Electroencephalographic Biomarkers in Tinnitus: A Narrative Review of Current Approaches and Clinical Perspectives
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection and Review Structure
3.1.1. Study Selection
3.1.2. Review Structure
3.2. EEG Power
3.2.1. Definition and Theoretical Foundation
3.2.2. Interpretation Methodology
3.2.3. Tinnitus-Specific Research Evidence
| Author(s) & Year of Publication | EEG Recording Configuration | Experiment Conditions | EEG Analysis Method | Study Population (Sample Size) | Frequency Band(s) /Target Regions | Main Findings | Key EEG Indicators Identified in Tinnitus Studies |
|---|---|---|---|---|---|---|---|
| Moazami-Goudarzi et al., 2010 [56] | 60 electrodes (extended 10–20 system) | EC, EO | Filtering (0.3–100 Hz), Fourier transformation, low resolution electromagnetic tomography analysis | TI(M): 8 NC: 15 | δ (2–4 Hz), θ (4–8 Hz), α (8–12 Hz), lower-β (12–18 Hz), upper-β (18–30 Hz), γ (30–100 Hz)/BA 6, 9, 21, 22, 23, 24, 29, 30, 32, 41, 42, insula, parahippocampal gyrus, prefrontal, right fronto-central regions | TI(M): Average ↑δ, θ, β power *; EC ↑δ power in BA 21, 22, 41, 42, insula *; EC ↑θ power in BA 21, 22, 23, 29, 30, 41, 42, insula *; EC ↑β power in BA 6, 9, 24, 32, insula *; EO ↑δ power in BA 21, 22, 23, 29, 30, 41, 42, insula, parahippocampal gyrus *; EO ↑θ power in BA 21, 22, 23, 29, 30, 41, 42, insula, parahippocampal gyrus *; EO ↑α power in BA 21, 22, 41, 42, insula, prefrontal *; EO ↑β power in right fronto-central regions * | TI(M) characteristics: Global EEG pattern (TI: Average ↑δ, θ, β power); EC EEG neurobiological regions (TI: ↑δ, θ, β in BA 6, 9, 21, 22, 23, 24, 29, 30, 32, 41, 42, insula); EO EEG neurobiological regions (TI: ↑δ, θ, α, β in BA 21, 22, 23, 29, 30, 41, 42, insula, parahippocampal gyrus, prefrontal, right fronto-central) |
| Shulman et al., 2006 [57] | 19 electrodes (10–20 system) | EC, EO | Filtering (0.5–32 Hz), QEEG | TI(M): 42 TI(F): 19 | δ (1.5–3.5 Hz), θ (3.5–7.5 Hz), α (7.5–12.5 Hz), β (12.5–25 Hz), γ (25–50 Hz)/frontal, temporal, parietal, central, occipital | TI(F): ↑θ, ↑α power * TI: abnormal QEEG δ, θ, α, β power in frontal, temporal, parietal, central, occipital regions | TI characteristics: Sex-dependent pattern (F: ↑θ, ↑α power); EEG Neurobiological regions (TI: Abnormal QEEG δ, θ, α, β power across frontal, temporal, parietal, central, occipital regions demonstrating distributed cortical dysrhythmia) |
| Weiler et al., 2000 [58] | 19 electrodes (10–20 system) | EC, RS | Filtering (2–32 Hz), QEEG | TI(M)-B/R/L: 19/29/45 TI(F)-B/R/L: 15/13/30 NC(M): 35 NC(F): 20 | δ (2–4 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–21 Hz)/frontocentral, central, parietal, temporal, occipital | TI(M): ↓δ, power in B ***, R ***, L ***; ↓θ power in B **, R **, L **; ↓α, ↓β power in B ***, L *** TI(F): ↑δ, ↑θ power L ***; ↑α power in B **, R **, L ***; ↑β power in R ***; ↓β power in L *** | TI characteristics: Sex-dependent pattern (M: ↓δ, θ, α, β; F: ↑δ, θ, α with β asymmetry); Laterality-specific EEG signatures (TI: B ≠ R ≠ L) |
| Weiler & Brill, 2004 [59] | 19 electrodes (10–20 system) | EC | Filtering (2–32 Hz), QEEG | TI(M): 195 TI(F): 109 NC(M): 94 NC(F): 61 | δ (0–4 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–21 Hz)/frontopolar, frontal, central, parietal, temporal, occipital regions | TI(M): Average ↓δ, θ, α power ***; Average ↓β power * TI(F): Average ↑θ power *; Average ↑α power ***; Average ↑β power ** | TI characteristics: Sex-dependent pattern (M: ↓δ, θ, α, β; F: ↑θ, α, β) |
| Meyer et al., 2014 [62] | 129 electrodes (Dense array) | EC, EO | Filtering (0.5–100 Hz), Fourier transformation | TI: 24 NC: 24 | δ (0.5–4 Hz), α (9–13 Hz), upper-β (20–25 Hz), lower-γ (30–40 Hz)/frontal, temporal auditory cortex | EC high distress TI ↑upper-β power↔strong positive correlation in frontal lobe EC high presence TI ↑δ, α, lower-γ power↔weak positive correlation in temporal auditory cortex | TI handicap: Tinnitus distress (TI: ↑upper-β power, strong positive correlation in frontal lobe); Tinnitus presence (TI: ↑δ, α, lower-γ power, weak positive correlation in temporal auditory cortex) |
| Schecklmann et al., 2015 [66] | 63 electrodes (10–20 system) | EC, rTMS | Filtering (1–45 Hz), fast Fourier transformation | TI: 20 Sham-NC: 20 | δ (2–3.5 Hz), θ (4–7.5 Hz), lower-α (8–10 Hz), upper-α (10.5–12.5 Hz), lower-β (13–18 Hz), mid-β (18.5–21 Hz), upper-β (21.5–30 Hz)/frontal, temporal | Left temporal stimulation: ↑δ, θ, ↓mid-β power in frontal lobe ** Right prefrontal stimulation: ↓high-β, γ power in right temporal lobe ** | TI relief: left temporal stimulation (TI: ↑δ, θ, ↓mid-β power in frontal lobe); right prefrontal stimulation (↓upper-β, γ power in right temporal lobe) |
3.3. EEG Connectivity
3.3.1. Definition and Theoretical Foundation
3.3.2. Interpretation Methodology
3.3.3. Tinnitus-Specific Research Evidence
3.4. EEG Microstates
3.4.1. Definition and Theoretical Foundation
3.4.2. Interpretation Methodology
3.4.3. Tinnitus-Specific Research Evidence
3.5. EEG Entropy
3.5.1. Definition and Theoretical Foundation
3.5.2. Interpretation Methodology
3.5.3. Tinnitus-Specific Research Evidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EEG | Electroencephalography |
| THI | Tinnitus Handicap Inventory |
| VAS | Visual Analog Scales |
| PSD | Power Spectral Density |
| STFT | Short-Time Fourier Transform |
| QEEG | Quantitative Electroencephalography |
| AD | Alzheimer’s Dementia |
| TQ | Tinnitus Questionnaire |
| rTMS | Repetitive Transcranial Magnetic Stimulation |
| PLV | Phase-Locking Value |
| PCC | Posterior Cingulate Cortex |
| DMN | Default Mode Network |
| GFP | Global Field Power |
| AAHC | Atomize and Agglomerate Hierarchical Clustering |
| GEV | Global Explained Variance |
| NREM | Non-Rapid Eye Movement |
| TMNMT | Tailor-Made Notched Music Training |
| ShEn | Shannon Entropy |
| CoEn | Conditional Entropy |
| ApEn | Approximate Entropy |
| SampEn | Sample Entropy |
| TP | Total Power |
| CP | Conditional Probability |
| fMRI | Functional Magnetic Resonance Imaging |
| PET | Positron Emission Tomography |
| CBT | Cognitive Behavioral Therapy |
| MT | Music Therapy |
References
- Henry, J.A. “Measurement” of tinnitus. Otol. Neurotol. 2016, 37, e276–e285. [Google Scholar] [CrossRef]
- Jarach, C.M.; Lugo, A.; Scala, M.; van den Brandt, P.A.; Cederroth, C.R.; Odone, A.; Garavello, W.; Schlee, W.; Langguth, B.; Gallus, S. Global prevalence and incidence of tinnitus: A systematic review and meta-analysis. JAMA Neurol. 2022, 79, 888. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, D.; Zhang, X.; Li, X. Tinnitus-associated cognitive and psychological impairments: A comprehensive review and meta-analysis. Front. Neurosci. 2024, 18, 1275560. [Google Scholar] [CrossRef]
- Jin, I.-K.; Tyler, R.S. Measuring tinnitus in pharmaceutical clinical trials. J. Acoust. Soc. Am. 2022, 152, 3843–3849. [Google Scholar] [CrossRef] [PubMed]
- Newman, C.W.; Jacobson, G.P.; Spitzer, J.B. Development of the tinnitus handicap inventory. Arch. Otolaryngol. Head Neck Surg. 1996, 122, 143–148. [Google Scholar] [CrossRef]
- Adamchic, I.; Hauptmann, C.; Tass, P.A. Changes of oscillatory activity in pitch processing network and related tinnitus relief induced by acoustic CR neuromodulation. Front. Syst. Neurosci. 2012, 6, 18. [Google Scholar] [CrossRef]
- Langguth, B.; Kreuzer, P.M.; Kleinjung, T.; De Ridder, D. Tinnitus: Causes and clinical management. Lancet Neurol. 2013, 12, 920–930. [Google Scholar] [CrossRef]
- Raj-Koziak, D.; Gos, E.; Świerniak, W.; Rajchel, J.J.; Karpiesz, L.; Niedziałek, I.; Włodarczyk, E.; Skarżyński, H.; Skarżyński, P.H. Visual analogue scales as a tool for initial assessment of tinnitus severity: Psychometric evaluation in a clinical population. Audiol. Neurotol. 2018, 23, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Yukhnovich, E.A.; Alter, K.; Sedley, W. Nuances in intensity deviant asymmetric responses as a biomarker for tinnitus. PLoS ONE 2023, 18, e0289062. [Google Scholar] [CrossRef]
- Michel, C.M.; Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage 2018, 180, 577–593. [Google Scholar] [CrossRef] [PubMed]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef]
- Zandbagleh, A.; Sanei, S.; Penalba-Sánchez, L.; Rodrigues, P.M.; Crook-Rumsey, M.; Azami, H. Intra- and inter-regional complexity in multi-channel awake EEG through multivariate multiscale dispersion entropy for assessing sleep quality and aging. Biosensors 2025, 15, 240. [Google Scholar] [CrossRef]
- Graetz, L.; Goldsworthy, M.; Pope, K.; Sghirripa, S.; Sayed, T.; O’Loughlin, R.; Shekhawat, G.S. Electroencephalographic features of chronic subjective tinnitus: A scoping review. Hear. Res. 2025, 467, 109410. [Google Scholar] [CrossRef]
- Sadeghijam, M.; Talebian, S.; Mohsen, S.; Akbari, M.; Pourbakht, A. Shannon entropy measures for EEG signals in tinnitus. Neurosci. Lett. 2021, 762, 136153. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, S.; Chen, Y.; Li, J.; Wang, C.-D.; Zhao, F.; Dang, C.-P.; Liang, J.; He, N.; Liang, M.; et al. Altered resting-state EEG microstate in idiopathic sudden sensorineural hearing loss patients with tinnitus. Front. Neurosci. 2019, 13, 443. [Google Scholar] [CrossRef]
- Tunkel, D.E.; Bauer, C.A.; Sun, G.H.; Rosenfeld, R.M.; Chandrasekhar, S.S.; Cunningham, E.R.; Archer, S.M.; Blakley, B.W.; Carter, J.M.; Granieri, E.C.; et al. Clinical practice guideline: Tinnitus. Otolaryngol. Head Neck Surg. 2014, 151, S1–S40. [Google Scholar] [CrossRef]
- Abeles, M.; Goldstein, M.H. Multispike train analysis. Proc. IEEE 1977, 65, 762–773. [Google Scholar] [CrossRef]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Min, B.K. Spectral analysis of brain oscillatory activity. Korean J. Cogn. Sci. 2009, 20, 155–181. [Google Scholar] [CrossRef]
- Attar, E.T. Review of electroencephalography signals approaches for mental stress assessment. Neurosciences 2022, 27, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Dressler, O.; Schneider, G.; Stockmanns, G.; Kochs, E.F. Awareness and the EEG power spectrum: Analysis of frequencies. Br. J. Anaesth. 2004, 93, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Edgar, J.C.; Stewart, J.L.; Miller, G.A. Digital filtering in EEG/ERP research. In Event-Related Potentials: A Handbook; MIT Press: Cambridge, MA, USA, 2005; pp. 85–113. [Google Scholar]
- Nitschke, J.B.; Miller, G.A.; Cook, E.W. Digital filtering in EEG/ERP analysis: Some technical and empirical comparisons. Behav. Res. Methods Instrum. Comput. 1998, 30, 54–67. [Google Scholar] [CrossRef]
- Bracewell, R.N. The Fourier Transform. Sci. Am. 1989, 260, 86–95. [Google Scholar] [CrossRef]
- Da Silva, F.L. EEG Analysis: Theory and Practice. In Electroencephalography: Basic Principles, Clinical Applications and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1999; pp. 1125–1159. [Google Scholar]
- Al-Fahoum, A.S.; Al-Fraihat, A.A. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. Int. Sch. Res. Not. 2014, 2014, 730218. [Google Scholar] [CrossRef]
- Oken, B.S.; Chiappa, K.H. Short-term variability in EEG frequency analysis. Electroencephalogr. Clin. Neurophysiol. 1988, 69, 191–198. [Google Scholar] [CrossRef]
- Kalayci, T.; Ozdamar, O.; Erdol, N. The use of wavelet transform as a preprocessor for the neural network detection of EEG spikes. In Proceedings of the SOUTHEASTCON ’94, Miami, FL, USA, 10–13 April 1994; IEEE: New York, NY, USA, 1994; pp. 1–3. [Google Scholar] [CrossRef]
- Farge, M. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 1992, 24, 395–458. [Google Scholar] [CrossRef]
- Ende, M.; Louis, A.K.; Maass, P.; Mayer-Kress, G. EEG signal analysis by continuous wavelet transform techniques. In Nonlinear Analysis of Physiological Data; Kantz, H., Kurths, J., Mayer-Kress, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 213–219. [Google Scholar] [CrossRef]
- Hazarika, N.; Chen, J.Z.; Tsoi, A.C.; Sergejew, A. Classification of EEG signals using the wavelet transform. Signal Process. 1997, 59, 61–72. [Google Scholar] [CrossRef]
- Samar, V.J.; Bopardikar, A.; Rao, R.; Swartz, K. Wavelet analysis of neuroelectric waveforms: A conceptual tutorial. Brain Lang. 1999, 66, 7–60. [Google Scholar] [CrossRef]
- van Vugt, M.K.; Sederberg, P.B.; Kahana, M.J. Comparison of spectral analysis methods for characterizing brain oscillations. J. Neurosci. Methods 2007, 162, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Welch, P.D. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Aud. Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Soininen, H.; Partanen, J.; Pääkkonen, A.; Koivisto, E.; Riekkinen, P.J. Changes in absolute power values of EEG spectra in the follow-up of Alzheimer’s disease. Acta Neurol. Scand. 1991, 83, 133–136. [Google Scholar] [CrossRef]
- Markovska-Simoska, S.; Pop-Jordanova, N. Quantitative EEG in children and adults with attention deficit hyperactivity disorder: Comparison of absolute and relative power spectra and theta/beta ratio. Clin. EEG Neurosci. 2017, 48, 20–32. [Google Scholar] [CrossRef]
- Rezaei, S.; Azarmi, A.; Rohampour, K. Altered EEG power spectrum and coherence in students with borderline personality disorder. Casp. J. Neurol. Sci. 2024, 10, 294–305. [Google Scholar] [CrossRef]
- Knyazev, G.G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci. Biobehav. Rev. 2012, 36, 677–695. [Google Scholar] [CrossRef]
- Cajochen, C.; Foy, R.; Dijk, D.J. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online 1999, 2, 65–69. [Google Scholar] [PubMed]
- Meerwijk, E.L.; Ford, J.M.; Weiss, S.J. Resting-state EEG delta power is associated with psychological pain in adults with a history of depression. Biol. Psychol. 2015, 105, 106–114. [Google Scholar] [CrossRef]
- De Stefano, P.; Carboni, M.; Marquis, R.; Spinelli, L.; Seeck, M.; Vulliemoz, S. Increased delta power as a scalp marker of epileptic activity: A simultaneous scalp and intracranial electroencephalography study. Eur. J. Neurol. 2022, 29, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, S.; Robertson, I.H. Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology 2011, 48, 1083–1087. [Google Scholar] [CrossRef]
- Rangaswamy, M.; Porjesz, B.; Chorlian, D.B.; Choi, K.; Jones, K.A.; Wang, K.; Rohrbaugh, J.; O’Connor, S.; Kuperman, S.; Reich, T.; et al. Theta power in the EEG of alcoholics. Alcohol. Clin. Exp. Res. 2003, 27, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Musaeus, C.S.; Engedal, K.; Høgh, P.; Jelic, V.; Mørup, M.; Naik, M.; Oeksengaard, A.R.; Snaedal, J.; Wahlund, L.O.; Waldemar, G.; et al. EEG theta power is an early marker of cognitive decline in dementia due to Alzheimer’s disease. J. Alzheimers Dis. 2018, 64, 1359–1371. [Google Scholar] [CrossRef]
- Benca, R.M.; Obermeyer, W.H.; Larson, C.L.; Yun, B.; Dolski, I.; Kleist, K.D.; Weber, S.M.; Davidson, R.J. EEG alpha power and alpha power asymmetry in sleep and wakefulness. Psychophysiology 1999, 36, 430–436. [Google Scholar] [CrossRef]
- Scheeringa, R.; Petersson, K.M.; Kleinschmidt, A.; Jensen, O.; Bastiaansen, M.C.M. EEG Alpha Power Modulation of fMRI Resting-State Connectivity. Brain Connect. 2012, 2, 254–264. [Google Scholar] [CrossRef]
- Schwab, D.; Benedek, M.; Papousek, I.; Weiss, E.M.; Fink, A. The time-course of EEG alpha power changes in creative ideation. Front. Hum. Neurosci. 2014, 8, 310. [Google Scholar] [CrossRef]
- Mathewson, K.J.; Jetha, M.K.; Drmic, I.E.; Bryson, S.E.; Goldberg, J.O.; Schmidt, L.A. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin. Neurophysiol. 2012, 123, 1798–1809. [Google Scholar] [CrossRef]
- Schaefer, R.S.; Vlek, R.J.; Desain, P. Music perception and imagery in EEG: Alpha band effects of task and stimulus. Int. J. Psychophysiol. 2011, 82, 254–259. [Google Scholar] [CrossRef]
- Spiegelhalder, K.; Regen, W.; Feige, B.; Holz, J.; Piosczyk, H.; Baglioni, C.; Riemann, D.; Nissen, C. Increased EEG sigma and beta power during NREM sleep in primary insomnia. Biol. Psychol 2012, 91, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Rangaswamy, M.; Porjesz, B.; Chorlian, D.B.; Wang, K.; Jones, K.A.; Bauer, L.O.; Rohrbaugh, J.; O’Connor, S.J.; Kuperman, S.; Reich, T.; et al. Beta power in the EEG of alcoholics. Biol. Psychiatry 2002, 52, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Perlis, M.L.; Merica, H.; Smith, M.T.; Giles, D.E. Beta EEG activity and insomnia. Sleep Med. Rev. 2001, 5, 365–376. [Google Scholar] [CrossRef]
- Fitzgibbon, S.P.; Pope, K.J.; Mackenzie, L.; Clark, C.R.; Willoughby, J.O. Cognitive tasks augment gamma EEG power. Clin. Neurophysiol. 2004, 115, 1802–1809. [Google Scholar] [CrossRef]
- Herrmann, C.S.; Demiralp, T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin. Neurophysiol. 2005, 116, 2719–2733. [Google Scholar] [CrossRef] [PubMed]
- Moazami-Goudarzi, M.; Michels, L.; Weisz, N.; Jeanmonod, D. Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci. 2010, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Shulman, A.; Avitable, M.J.; Goldstein, B. Quantitative electroencephalography power analysis in subjective idiopathic tinnitus patients: A clinical paradigm shift in the understanding of tinnitus, an electrophysiological correlate. Int. Tinnitus J. 2006, 12, 121–131. [Google Scholar] [PubMed]
- Weiler, E.W.; Brill, K.; Tachiki, K.H.; Wiegand, R. Electroencephalography correlates in tinnitus. Int. Tinnitus J. 2000, 6, 21–24. [Google Scholar]
- Weiler, E.W.J.; Brill, K. Quantitative electroencephalography patterns in patients suffering from tinnitus. Int. Tinnitus J. 2004, 10, 127–131. [Google Scholar]
- Zhang, J.; Zhang, Z.; Huang, S.; Zhou, H.; Feng, Y.; Shi, H.; Wang, D.; Nan, W.; Wang, H.; Yin, S. Differences in Clinical Characteristics and Brain Activity Between Patients with Low- and High-Frequency Tinnitus. Neural Plast. 2020, 2020, 5285362. [Google Scholar] [CrossRef]
- Vanneste, S.; van de Heyning, P.; De Ridder, D. The neural network of phantom sound changes over time: A comparison between recent-onset and chronic tinnitus patients. Eur. J. Neurosci. 2011, 34, 718–731. [Google Scholar] [CrossRef]
- Meyer, M.; Luethi, M.S.; Neff, P.; Langer, N.; Büchi, S. Disentangling tinnitus distress and tinnitus presence by means of EEG power analysis. Neural Plast. 2014, 2014, 468546. [Google Scholar] [CrossRef]
- Dohrmann, K.; Weisz, N.; Schlee, W.; Hartmann, T.; Elbert, T. Neurofeedback for treating tinnitus. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2007; Volume 166, pp. 473–485. [Google Scholar] [CrossRef]
- Tang, D.; Li, H.; Chen, L. Advances in understanding, diagnosis, and treatment of tinnitus. Adv. Exp. Med. Biol. 2019, 1130, 109–128. [Google Scholar] [CrossRef]
- Soleimani, R.; Jalali, M.M.; Hasandokht, T. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: A systematic review and meta-analysis. Eur. Arch. Otorhinolaryngol. 2016, 273, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Schecklmann, M.; Lehner, A.; Gollmitzer, J.; Schmidt, E.; Schlee, W.; Langguth, B. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus. Front. Cell. Neurosci. 2015, 9, 421. [Google Scholar] [CrossRef] [PubMed]
- Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 2011, 41, 1110–1117. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, Y.; Shan, X.; Wei, H.L.; Guo, Y.; Chen, L.; Erkoyuncu, J.A.; Sarrigiannis, P.G. Brain functional and effective connectivity based on electroencephalography recordings: A review. Hum. Brain Mapp. 2022, 43, 860–879. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Maren, S. Prefrontal-hippocampal interactions in memory and emotion. Front. Syst. Neurosci. 2015, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.T.; Headley, D.B.; Mill, R.D.; Sanchez-Romero, R.; Uddin, L.Q.; Marinazzo, D.; Lurie, D.J.; Valdés-Sosa, P.A.; Hanson, S.J.; Biswal, B.B.; et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 2019, 22, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.; Xiao, L.; Lindquist, M.A. Single-index models with functional connectivity network predictors. Biostatistics 2023, 24, 52–67. [Google Scholar] [CrossRef]
- Bevandić, J.; Chareyron, L.J.; Bachevalier, J.; Cacucci, F.; Genzel, L.; Newcombe, N.S.; Vargha-Khadem, F.; Ólafsdóttir, H.F. Episodic memory development: Bridging animal and human research. Neuron 2024, 112, 1060–1080. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 1994, 2, 56–78. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Rehme, A.K.; Fink, G.R.; Von Cramon, D.Y.; Grefkes, C. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb. Cortex 2011, 21, 756–768. [Google Scholar] [CrossRef]
- Bastos, A.M.; Schoffelen, J.M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 2016, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef]
- Aydore, S.; Pantazis, D.; Leahy, R.M. A Note on the phase locking value and its properties. NeuroImage 2013, 74, 231–244. [Google Scholar] [CrossRef]
- Smith, S.M.; Miller, K.L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C.F.; Nichols, T.E.; Ramsey, J.D.; Woolrich, M.W. Network modelling methods for FMRI. NeuroImage 2011, 54, 875–891. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Sexton, D.; Lainscsek, C.; Cash, S.S.; Sejnowski, T.J. Characterizing brain connectivity from human electrocorticography recordings with unobserved inputs during epileptic seizures. Neural Comput. 2019, 31, 1271–1326. [Google Scholar] [CrossRef] [PubMed]
- Halliday, D.M.; Rosenberg, J.R.; Amjad, A.M.; Breeze, P.; Conway, B.A.; Farmer, S.F. A framework for the analysis of mixed time series/point process data—Theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog. Biophys. Mol. Biol. 1995, 64, 237–278. [Google Scholar] [CrossRef]
- Gross, J.; Kujala, J.; Hämäläinen, M.; Timmermann, L.; Schnitzler, A.; Salmelin, R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc. Natl. Acad. Sci. USA 2001, 98, 694–699. [Google Scholar] [CrossRef]
- Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 2011, 55, 1548–1565. [Google Scholar] [CrossRef]
- Nolte, G.; Bai, O.; Wheaton, L.; Mari, Z.; Vorbach, S.; Hallett, M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 2004, 115, 2292–2307. [Google Scholar] [CrossRef]
- Friston, K.J.; Preller, K.H.; Mathys, C.; Cagnan, H.; Heinzle, J.; Razi, A.; Zeidman, P. Dynamic causal modelling revisited. NeuroImage 2019, 199, 730–744. [Google Scholar] [CrossRef]
- Siegel, M.; Donner, T.H.; Engel, A.K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 2012, 13, 121–134. [Google Scholar] [CrossRef]
- Fodor, Z.; Horváth, A.; Hidasi, Z.; Gouw, A.A.; Stam, C.J.; Csukly, G. EEG alpha and beta band functional connectivity and network structure mark hub overload in mild cognitive impairment during memory maintenance. Front. Aging Neurosci. 2021, 13, 680200. [Google Scholar] [CrossRef] [PubMed]
- Paitel, E.R.; Otteman, C.B.D.; Polking, M.C.; Licht, H.J.; Nielson, K.A. Functional and effective EEG connectivity patterns in Alzheimer’s disease and mild cognitive impairment: A systematic review. Front. Aging Neurosci. 2025, 17, 1496235. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, G.; Daverio, A.; Ferrentino, F.; Santarnecchi, E.; Ciabattini, F.; Monaco, L.; Lisi, G.; Barone, Y.; Di Lorenzo, C.; Niolu, C.; et al. Altered resting-state EEG source functional connectivity in schizophrenia: The effect of illness duration. Front. Hum. Neurosci. 2015, 9, 234. [Google Scholar] [CrossRef]
- Krukow, P.; Jonak, K.; Grochowski, C.; Plechawska-Wójcik, M.; Karakuła-Juchnowicz, H. Resting-state hyperconnectivity within the default mode network impedes the ability to initiate cognitive performance in first-episode schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 102, 109959. [Google Scholar] [CrossRef] [PubMed]
- De Pieri, M.; Sabe, M.; Rochas, V.; Poglia, G.; Bartolomei, J.; Kirschner, M.; Kaiser, S. Resting-state EEG and MEG gamma frequencies in schizophrenia: A systematic review and exploratory power-spectrum metanalysis. Schizophrenia 2025, 11, 48. [Google Scholar] [CrossRef]
- McNally, J.M.; McCarley, R.W. Gamma band oscillations: A key to understanding schizophrenia symptoms and neural circuit abnormalities. Curr. Opin. Psychiatry 2016, 29, 202–210. [Google Scholar] [CrossRef]
- Mohan, A.; De Ridder, D.; Vanneste, S. Graph theoretical analysis of brain connectivity in phantom sound perception. Sci. Rep. 2016, 6, 19683. [Google Scholar] [CrossRef]
- Xiong, B.; Liu, Z.; Li, J.; Huang, X.; Yang, J.; Xu, W.; Chen, Y.C.; Cai, Y.; Zheng, Y. Abnormal functional connectivity within default mode network and salience network related to tinnitus severity. J. Assoc. Res. Otolaryngol. 2023, 24, 453–462. [Google Scholar] [CrossRef]
- Vanneste, S.; Joos, K.; Ost, J.; De Ridder, D. Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress. Neurobiol. Stress 2018, 8, 211–224. [Google Scholar] [CrossRef]
- Vanneste, S.; Joos, K.; De Ridder, D. Prefrontal cortex based sex differences in tinnitus perception: Same tinnitus intensity, same tinnitus distress, different mood. PLoS ONE 2012, 7, e31182. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, D.; Vanneste, S.; Congedo, M. The distressed brain: A group blind source separation analysis on tinnitus. PLoS ONE 2011, 6, e24273. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D. Brain electric microstates and cognition: The atoms of thought. In Machinery of the Mind; John, E.R., Harmony, T., Prichep, L.S., Valdés-Sosa, M., Valdés-Sosa, P.A., Eds.; Birkhäuser Verlag: Boston, MA, USA, 1990; pp. 209–224. [Google Scholar] [CrossRef]
- Lehmann, D.; Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 1980, 48, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.; Ozaki, H.; Pal, I. EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation Map Series. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 271–288. [Google Scholar] [CrossRef]
- Lehmann, D.; Koenig, T. Spatio-temporal dynamics of alpha brain electric fields, and cognitive modes. Int. J. Psychophysiol. 1997, 26, 99–112. [Google Scholar] [CrossRef]
- Khanna, A.; Pascual-Leone, A.; Michel, C.M.; Farzan, F. Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 2015, 49, 105–113. [Google Scholar] [CrossRef]
- Koenig, T.; Prichep, L.; Lehmann, D.; Sosa, P.V.; Braeker, E.; Kleinlogel, H.; Isenhart, R.; John, E.R. Millisecond by millisecond, year by year: Normative EEG microstates and developmental stages. NeuroImage 2002, 16, 41–48. [Google Scholar] [CrossRef]
- Murray, M.M.; Brunet, D.; Michel, C.M. Topographic ERP analyses: A step-by-step tutorial review. Brain Topogr. 2008, 20, 249–264. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Trans. Biomed. Eng. 1995, 42, 658–665. [Google Scholar] [CrossRef]
- von Wegner, F.; Knaut, P.; Laufs, H. EEG microstate sequences from different clustering algorithms are information-theoretically invariant. Front. Comput. Neurosci. 2018, 12, 70. [Google Scholar] [CrossRef]
- Zanesco, A.P.; King, B.G.; Skwara, A.C.; Saron, C.D. Within and between-person correlates of the temporal dynamics of resting EEG microstates. NeuroImage 2020, 211, 116631. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.B.; Dhindsa, K.; Reilly, J.P.; Becker, S. Capturing the forest but missing the trees: Microstates inadequate for characterizing shorter-scale EEG dynamics. Neural Comput. 2019, 31, 2177–2211. [Google Scholar] [CrossRef]
- Van De Ville, D.; Britz, J.; Michel, C.M. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. USA 2010, 107, 18179–18184. [Google Scholar] [CrossRef]
- Bréchet, L.; Ziegler, D.A.; Simon, A.J.; Brunet, D.; Gazzaley, A.; Michel, C.M. Reconfiguration of electroencephalography microstate networks after breath-focused, digital meditation training. Brain Connect. 2021, 11, 146–155. [Google Scholar] [CrossRef]
- Hill, A.T.; Bailey, N.W.; Zomorrodi, R.; Hadas, I.; Kirkovski, M.; Das, S.; Lum, J.A.G.; Enticott, P.G. EEG microstates in early-to-middle childhood show associations with age, biological sex, and alpha power. Hum. Brain Mapp. 2023, 44, 6484–6498. [Google Scholar] [CrossRef]
- Britz, J.; Van De Ville, D.; Michel, C.M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage 2010, 52, 1162–1170. [Google Scholar] [CrossRef]
- Custo, A.; Van De Ville, D.; Wells, W.M.; Tomescu, M.I.; Brunet, D.; Michel, C.M. Electroencephalographic resting-state networks: Source localization of microstates. Brain Connect. 2017, 7, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, P.; Gu, Z.; Liu, H.; Han, S.; Liu, X.; Huang, X.; Shao, L.; Tao, Y. Objective neurophysiological indices for the assessment of chronic tinnitus based on EEG microstate parameters. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 983–993. [Google Scholar] [CrossRef]
- Jabès, A.; Klencklen, G.; Ruggeri, P.; Michel, C.M.; Banta Lavenex, P.; Lavenex, P. Resting-state EEG Microstates parallel age-related differences in allocentric spatial working memory performance. Brain Topogr. 2021, 34, 442–460. [Google Scholar] [CrossRef] [PubMed]
- Brodbeck, V.; Kuhn, A.; von Wegner, F.; Morzelewski, A.; Tagliazucchi, E.; Borisov, S.; Michel, C.M.; Laufs, H. EEG microstates of wakefulness and NREM sleep. NeuroImage 2012, 62, 2129–2139. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Liu, J.; Liao, M.; Liu, B.; Wu, S.; Li, X.; Li, H.; Ou, W.; Zhang, L.; Li, Z.; et al. Prediction of clinical outcomes with EEG microstate in patients with major depressive disorder. Front. Psychiatry 2021, 12, 695272. [Google Scholar] [CrossRef]
- Artoni, F.; Maillard, J.; Britz, J.; Seeber, M.; Lysakowski, C.; Bréchet, L.; Tramèr, M.R.; Michel, C.M. EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness. NeuroImage 2022, 256, 119156. [Google Scholar] [CrossRef]
- Bréchet, L.; Michel, C.M. EEG microstates in altered states of consciousness. Front. Psychol. 2022, 13, 856697. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, M. EEG microstates are associated with music training experience. Front. Hum. Neurosci. 2024, 18, 1434110. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-K.; Cho, J.-H.; Jeong, J.-H. Classification of tactile perception and attention on natural textures from EEG signals. In Proceedings of the 2021 9th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 22–24 February 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Lamoš, M.; Bočková, M.; Goldemundová, S.; Baláž, M.; Chrastina, J.; Rektor, I. The effect of deep brain stimulation in Parkinson’s disease reflected in EEG microstates. Npj Park. Dis. 2023, 9, 63. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Yao, L.; Liu, Q.; Lu, Y.; Chen, X.; Wang, T. EEG microstates analysis after TMS in patients with subacute stroke during the resting state. Cereb. Cortex 2024, 34, bhad480. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Gao, M.; Geng, Z.; Wu, Y.; Xiao, G.; Wang, L.; Pang, X.; Yang, C.; Zhou, S.; Li, H.; et al. Abnormal EEG microstates in Alzheimer’s disease: Predictors of β-amyloid deposition degree and disease classification. GeroScience 2024, 46, 4779–4792. [Google Scholar] [CrossRef]
- Cai, Y.; Huang, D.; Chen, Y.; Yang, H.; Wang, C.-D.; Zhao, F.; Liu, J.; Sun, Y.; Chen, G.; Chen, X.; et al. Deviant dynamics of resting state electroencephalogram microstate in patients with subjective tinnitus. Front. Behav. Neurosci. 2018, 12, 122. [Google Scholar] [CrossRef]
- Zhu, M.; Gong, Q. EEG spectral and microstate analysis originating residual inhibition of tinnitus induced by tailor-made notched music training. Front. Neurosci. 2023, 17, 1254423. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Bein, B. Entropy. Best Pr. Res. Clin. Anaesthesiol. 2006, 20, 101–109. [Google Scholar] [CrossRef]
- Cacciotti, A.; Pappalettera, C.; Miraglia, F.; Rossini, P.M.; Vecchio, F. EEG entropy insights in the context of physiological aging and Alzheimer’s and Parkinson’s diseases: A comprehensive review. GeroScience 2024, 46, 5537–5557. [Google Scholar] [CrossRef] [PubMed]
- Gancio, J.; Masoller, C.; Tirabassi, G. Permutation entropy analysis of EEG signals for distinguishing eyes-open and eyes-closed brain states: Comparison of different approaches. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 043130. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, R.; Talero, J.; Weinstein, A. Effects of tau and sampling frequency on the regularity analysis of ECG and EEG signals using ApEn and SampEn entropy estimators. Entropy 2020, 22, 1298. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.J.; Kozma, R.; Schübeler, F. Analysis of Meditation vs. sensory Engaged Brain States Using Shannon Entropy and Pearson’s First Skewness Coefficient Extracted from EEG Data. Sensors 2023, 23, 1293. [Google Scholar] [CrossRef] [PubMed]
- Inouye, T.; Shinosaki, K.; Sakamoto, H.; Toi, S.; Ukai, S.; Iyama, A.; Katsuda, Y.; Hirano, M. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 204–210. [Google Scholar] [CrossRef]
- Dai, J.; Xi, X.; Wang, T.; Li, H.; Kong, W.; Lü, Z. EEG signal Biometric extraction to predict stroke severity. Biomed. Signal Process. Control 2025, 110, 108037. [Google Scholar] [CrossRef]
- Lai, Y.-H.; Huang, P.-H.; Hsiao, T.-C. Use of sample entropy to assess sub-maximal physical load for avoiding exercise-induced cardiac fatigue. Appl. Sci. 2023, 13, 3813. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Pappalettera, C.; Cacciotti, A.; Nucci, L.; Miraglia, F.; Rossini, P.M.; Vecchio, F. Approximate entropy analysis across electroencephalographic rhythmic frequency bands during physiological aging of human brain. GeroScience 2023, 45, 1131–1145. [Google Scholar] [CrossRef]
- Alù, F.; Orticoni, A.; Judica, E.; Cotelli, M.; Rossini, P.M.; Miraglia, F.; Vecchio, F. Entropy modulation of electroencephalographic signals in physiological aging. Mech. Ageing Dev. 2021, 196, 111472. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, J.; He, E.; Wang, H. Sample-entropy-based method for real driving fatigue detection with multichannel electroencephalogram. Appl. Sci. 2021, 11, 10279. [Google Scholar] [CrossRef]
- Jianbiao, M.; Xinzui, W.; Zhaobo, L.; Juan, L.; Zhongwei, Z.; Hui, F. EEG signal classification of tinnitus based on SVM and sample entropy. Comput. Methods Biomech. Biomed. Eng. 2022, 26, 580–594. [Google Scholar] [CrossRef]
- Naghdabadi, Z.; Jahed, M. Heterogeneous correlate and potential diagnostic biomarker of tinnitus based on nonlinear dynamics of resting-state EEG recordings. PLoS ONE 2024, 19, e0290563. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K.; Acharya, U.R.; Alias, F.; Tiboleng, T.; Puthusserypady, S.K. Nonlinear analysis of EEG signals at different mental states. Biomed. Eng. OnLine 2004, 3, 7. [Google Scholar] [CrossRef]
- Kim, S.J.; Shin, S.H.; Byun, S.W.; Lee, H.Y. Resting state EEG Reveals no reliable biomarkers of tinnitus laterality. Sci. Rep. 2025, 15, 35820. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Wang, L.; Oostenveld, R.; Nielsen, K.D.; Arendt-Nielsen, L.; Chen, A.C.N. A comparative study of different references for EEG spectral mapping: The issue of the neutral reference and the use of the infinity reference. Physiol. Meas. 2005, 26, 173–184. [Google Scholar] [CrossRef]
- Whitham, E.M.; Pope, K.J.; Fitzgibbon, S.P.; Lewis, T.; Clark, C.R.; Loveless, S.; Broberg, M.; Wallace, A.; DeLosAngeles, D.; Lillie, P.; et al. Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin. Neurophysiol. 2007, 118, 1877–1888. [Google Scholar] [CrossRef]
- Yuval-Greenberg, S.; Tomer, O.; Keren, A.S.; Nelken, I.; Deouell, L.Y. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 2008, 58, 429–441. [Google Scholar] [CrossRef]
- Zhong, J.; Xiao, X.; Liu, B.; He, Z.; Zhou, M.; Zhou, E.; Hu, S. Direct evidence for synaptic density changes in tinnitus: 18F-SynVesT-1 PET reveals novel targets beyond metabolic changes. Eur. J. Nucl. Med. Mol. Imaging 2025. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Jung, D.J. Recent updates on tinnitus management. J. Audiol. Otol. 2023, 27, 181–192. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Xu, W.; Jiao, W.; Jiang, Y.; Gao, Z.; Zhang, J. The impact of mental fatigue on brain activity: A comparative study both in resting state and task state using EEG. BMC Neurosci. 2020, 21, 20. [Google Scholar] [CrossRef]
- Feng, T.; Wang, M.; Xiong, H.; Zheng, Y.; Yang, H. Efficacy of an integrative treatment for tinnitus combining music and cognitive-behavioral therapy—Assessed with behavioral and EEG data. Front. Integr. Neurosci. 2020, 14, 12. [Google Scholar] [CrossRef]
- Güntensperger, D.; Thüring, C.; Kleinjung, T.; Neff, P.; Meyer, M. Investigating the efficacy of an individualized alpha/delta neurofeedback protocol in the treatment of chronic tinnitus. Neural Plast. 2019, 2019, 3540898. [Google Scholar] [CrossRef]
- Easterbrook, P.J.; Berlin, J.A.; Gopalan, R.; Matthews, D.R. Publication bias in clinical research. Lancet 1991, 337, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Brunet, D. EEG source imaging: A practical review of the analysis steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Song, J.J.; Vanneste, S.; Schlee, W.; Van de Heyning, P.; De Ridder, D. Onset-related differences in neural substrates of tinnitus-related distress: The anterior cingulate cortex in late-onset tinnitus, and the frontal cortex in early-onset tinnitus. Brain Struct. Funct. 2015, 220, 571–584. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, D.; Friston, K.; Sedley, W.; Vanneste, S. A parahippocampal-sensory Bayesian vicious circle generates pain or tinnitus: A source-localized EEG study. Brain Commun. 2023, 5, fcad132. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Zou, T.; Wen, X.; Zhou, X.; Yu, Y.; Liu, Z.; Li, M. Sensorineural Hearing Loss Affects Functional Connectivity of the Auditory Cortex, Parahippocampal Gyrus and Inferior Prefrontal Gyrus in Tinnitus Patients. Front. Neurosci. 2022, 16, 816712. [Google Scholar] [CrossRef]
- Kiashemshaki, K.; Samieirad, S.; Erfani, S.; Jalaeianbanayan, A.; Asadi Isakan, N.; Najafzadeh, H. Automated tinnitus detection through dual-modality neuroimaging: EEG microstate analysis and resting-state fMRI classification using deep learning. arXiv 2025, arXiv:2510.21748. [Google Scholar] [CrossRef]
- De Ridder, D.; Vanneste, S.; Langguth, B.; Llinas, R. Thalamocortical dysrhythmia: A theoretical update in tinnitus. Front. Neurol. 2015, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, S.; Song, J.J.; De Ridder, D. Thalamocortical dysrhythmia detected by machine learning. Nat. Commun. 2018, 9, 1103. [Google Scholar] [CrossRef] [PubMed]
| Author(s) & Year of Publication | EEG Recording Configuration | Experimental Condition | EEG Analysis Method | Study Population (Sample Size) | Frequency Band(s)/Target Regions | Main Findings | Key EEG Indicators Identified in Tinnitus Studies |
|---|---|---|---|---|---|---|---|
| Mohan et al., 2016 [95] | 19 electrodes (10–20 systems) | EC, RS | Filtering (2.0–44.0 Hz), Lagged phase coherence | TI(M): 210 TI(F): 101 NC(M): 154 NC(F): 102 | δ (2.0–3.5 Hz), θ (4.0–7.5 Hz), α1 (8.0–10.0 Hz), α2 (10.0–12 Hz), β1 (13.0–18.0 Hz), β2 (18.5–21.0 Hz), β3 (21.5–30.0 Hz) γ (30.5–44.0 Hz)/frontal, parietal, temporal, and occipital | TI connectivity patterns: ↑θ in Right temporal↔Bilateral parietal ***; ↑β, γ in Fronto-limbic *** Global connectivity (all regions): ↑β, γ ***/↓δ, θ, α1 *** | TI characteristics: Theta connectivity increased between the right temporal and parietal regions, whereas beta and gamma connectivity increased within fronto-limbic networks. Overall, beta and gamma connectivity were elevated, whereas delta, theta, and alpha1 were reduced, reflecting frequency-dependent reorganization toward a white-noise-like pattern. |
| Xiong et al., 2023 [96] | 128 electrodes (10–20 system) | EO, RS | Filtering (0.5–100.0 Hz & 50 Hz notch filtering), sLORETA; Lagged phase coherence | TI(M): 33 TI(F): 24 NC(M): 18 NC(F): 9 | δ (2.0–3.5 Hz), θ (4.0–7.5 Hz), α1 (8.0–10.0 Hz), α2 (10.0–12.0 Hz), β1 (13.0–18.0 Hz), β2 (18.5–21.0 Hz), β3 (21.5–30.0 Hz), γ (30.5–44.0 Hz)/temporal, auditory cortex, frontal, prefrontal, INS, parietal cingulate, posterior cingulate, parahippocampus | TI (moderate-to-severe) vs. controls: ↑lagged coherence: PHC (right)–PCC (left) in β3 ***, Auditory cortex (right)–INS (right) in γ ** TI (moderate-to-severe) vs. (slight-to-mild): ↑INS–Auditory cortex in γ *** Correlation analysis (TI): INS (right)–PHC (left) connection↔THI (r > 0.37) in γ, INS(right)–PCC(left) connection↔THI (r > 0.37) in γ, Network: INS hub linking AN–SN–DMN *** | TI characteristics: Enhanced β3 coherence between parahippocampus and PCC (DMN–limbic coupling) and increased γ-band connectivity between the auditory cortex and insula, indicating an INS-centered hub integrating auditory, salience, and default mode networks. TI handicap: In the tinnitus group, γ-band connectivity among the insula, parahippocampus, and PCC, especially the INS–PHC and INS–PCC pathways, was positively correlated with THI, suggesting maladaptive auditory–salience–limbic interactions underlying tinnitus distress. |
| Vanneste et al., 2018 [97] | 19 electrodes (10–20 system) | EC, RS. NF | Filtering (2.0–44.0 Hz), sLORETA source imaging; Phase-amplitude nesting; Granger causality | TI: 23 NC: 22 | δ (2.0–3.5 Hz), θ (4.0–7.5 Hz), α (8.0–12.0 Hz), β (12.5–30.0 Hz), γ (30.5–44.0 Hz)/frontal, prefrontal, parietal cingulate, posterior cingulate, parahippocampus | PCC neurofeedback: ↓TQ distress post-training ***; ↓α–β, α–γ nesting post-training **; ↓functional connectivity: PCC–dACC, PCC–scACC, scACC–PHC; ↑PCC–PHC(α); ↓effective connectivity: PCC→dACC, PCC→scACC, PHC→scACC; | TI relief: PCC neurofeedback reduces α–β/α–γ nesting and both functional and effective connectivity within the distress network (PCC–dACC–scACC–PHC), while restoring α coupling between PCC and PHC. |
| Vanneste et al., 2012 [98] | 19 electrodes (10–20 system) | EC, RS | Filtering (2.0–44.0 Hz), sLORETA, Lagged linear connectivity | TI(M): 18 TI(F): 18 NC(M): 18 NC(F): 18 | δ (2.0–3.5 Hz), θ (4.0–7.5 Hz), α1 (8.0–10.0 Hz), α2 (10.0–12.0 Hz), β1 (13.0–18.0 Hz), β2 (18.5–21.0 Hz), β3 (21.5–30.0 Hz), γ (30.5–44.0 Hz)/prefrontal, orbitofrontal, PCC | TI (M) < TI (F) ↑α1 functional connectivity: Parahippocampus↔sgACC *, sgACC↔LINS *, LINS↔OFC (left) *, OFC (left)↔LA2 *, parahippocampus (left)↔RA1 * | TI characteristics: Sex-dependent pattern TI(F): increased α1 functional connectivity |
| De Ridder et al., 2011 [99] | 19 electrodes (10–20 systems) | EC, RS | Filtering (0.5–45 Hz), sLORETA source localization, lagged phase coherence | TI: 55 NC: 84 | δ (2.0–3.5 Hz), θ (4.0–7.5 Hz), α (8.0–12.0 Hz), β (13.0–30.0 Hz), γ (30.5–44.0 Hz)/AUD, BA 41, 42, STG, OFC, INS, ACC | TI: IC5 (sgACC-centered limbic network) & IC6(orbitofrontal-insular limbic network)-Connectivity: ↑α lagged coherence in parahippocampus↔sgACC↔orbitofrontal cortex↔inferior frontal gyrus; ↑β lagged coherence in parahippocampus↔sgACC↔orbitofrontal cortex↔inferior frontal gyrus | TI characteristics: Increased α–β connectivity in the sgACC–OFC–Ins–PHG limbic network; individuals with high-distress tinnitus exhibited stronger β power in the OFC–Ins–PHG component. The distress network shares the same topology as the pain and PTSD systems, suggesting a transdiagnostic affective–salience mechanism. |
| Author(s) & Year of Publication | EEG Recording Configuration | Experiment Conditions | EEG Analysis Method | Study Population (Sample Size) | Frequency Band(s)/Target Regions | Main Findings | Key EEG Indicators Identified in Tinnitus Studies | |||
|---|---|---|---|---|---|---|---|---|---|---|
| Coverage (%) | Mean Duration (ms) | Frequency | Transition Probability | |||||||
| Cai et al., 2019 [15] | 128 electrodes | EO | Filtering (2–20 Hz), modified k-means clustering algorithm | TI(TII): 25 NC: 27 | A, B, C, D | TI(TII): ↓A * | TI(TII): ↓A * | TI(TII): ↓A *, ↑B*, THI↔A(r = −0.41) * | TI(TII): ↓(C→A) *, ↑(C→B) *, THI↔(D→A)(r = −0.447) *, THI↔(D→B)(r = 0.425) * | TI(TII) characteristics: decreased auditory network activation (↓A) and increased visual network compensation (↑B) TI(TII) handicap: altered default mode network transitions (↓C→A, ↑C→B) and reduced executive attention to auditory processing (↓D→A, ↑D→B). Higher tinnitus severity is correlated with greater auditory suppression and visual network reliance. |
| Wang et al., 2024 [116] | 16 channel (10–20 system) | EO, EC, EOECm | Filtering (2–20 Hz), modified k-means clustering algorithm | TI: 18 NC: 18 | A, B, C, D | TI(EOECm): ↑B *, ↓C *, TF↔A(r = 0.51) *, TF↔D(−0.58) *, Tinnitus intensity↔A(r = 0.53) *, Tinnitus intensity↔B(r = −0.52) *, THI↔D (r = −0.62) * | TI(EC): Tinnitus intensity↔A(r = 0.53) * TI(EOECm): ↑B *, ↓C *, Tinnitus intensity↔A(r = 0.58) *, Tinnitus intensity↔B(r = −0.53) *, TF↔D(r = −0.5) *, THI↔D(r = −0.65) *, OE vs. EC tinnitus: ↓B *, ↑D ** | TI(EO): ↑A ** TI(EC): ↑A *, ↓D↔Tinnitus intensity(r = −0.68) ** TI(EOECm): ↑B *, Tinnitus intensity↔B(r = −0.51) *, Tinnitus intensity↔D(r = −0.59) *, THI↔D(r = −0.58) *, THI↔(B→D)(r = −0.64) * | TI(EC): ↑(B→A) *, ↑(C→A) *, ↑(D→A) *, Tinnitus intensity↔(B→D)(r = −0.5) *, Tinnitus intensity↔(C→A)(r = −0.5) * EO: ↓(A→B) *, ↓(C→B), ↓(D→B) * TI(EOECm): ↑(B→A) *, ↑(C→A) *, ↑(D→A) *, ↓(C→D) *, ↓(D→C) *, Tinnitus intensity↔(A→C)(r = 0.6) *, Tinnitus intensity↔(C→A)(r = 0.59) *, Tinnitus intensity↔(D→B)(r = −0.65) *, TF↔(B→A)(r = 0.5) *, TF↔(C→A)(r = 0.51) *, TF↔(C→D)(r = −0.55) *, THI↔(B→D)(r = −0.64) * | TI handicap (EC): Increased activity in the auditory network (↑A) and more frequent transitions from other networks to auditory processing are linked to higher tinnitus intensity. This means the brain is more focused on hearing, which worsens tinnitus symptoms. TI relief (EOECm): Greater visual network engagement (↑B: longer duration, higher coverage, and more frequent occurrence) is correlated with decreased tinnitus intensity (r = −0.51). This indicates the brain’s attention shifts toward visual processing, helping to relieve tinnitus. TI characteristics (EOECm): Increased transitions from the default mode network (C) to the auditory network (A) is correlated with increased tinnitus intensity and frequency (↑C→A)(r = 0.59, r = 0.51). This reflects central neural reorganization whereby heightened reliance on auditory processing amplifies tinnitus perception. |
| Cai et al., 2018 [127] | 128 electrodes | EO | Filtering (2–20 Hz), modified k-means clustering algorithm | TI: 15 NC: 17 | A, B, D | TI: ↑A ***, ↓D * | TI: ↑A **, ↓D *, TL↔C(r = 0.57) * | - | TI: ↓(D→B) * | TI characteristics: central reorganization with auditory (↑A), executive (↓D), and default mode network (↑C) dysfunction, along with reduced (↓D→B) transitions indicating impaired attention shifting |
| Zhu & Gong, 2023 [128] | 64 electrodes (10–20 system) | EC, TMNMT | AAHC | TI(TMNMT): 22 TI-Sham: 22 | A, B, D | TI(TMNMT): ↑A **, ↓C * | TI(TMNMT): ↓B *, ↓C **, B↔TFI(r = 0.54) * | TI(TMNMT): ↑A **, ↑C *, ↑D * | TI(TMNMT): ↑(A→B) *, ↑(A→D) **, ↑(D→A) *, ↓(D→B) * | TI relief: increased auditory network (↑A) and attention network (↑D) activity, with reduced visual network (↓B), wherein B mean duration is positively correlated with TFI severity (r = 0.54) |
| Author(s) & Year of Publication | EEG Recording Configuration | Experiment Conditions | EEG Analysis Method | Study Population (Sample Size) | Frequency Band(s) /Target Regions | Main Findings | Key EEG Indicators in Tinnitus Studies |
|---|---|---|---|---|---|---|---|
| Sadeghijam et al., 2021 [14] | 32 electrodes (10–20 system) | EC, BBT | Filtering (0.4–256 Hz), QEEG, ShEn | TI: 19 NC: 23 | δ, θ, lower-α, upper-α, lower-β, mid-β, upper-β, γ/right auditory, left auditory, right frontal, left frontal, central | Pre-Intervention (TI): ↑δ, θ, lower-α, upper-α across all ROIs *; ↑lower-β in right auditory, right frontal, central only * Post-Intervention (TI): ↓δ in right auditory, right frontal, left frontal ROIs *; ↓θ, lower-α across all ROIs *; ↓upper-α in left frontal only * (despite these decreases, still higher than controls) | TI characteristics: Entropy-dominant pattern (↑δ, θ, lower-α, upper-α across ROIs; ↑low-β in right auditory, right frontal, central) TI relief: post-intervention partial normalization (↓δ in right auditory/right frontal/left frontal; ↓θ, lower-α globally; ↓upper-α in left frontal only); despite these reductions, the patients still exhibited higher values than the controls. |
| Jianbiao et al., 2022 [145] | 64 electrodes | RS | Filtering (0.5–80 Hz), Notch Filter (49.5–50.5 Hz), SampEn | TI: 10 NC: 10 | δ (0.5–3.5 Hz), θ (4–7.5 Hz), lower-α (8–10 Hz), upper-α (10–12 Hz), lower-β (13–18 Hz), mid-β (18.5–21 Hz), upper-β (21.5–30 Hz), γ (30.5–44 Hz)/right frontal, left frontal, right auditory, left auditory, central, right parietal lobe, left parietal lobe | SampEn TI: ↑δ in right parietal lobe **; ↑upper-α in left auditory *, central **, left parietal lobe *; ↑θ in right parietal lobe *; ↓θ in left parietal lobe *; ↓lower-α in central *; ↓γ in left auditory *, left frontal ** | TI characteristics: Comparisons of mean values with the NC group showed that the TI exhibited higher mean entropy in (↑δ, upper-α, lower-β) rhythms across all analyzed ROIs. The TI showed lower mean entropy in (↓θ, lower-α, mid-β, upper-β, γ) rhythms in most ROIs. |
| Naghdabadi & Jahed, 2024 [146] | 64 electrodes (10–20 system) | RS, EO | Filtering (0.4–200 Hz), ApEn | TI: 7; NC: 7 | -/AG, dlPFC, MTG, OFC, S1, SMA, SMG, STG, vlPFC, cuneal cortex & precuneus | ApEn TI: ↑Entropy in OFC(FPz, FP2) ***; dlPFC(F3, F4) ***; SMA(Fz, FC3, FCz, FC4, FT8) ***; MTG & STG(T7, T8) ***; SMG(CP3) ***; AG(P3, P4, CP4) ***; cuneal cortex & precuneus(POz) ***; ↓Entropy in C3 * | TI characteristics: characterized by widespread increased complexity (↑ApEn in frontal, temporal) alongside a focal decrease (↓ApEn in C3). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.; Lee, D.; Song, J.-K.; Baek, S.; Jin, I.-K. Electroencephalographic Biomarkers in Tinnitus: A Narrative Review of Current Approaches and Clinical Perspectives. Brain Sci. 2025, 15, 1332. https://doi.org/10.3390/brainsci15121332
Oh H, Lee D, Song J-K, Baek S, Jin I-K. Electroencephalographic Biomarkers in Tinnitus: A Narrative Review of Current Approaches and Clinical Perspectives. Brain Sciences. 2025; 15(12):1332. https://doi.org/10.3390/brainsci15121332
Chicago/Turabian StyleOh, Hyeonsu, Dongwoo Lee, Jae-Kwon Song, Seunghyeon Baek, and In-Ki Jin. 2025. "Electroencephalographic Biomarkers in Tinnitus: A Narrative Review of Current Approaches and Clinical Perspectives" Brain Sciences 15, no. 12: 1332. https://doi.org/10.3390/brainsci15121332
APA StyleOh, H., Lee, D., Song, J.-K., Baek, S., & Jin, I.-K. (2025). Electroencephalographic Biomarkers in Tinnitus: A Narrative Review of Current Approaches and Clinical Perspectives. Brain Sciences, 15(12), 1332. https://doi.org/10.3390/brainsci15121332

