 8, 2177. [Google Scholar] [CrossRef]
- Wajda, D.A.; Sosnoff, J.J. Cognitive-motor interference in multiple sclerosis: A systematic review of evidence, correlates, and consequences. BioMed Res. Int. 2015, 2015, 720856. [Google Scholar] [CrossRef]
- Kalron, A.; Dvir, Z.; Achiron, A. Walking while talking—difficulties incurred during the initial stages of multiple sclerosis disease process. Gait Posture 2010, 32, 332–335. [Google Scholar] [CrossRef]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of MS in the United States. Neurology 2019, 92, e1029–e1040. [Google Scholar] [CrossRef]
- Bollaert, R.E.; Sandroff, B.M.; Stine-Morrow, E.A.L.; Sutton, B.P.; Motl, R.W. The intersection of physical function, cognitive performance, aging, and multiple sclerosis: A cross-sectional comparative study. Cogn. Behav. Neurol. 2019, 32, 1–10. [Google Scholar] [CrossRef]
- Jeng, B.; Šilić, P.; Bollaert, R.E.; Sandroff, B.M.; Motl, R.W. Physical function across the lifespan in adults with multiple sclerosis: An application of the Short Physical Performance Battery. Mult. Scler. Relat. Disord. 2023, 73, 104624. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Sandroff, B.M.; DeLuca, J. Exercise training and cognitive rehabilitation: A symbiotic approach for rehabilitating walking and cognitive functions in multiple sclerosis? Neurorehabilit. Neural Repair 2016, 30, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Sandroff, B.M.; Benedict, R.H.; Hubbard, E.A.; Pilutti, L.A.; Sutton, B.P. Do subcortical gray matter volumes and aerobic capacity account for cognitive-motor coupling in multiple sclerosis? Mult. Scler. 2021, 27, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, G.N.; Sosnoff, J.J.; Hernandez, M.E. Effects of aerobic fitness on cognitive motor interference during self-paced treadmill walking in older adults. Aging Clin. Exp. Res. 2020, 32, 2539–2547. [Google Scholar] [CrossRef]
- Bouchard, C.; An, P.; Rice, T.; Skinner, J.S.; Wilmore, J.H.; Gagnon, J.; Pérusse, L.; Leon, A.S.; Rao, D.C. Familial aggregation of VO2 max response to exercise training: Results from the HERITAGE Family Study. J. Appl. Physiol. 1999, 87, 1003–1008. [Google Scholar] [CrossRef]
- Bouchard, C.; Blair, S.N.; Katzmarzyk, P.T. Less sitting, more physical activity, or higher fitness? Mayo Clin. Proc. 2015, 90, 1533–1540. [Google Scholar] [CrossRef]
- Baird, J.F.; Cederberg, K.L.J.; Sikes, E.M.; Jeng, B.; Sasaki, J.E.; Sandroff, B.M.; Motl, R.W. Changes in cognitive performance with age in adults with multiple sclerosis. Cogn. Behav. Neurol. 2019, 32, 201–207. [Google Scholar] [CrossRef]
- Baird, J.F.; Motl, R.W. Cognitive function and whole-brain MRI metrics Are not associated with mobility in older adults with multiple sclerosis. Int. J. Environ. Res. Public Health 2021, 18, 4232. [Google Scholar] [CrossRef]
- Cederberg, K.L.J.; Mathison, B.; Schuetz, M.L.; Motl, R.W. Restless legs syndrome severity and cognitive function in adults with multiple sclerosis: An exploratory pilot study. Int. J. MS Care 2022, 24, 154–161. [Google Scholar] [CrossRef]
- Sandroff, B.M.; Wylie, G.R.; Baird, J.F.; Jones, C.D.; Diggs, M.D.; Genova, H.; Bamman, M.M.; Cutter, G.R.; DeLuca, J.; Motl, R.W. Effects of walking exercise training on learning and memory and hippocampal neuroimaging outcomes in MS: A targeted, pilot randomized controlled trial. Contemp. Clin. Trials 2021, 110, 106563. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Motl, R.W.; Sandroff, B.M.; Pula, J.H.; Cadavid, D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 2013, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; McFadyen, C.; Yaeger, L.; Salter, A. A systematic review of the validity and reliability of the Patient-Determined Disease Steps scale. Int. J. MS Care 2023, 25, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. Symbol Digit Modalities Test; The clinical neuropsychologist; Western Psychological Services: Los Angeles, CA, USA, 1973. [Google Scholar]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Ober, B.A. California Verbal Learning Test—Second Edition; APA PsycNet: Washington, DC, USA, 1987. [Google Scholar]
- Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. 2008, 14, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Cohen, J.A.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R.; Multiple Sclerosis Outcome Consortium. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 704–710. [Google Scholar] [CrossRef]
- Sandroff, B.M.; Riskin, B.J.; Agiovlasitis, S.; Motl, R.W. Accelerometer cut-points derived during over-ground walking in persons with mild, moderate, and severe multiple sclerosis. J. Neurol. Sci. 2014, 340, 50–57. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Routledge: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 2016, 533, 452–454. [Google Scholar] [CrossRef]
- Reality check on reproducibility. Nature 2016, 533, 437. [CrossRef]
- Huynh, T.L.T.; Williams, M.J.; Motl, R.W. Walking and physical performance in black and white adults with multiple sclerosis controlling for social determinants of health. Mult. Scler. Relat. Disord. 2024, 83, 105439. [Google Scholar] [CrossRef]
- Sandroff, B.M.; Motl, R.W. Device-measured physical activity and cognitive processing speed impairment in a large sample of persons with multiple sclerosis. J. Int. Neuropsychol. Soc. 2020, 26, 798–805. [Google Scholar] [CrossRef]
- Ensari, I.; Balto, J.M.; Hubbard, E.A.; Pilutti, L.A.; Motl, R.W. Do depressive symptoms influence cognitive-motor coupling in multiple sclerosis? Rehabil. Psychol. 2018, 63, 111–120. [Google Scholar] [CrossRef]
- Stein, C.; O’Keeffe, F.; Strahan, O.; McGuigan, C.; Bramham, J. Systematic review of cognitive reserve in multiple sclerosis: Accounting for physical disability, fatigue, depression, and anxiety. Mult. Scler. Relat. Disord. 2023, 79, 105017. [Google Scholar] [CrossRef]
- Giustiniani, A.; Quartarone, A. Defining the concept of reserve in the motor domain: A systematic review. Front. Neurosci. 2024, 18, 1403065. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, R.; Choi, J.; Motl, R.W.; Foley, F.W.; Picone, M.A.; Lipton, M.L.; Izzetoglu, M.; Hernandez, M.; Wagshul, M.E. Individual reserve in aging and neurological disease. J. Neurol. 2023, 270, 3179–3191. [Google Scholar] [CrossRef]
- Coghe, G.; Fenu, G.; Lorefice, L.; Zucca, E.; Porta, M.; Pilloni, G.; Corona, F.; Frau, J.; Giovanna Marrosu, M.; Pau, M.; et al. Association between brain atrophy and cognitive motor interference in multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 25, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, S.; Fanelli, F.; Castelli, L.; Petsas, N.; De Giglio, L.; Prosperini, L. Lesion symptom map of cognitive-postural interference in multiple sclerosis. Mult. Scler. J. 2018, 24, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, Y.; Berkowitz, S.; Hershkovitz, L.; Malcay, O.; Kalron, A. The ability of the instrumented tandem walking tests to discriminate fully ambulatory people with MS from healthy adults. Gait Posture 2019, 70, 90–94. [Google Scholar] [CrossRef]
- Veldkamp, R.; Romberg, A.; Hämäläinen, P.; Giffroy, X.; Moumdjian, L.; Leone, C.; Feys, P.; Baert, I. Test-retest reliability of cognitive-motor interference assessments in walking with various task complexities in persons with multiple sclerosis. Neurorehabilit. Neural Repair 2019, 33, 623–634. [Google Scholar] [CrossRef]
- Centonze, D.; Leocani, L.; Feys, P. Advances in physical rehabilitation of multiple sclerosis. Curr. Opin. Neurol. 2020, 33, 255–261. [Google Scholar] [CrossRef]
- Galperin, I.; Mirelman, A.; Schmitz-Hübsch, T.; Hsieh, K.L.; Regev, K.; Karni, A.; Brozgol, M.; Thumm, P.C.; Lynch, S.G.; Paul, F.; et al. Treadmill training with virtual reality to enhance gait and cognitive function among people with multiple sclerosis: A randomized controlled trial. J. Neurol. 2022, 270, 1388–1401. [Google Scholar] [CrossRef]
- Abou, L.; Peters, J.; Fritz, N.E.; Sosnoff, J.J.; Kratz, A.L. Motor cognitive dual-task testing to predict future falls in multiple sclerosis: A systematic review. Neurorehabilit. Neural Repair 2022, 36, 757–769. [Google Scholar] [CrossRef]
Characteristics | Statistics |
---|---|
Age, years | 53 (22–77) |
Sex, n, % | |
Female Male | 221, 76% 69, 24% |
Race | |
Caucasian Non-Caucasian | 190, 65% 100, 34% |
Education, years | 16 (9–21) |
MS type, n, % | |
Relapsing-remitting Progressive | 253, 89% 31, 11% |
Disease duration, years | 15 (1–48) |
PDDS, 0–8 | 2 (0–7) |
MVPA, min/day | 20 (0–135) |
Variables | Mean (SD) |
---|---|
SDMT, score | 48.3 (12.5) |
CVLT-II, score | 44.6 (10.3) |
6MW, meters | 438.3 (140.1) |
T25FW, meters per sec | 1.6 (0.5) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1. SDMT | ||||||||||
2. CVLT-II | 0.490 ** | |||||||||
3. 6MW | 0.459 ** | 0.370 ** | ||||||||
4. T25FW | 0.433 ** | 0.322 ** | 0.911 ** | |||||||
5. Age | −0.347 ** | −0.161 * | −0.258 ** | −0.316 ** | ||||||
6. MVPA | 0.316 ** | 0.218 * | 0.665 ** | 0.617 ** | −0.278 ** | |||||
7. Sex | −0.129 * | −0.170 ** | 0.090 | 0.072 | 0.017 | 0.216 ** | ||||
8. Education | 0.388 ** | 0.339 ** | 0.237 ** | 0.150 * | −0.037 | 0.139 * | 0.033 | |||
9. Race | −0.085 | −0.214 ** | −0.171 ** | −0.172 ** | −0.374 ** | −0.117 | −0.129 * | −0.213 ** | ||
10. Disease Duration | −0.237 ** | −0.106 | −0.220 ** | −0.222 ** | 0.648 ** | −0.274 ** | −0.110 | −0.069 | −0.270 ** | |
11. PDDS | −0.401 ** | −0.334 ** | −0.742 ** | −0.680 ** | 0.272 ** | −0.487 ** | 0.001 | −0.188 ** | 0.007 | 0.184 ** |
Predictor | B | SE B | β | p-Value | |
---|---|---|---|---|---|
Step 1 | Sex | 154.668 | 68.208 | 0.139 | 0.024 |
Years of Education | 47.572 | 12.665 | 0.232 | <0.001 | |
Race | −92.904 | 61.248 | −0.095 | 0.131 | |
Step 2 | Sex | 131.144 | 45.660 | 0.118 | 0.004 |
Years of Education | 20.934 | 8.491 | 0.102 | 0.014 | |
Race | −135.150 | 42.513 | −0.138 | 0.002 | |
Disease Duration | −4.376 | 2.144 | −0.088 | 0.042 | |
PDDS | −179.418 | 10.336 | −0.710 | <0.001 | |
Step 3 | Sex | 149.109 | 45.359 | 0.134 | 0.001 |
Years of Education | 13.473 | 8.729 | 0.066 | 0.124 | |
Race | −114.629 | 42.422 | −0.117 | 0.007 | |
Disease Duration | −3.035 | 2.158 | −0.061 | 0.161 | |
PDDS | −167.509 | 10.936 | −0.663 | <0.001 | |
SDMT | 5.386 | 1.811 | 0.139 | 0.003 | |
Step 4 | Sex | 104.905 | 45.221 | 0.094 | 0.021 |
Years of Education | 14.109 | 8.476 | 0.069 | 0.097 | |
Race | −100.359 | 44.618 | −0.102 | 0.025 | |
Disease Duration | −1.764 | 2.555 | −0.035 | 0.491 | |
PDDS | −151.852 | 11.224 | −0.601 | <0.001 | |
SDMT | 4.613 | 1.831 | 0.119 | 0.012 | |
Age | −0.596 | 2.043 | −0.017 | 0.771 | |
MVPA | 4.179 | 0.999 | 0.182 | <0.001 | |
R2 = 0.092 for Step 1; R2 = 0.611 for Step 2; R2 = 0.615 for Step 3; R2 = 0.638 for Step 4. |
Predictor | B | SE B | β | p-Value | |
---|---|---|---|---|---|
Step 1 | Sex | 0.159 | 0.084 | 0.128 | 0.060 |
Years of Education | 0.035 | 0.015 | 0.153 | 0.025 | |
Race | −0.128 | 0.076 | −0.116 | 0.091 | |
Step 2 | Sex | 0.150 | 0.059 | 0.121 | 0.012 |
Years of Education | 0.007 | 0.011 | 0.031 | 0.522 | |
Race | −0.219 | 0.054 | −0.198 | <0.001 | |
Disease Duration | −0.007 | 0.003 | −0.137 | 0.007 | |
PDDS | −0.198 | 0.014 | −0.682 | <0.001 | |
Step 3 | Sex | 0.171 | 0.059 | 0.138 | 0.004 |
Years of Education | −0.001 | 0.011 | −0.005 | 0.925 | |
Race | −0.188 | 0.055 | −0.170 | <0.001 | |
Disease Duration | −0.006 | 0.003 | −0.104 | 0.042 | |
PDDS | −0.184 | 0.015 | −0.632 | <0.001 | |
SDMT | 0.006 | 0.002 | 0.145 | 0.010 | |
Step 4 | Sex | 0.125 | 0.060 | 0.101 | 0.038 |
Years of Education | 0.000 | 0.011 | −0.001 | 0.975 | |
Race | −0.189 | 0.059 | −0.170 | 0.002 | |
Disease Duration | −0.002 | 0.003 | −0.035 | 0.560 | |
PDDS | −0.166 | 0.015 | −0.570 | <0.001 | |
SDMT | 0.005 | 0.002 | 0.119 | 0.036 | |
Age | −0.003 | 0.003 | −0.088 | 0.189 | |
MVPA | 0.004 | 0.001 | 0.154 | 0.003 | |
R2 = 0.060 for Step 1; R2 = 0.557 for Step 2; R2 = 0.571 for Step 3; R2 = 0.593 for Step 4. |
Predictor | B | SE B | β | p-Value | |
---|---|---|---|---|---|
Step 1 | Sex | 153.549 | 68.136 | 0.138 | 0.025 |
Years of Education | 47.374 | 12.651 | 0.231 | <0.001 | |
Race | −89.223 | 61.008 | −0.091 | 0.145 | |
Step 2 | Sex | 129.612 | 45.625 | 0.116 | 0.005 |
Years of Education | 20.698 | 8.486 | 0.101 | 0.015 | |
Race | −133.087 | 42.452 | −0.136 | 0.002 | |
Disease Duration | −4.527 | 2.137 | −0.091 | 0.035 | |
PDDS | −179.307 | 10.333 | −0.709 | <0.001 | |
Step 3 | Sex | 160.396 | 46.141 | 0.144 | <0.001 |
Years of Education | 13.727 | 8.688 | 0.067 | 0.115 | |
Race | −102.691 | 43.072 | −0.105 | 0.018 | |
Disease Duration | −3.437 | 2.138 | −0.069 | 0.109 | |
PDDS | −170.341 | 10.625 | −0.674 | <0.001 | |
CVLT-II | 6.187 | 2.103 | 0.135 | 0.004 | |
Step 4 | Sex | 116.191 | 45.884 | 0.104 | 0.012 |
Years of Education | 13.777 | 8.406 | 0.067 | 0.102 | |
Race | −91.620 | 44.662 | −0.094 | 0.041 | |
Disease Duration | −1.628 | 2.542 | −0.033 | 0.523 | |
PDDS | −153.059 | 11.029 | −0.605 | <0.001 | |
CVLT-II | 5.668 | 2.050 | 0.124 | 0.006 | |
Age | −1.185 | 1.969 | −0.033 | 0.548 | |
MVPA | 4.205 | .996 | 0.183 | <0.001 | |
R2 = 0.090 for Step 1; R2 = 0.610 for Step 2; R2 = 0.623 for Step 3; R2 = 0.650 for Step 4. |
Predictor | B | SE B | β | p-Value | |
---|---|---|---|---|---|
Step 1 | Sex | 0.158 | 0.286 | 0.128 | 0.060 |
Years of Education | 0.035 | 0.084 | 0.153 | 0.025 | |
Race | −0.127 | 0.015 | −0.115 | 0.094 | |
Step 2 | Sex | 0.149 | 0.059 | 0.121 | 0.012 |
Years of Education | 0.007 | 0.011 | 0.030 | 0.529 | |
Race | −0.218 | 0.054 | −0.198 | <0.001 | |
Disease Duration | −0.007 | 0.003 | −0.139 | 0.006 | |
PDDS | −0.198 | 0.014 | −0.682 | <0.001 | |
Step 3 | Sex | 0.181 | 0.060 | 0.146 | 0.003 |
Years of Education | −0.001 | 0.011 | −0.004 | 0.931 | |
Race | −0.187 | 0.055 | −0.170 | <0.001 | |
Disease Duration | −0.006 | 0.003 | −0.115 | 0.019 | |
PDDS | −0.190 | 0.014 | −0.655 | <0.001 | |
CVLT-II | 0.006 | 0.003 | 0.125 | 0.019 | |
Step 4 | Sex | 0.135 | 0.060 | 0.109 | 0.027 |
Years of Education | −0.001 | 0.011 | −0.006 | 0.905 | |
Race | −0.189 | 0.058 | −0.172 | 0.001 | |
Disease Duration | −0.002 | 0.003 | −0.035 | 0.561 | |
PDDS | −0.170 | 0.015 | −0.583 | <0.001 | |
CVLT-II | 0.006 | 0.003 | 0.115 | 0.029 | |
Age | −0.004 | 0.003 | −0.108 | 0.092 | |
MVPA | 0.004 | 0.001 | 0.155 | 0.003 | |
R2 = 0.060 for Step 1; R2 = 0.557 for Step 2; R2 = 0.569 for Step 3; R2 = 0.593 for Step 4. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeng, B.; Zheng, P.; Motl, R.W. Cognitive–Motor Coupling in Multiple Sclerosis: Do Chronological Age and Physical Activity Matter? Brain Sci. 2025, 15, 274. https://doi.org/10.3390/brainsci15030274
Jeng B, Zheng P, Motl RW. Cognitive–Motor Coupling in Multiple Sclerosis: Do Chronological Age and Physical Activity Matter? Brain Sciences. 2025; 15(3):274. https://doi.org/10.3390/brainsci15030274
Chicago/Turabian StyleJeng, Brenda, Peixuan Zheng, and Robert W. Motl. 2025. "Cognitive–Motor Coupling in Multiple Sclerosis: Do Chronological Age and Physical Activity Matter?" Brain Sciences 15, no. 3: 274. https://doi.org/10.3390/brainsci15030274
APA StyleJeng, B., Zheng, P., & Motl, R. W. (2025). Cognitive–Motor Coupling in Multiple Sclerosis: Do Chronological Age and Physical Activity Matter? Brain Sciences, 15(3), 274. https://doi.org/10.3390/brainsci15030274