Lesion-Symptom Mapping of Acute Speech Deficits After Left vs. Right Hemisphere Stroke: A Retrospective Analysis of NIHSS Best Language Scores and Clinical Neuroimaging
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Assessment of Speech Deficits
2.3. Neuroimaging Data Acquisition
2.4. Lesion Segmentation
2.5. Data Analysis
3. Results
3.1. Whole-Brain Analyses
3.2. Left Hemisphere LSM
3.3. Right Hemisphere LSM
4. Discussion
4.1. Presence vs. Severity of Speech Deficits
4.2. Primary Constraint: Clinical Neuroimaging and Aphasia Assessment
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engelter, S.T.; Gostynski, M.; Papa, S.; Frei, M.; Born, C.; Ajdacic-Gross, V.; Gutzwiller, F.; Lyrer, P.A. Epidemiology of aphasia attributable to first ischemic stroke: Incidence, severity, fluency, etiology, and thrombolysis. Stroke 2006, 37, 1379–1384. [Google Scholar] [CrossRef]
- Pedersen, P.M.; Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Olsen, T.S. Aphasia in acute stroke: Incidence, determinants, and recovery. Ann. Neurol. 1995, 38, 659–666. [Google Scholar] [CrossRef]
- Côté, H.; Payer, M.; Giroux, F.; Joanette, Y. Towards a description of clinical communication impairment profiles following right-hemisphere damage. Aphasiology 2007, 21, 739–749. [Google Scholar] [CrossRef]
- Ferré, P.; Fonseca, R.P.; Ska, B.; Joanette, Y. Communicative clusters after a right-hemisphere stroke: Are there universal clinical profiles? Folia Phoniatr. Logop. 2012, 64, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Minga, J.; Sheppard, S.M.; Johnson, M.; Hewetson, R.; Cornwell, P.; Blake, M.L. Apragmatism: The renewal of a label for communication disorders associated with right hemisphere brain damage. Int. J. Lang. Commun. Disord. 2023, 58, 651–666. [Google Scholar] [CrossRef]
- Friederici, A.D. The brain basis of language processing: From structure to function. Physiol. Rev. 2011, 91, 1357–1392. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef]
- Rauschecker, J.P.; Scott, S.K. Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nat. Neurosci. 2009, 12, 718–724. [Google Scholar] [CrossRef]
- Fridriksson, J.; Yourganov, G.; Bonilha, L.; Basilakos, A.; Den Ouden, D.B.; Rorden, C. Revealing the dual streams of speech processing. Proc. Natl. Acad. Sci. USA 2016, 113, 15108–15113. [Google Scholar] [CrossRef] [PubMed]
- Fridriksson, J.; den Ouden, D.B.; Hillis, A.E.; Hickok, G.; Rorden, C.; Basilakos, A.; Yourganov, G.; Bonilha, L. Anatomy of aphasia revisited. Brain J. Neurol. 2018, 141, 848–862. [Google Scholar] [CrossRef] [PubMed]
- Kristinsson, S.; Zhang, W.; Rorden, C.; Newman-Norlund, R.; Basilakos, A.; Bonilha, L.; Yourganov, G.; Xiao, F.; Hillis, A.; Fridriksson, J. Machine learning-based multimodal prediction of language outcomes in chronic aphasia. Hum. Brain Mapp. 2021, 42, 1682–1698. [Google Scholar] [CrossRef]
- Kümmerer, D.; Hartwigsen, G.; Kellmeyer, P.; Glauche, V.; Mader, I.; Klöppel, S.; Suchan, J.; Karnath, H.O.; Weiller, C.; Saur, D. Damage to ventral and dorsal language pathways in acute aphasia. Brain J. Neurol. 2013, 136, 619–629. [Google Scholar] [CrossRef]
- Fedorenko, E.; Ivanova, A.A.; Regev, T.I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. 2024, 25, 289–312. [Google Scholar] [CrossRef]
- Shain, C.; Fedorenko, E. A language network in the individualized functional connectomes of over 1,000 human brains doing arbitrary tasks. bioRxiv 2025. [Google Scholar] [CrossRef]
- Lindell, A.K. In your right mind: Right hemisphere contributions to language processing and production. Neuropsychol. Rev. 2006, 16, 131–148. [Google Scholar] [CrossRef]
- Hartwigsen, G.; Baumgaertner, A.; Price, C.J.; Koehnke, M.; Ulmer, S.; Siebner, H.R. Phonological decisions require both the left and right supramarginal gyri. Proc. Natl. Acad. Sci. USA 2010, 107, 16494–16499. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, K.; Wiley, R.; Litovsky, C.; Tsapkini, K.; Rapp, B. The right hemisphere’s capacity for language: Evidence from primary progressive aphasia. Cereb. Cortex 2023, 33, 9971–9985. [Google Scholar] [CrossRef] [PubMed]
- Bozic, M.; Tyler, L.K.; Ives, D.T.; Randall, B.; Marslen-Wilson, W.D. Bihemispheric foundations for human speech comprehension. Proc. Natl. Acad. Sci. USA 2010, 107, 17439–17444. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Tanigawa, N.; Ringel, F.; Zimmer, C.; Meyer, B.; Krieg, S.M. Language and its right-hemispheric distribution in healthy brains: An investigation by repetitive transcranial magnetic stimulation. NeuroImage 2014, 102, 776–788. [Google Scholar] [CrossRef]
- Rice, G.E.; Lambon Ralph, M.A.; Hoffman, P. The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies. Cereb. Cortex 2015, 25, 4374–4391. [Google Scholar] [CrossRef]
- Jung, J.; Lambon Ralph, M.A. Mapping the Dynamic Network Interactions Underpinning Cognition: A cTBS-fMRI Study of the Flexible Adaptive Neural System for Semantics. Cereb. Cortex 2016, 26, 3580–3590. [Google Scholar] [CrossRef] [PubMed]
- Ralph, M.A.; Jefferies, E.; Patterson, K.; Rogers, T.T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 2017, 18, 42–55. [Google Scholar] [CrossRef]
- Just, M.A.; Carpenter, P.A.; Keller, T.A.; Eddy, W.F.; Thulborn, K.R. Brain activation modulated by sentence comprehension. Science 1996, 274, 114–116. [Google Scholar] [CrossRef]
- Quillen, I.A.; Yen, M.; Wilson, S.M. Distinct neural correlates of linguistic demand and non-linguistic demand. Neurobiol. Lang. 2021, 2, 202–225. [Google Scholar] [CrossRef]
- Yang, F.G.; Edens, J.; Simpson, C.; Krawczyk, D.C. Differences in task demands influence the hemispheric lateralization and neural correlates of metaphor. Brain Lang. 2009, 111, 114–124. [Google Scholar] [CrossRef]
- Martin, K.C.; Seydell-Greenwald, A.; Turkeltaub, P.E.; Chambers, C.E.; Giannetti, M.; Dromerick, A.W.; Carpenter, J.L.; Berl, M.M.; Gaillard, W.D.; Newport, E.L. One right can make a left: Sentence processing in the right hemisphere after perinatal stroke. Cereb. Cortex 2023, 33, 11257–11268. [Google Scholar] [CrossRef]
- Newport, E.L.; Seydell-Greenwald, A.; Landau, B.; Turkeltaub, P.E.; Chambers, C.E.; Martin, K.C.; Rennert, R.; Giannetti, M.; Dromerick, A.W.; Ichord, R.N.; et al. Language and developmental plasticity after perinatal stroke. Proc. Natl. Acad. Sci. USA 2022, 119, e2207293119. [Google Scholar] [CrossRef] [PubMed]
- Turkeltaub, P.E.; Martin, K.C.; Laks, A.B.; DeMarco, A.T. Right hemisphere language network plasticity in aphasia. Brain J. Neurol. 2025, 8, awaf308. [Google Scholar] [CrossRef] [PubMed]
- Barlow, T. On a Case of Double Hemiplegia, with Cerebral Symmetrical Lesions. Br. Med. J. 1877, 2, 103–104. [Google Scholar] [CrossRef]
- Basso, A.; Gardelli, M.; Grassi, M.P.; Mariotti, M. The role of the right hemisphere in recovery from aphasia. Two case studies. Cortex 1989, 25, 555–566. [Google Scholar] [CrossRef]
- Nielsen, J.M.; Heober, P.B. Agnosia, apraxia, aphasia: Their value in cerebral localization. JAMA 1937, 109, 531. [Google Scholar] [CrossRef]
- Turkeltaub, P.E.; Coslett, H.B.; Thomas, A.L.; Faseyitan, O.; Benson, J.; Norise, C.; Hamilton, R.H. The right hemisphere is not unitary in its role in aphasia recovery. Cortex 2012, 48, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Branch, C.; Milner, B.; Rasmussen, T. Intracarotid sodium amytal for the lateralization of cerebral speech dominance: Observations in 123 patients. J. Neurosurg. 1964, 21, 399–405. [Google Scholar] [CrossRef]
- Chang, E.F.; Wang, D.D.; Perry, D.W.; Barbaro, N.M.; Berger, M.S. Homotopic organization of essential language sites in right and bilateral cerebral hemispheric dominance. J. Neurosurg. 2011, 114, 893–902. [Google Scholar] [CrossRef]
- Kinsbourne, M. The minor cerebral hemisphere as a source of aphasic speech. Arch. Neurol. 1971, 25, 302–306. [Google Scholar] [CrossRef]
- Wada, J.; Rasmussen, T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J. Neurosurg. 1960, 106, 1117–1133. [Google Scholar] [CrossRef]
- Blasi, V.; Young, A.C.; Tansy, A.P.; Petersen, S.E.; Snyder, A.Z.; Corbetta, M. Word retrieval learning modulates right frontal cortex in patients with left frontal damage. Neuron 2002, 36, 159–170. [Google Scholar] [CrossRef]
- Leff, A.; Crinion, J.; Scott, S.; Turkheimer, F.; Howard, D.; Wise, R. A physiological change in the homotopic cortex following left posterior temporal lobe infarction. Ann. Neurol. 2002, 51, 553–558. [Google Scholar] [CrossRef]
- Musso, M.; Weiller, C.; Kiebel, S.; Müller, S.P.; Bülau, P.; Rijntjes, M. Training-induced brain plasticity in aphasia. Brain J. Neurol. 1999, 122, 1781–1790. [Google Scholar] [CrossRef]
- Ohyama, M.; Senda, M.; Kitamura, S.; Ishii, K.; Mishina, M.; Terashi, A. Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A PET activation study. Stroke 1996, 27, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Saur, D.; Lange, R.; Baumgaertner, A.; Schraknepper, V.; Willmes, K.; Rijntjes, M.; Weiller, C. Dynamics of language reorganization after stroke. Brain J. Neurol. 2006, 129, 1371–1384. [Google Scholar] [CrossRef]
- Schneck, S.M.; Levy, D.F.; Entrup, J.L.; Yen, M.; Eriksson, D.K.; Casilio, M.; Kasdan, A.V.; Walljasper, L.; Onuscheck, C.F.; Davis, L.T.; et al. Independent contributions of language activations in left and right temporal cortex to aphasia outcomes after stroke. medRxiv 2025. [Google Scholar] [CrossRef]
- Heiss, W.D.; Thiel, A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 2006, 98, 118–123. [Google Scholar] [CrossRef]
- Heiss, W.D.; Kessler, J.; Thiel, A.; Ghaemi, M.; Karbe, H. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann. Neurol. 1999, 45, 430–438. [Google Scholar] [CrossRef]
- Richter, M.; Miltner, W.H.; Straube, T. Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain J. Neurol. 2008, 131, 1391–1401. [Google Scholar] [CrossRef]
- van Oers, C.A.; Vink, M.; van Zandvoort, M.J.; van der Worp, H.B.; de Haan, E.H.; Kappelle, L.J.; Ramsey, N.F.; Dijkhuizen, R.M. Contribution of the left and right inferior frontal gyrus in recovery from aphasia. A functional MRI study in stroke patients with preserved hemodynamic responsiveness. NeuroImage 2010, 49, 885–893. [Google Scholar] [CrossRef]
- Stefaniak, J.D.; Alyahya, R.S.W.; Lambon Ralph, M.A. Language networks in aphasia and health: A 1000 participant activation likelihood estimation meta-analysis. NeuroImage 2021, 233, 117960. [Google Scholar] [CrossRef] [PubMed]
- Turkeltaub, P.E.; Messing, S.; Norise, C.; Hamilton, R.H. Are networks for residual language function and recovery consistent across aphasic patients? Neurology 2011, 76, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.M.; Schneck, S.M. Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. Neurobiol. Lang. 2021, 2, 22–82. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.S.; Young, B.; Robinson, G.A. Cohesive and coherent connected speech deficits in mild stroke. Brain Lang. 2017, 168, 23–36. [Google Scholar] [CrossRef]
- Gajardo-Vidal, A.; Lorca-Puls, D.L.; Hope, T.M.H.; Parker Jones, O.; Seghier, M.L.; Prejawa, S.; Crinion, J.T.; Leff, A.P.; Green, D.W.; Price, C.J. How right hemisphere damage after stroke can impair speech comprehension. Brain J. Neurol. 2018, 141, 3389–3404. [Google Scholar] [CrossRef]
- Kim, W.J.; Yang, E.J.; Paik, N.J. Neural substrate responsible for crossed aphasia. J. Korean Med. Sci. 2013, 28, 1529–1533. [Google Scholar] [CrossRef]
- Martzoukou, M.; Nousia, A.; Nasios, G. Undetected language deficits in left or right hemisphere post-stroke patients. Appl. Neuropsychol. Adult 2025, 32, 606–614. [Google Scholar] [CrossRef]
- Sheppard, S.M.; Stockbridge, M.D.; Keator, L.M.; Murray, L.L.; Blake, M.L. Right Hemisphere Damage working group. Evidence-Based Clinical Research Committee, Academy of Neurologic Communication Disorders and Sciences. The Company Prosodic Deficits Keep Following Right Hemisphere Stroke: A Systematic Review. J. Int. Neuropsychol. Soc. 2022, 28, 1075–1090. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, S.; Bryan, K. Discourse production after right brain damage: Gaining a comprehensive picture using a multi-level processing model. J. Neurolinguistics 2012, 25, 213–239. [Google Scholar] [CrossRef]
- Stockert, A.; Wawrzyniak, M.; Klingbeil, J.; Wrede, K.; Kümmerer, D.; Hartwigsen, G.; Kaller, C.P.; Weiller, C.; Saur, D. Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain J. Neurol. 2020, 143, 844–861. [Google Scholar] [CrossRef]
- Wilson, S.M.; Entrup, J.L.; Schneck, S.M.; Onuscheck, C.F.; Levy, D.F.; Rahman, M.; Willey, E.; Casilio, M.; Yen, M.; Brito, A.C.; et al. Recovery from aphasia in the first year after stroke. Brain J. Neurol. 2023, 146, 1021–1039. [Google Scholar] [CrossRef]
- Dewarrat, G.M.; Annoni, J.M.; Fornari, E.; Carota, A.; Bogousslavsky, J.; Maeder, P. Acute aphasia after right hemisphere stroke. J. Neurol. 2009, 256, 1461–1467. [Google Scholar] [CrossRef]
- Jackson, M.S.; Uchida, Y.; Sheppard, S.M.; Oishi, K.; Crainiceanu, C.; Hillis, A.E.; Durfee, A.Z. Elucidating White Matter Contributions to the Cognitive Architecture of Affective Prosody Recognition: Evidence from Right Hemisphere Stroke. Brain Sci. 2025, 15, 769. [Google Scholar] [CrossRef] [PubMed]
- Pilepić, L.; Roje Bedeković, M. Right brain hemisphere lesions affecting language functioning in the acute phase of stroke recovery: A Croatian survey. Appl. Neuropsychol. Adult 2025, 1–9. [Google Scholar] [CrossRef]
- Sheppard, S.M.; Meier, E.L.; Zezinka Durfee, A.; Walker, A.; Shea, J.; Hillis, A.E. Characterizing subtypes and neural correlates of receptive aprosodia in acute right hemisphere stroke. Cortex 2021, 141, 36–54. [Google Scholar] [CrossRef]
- Døli, H.; Andersen Helland, W.; Helland, T.; Specht, K. Associations between lesion size, lesion location and aphasia in acute stroke. Aphasiology 2020, 35, 745–763. [Google Scholar] [CrossRef]
- Absher, J.; Goncher, S.; Newman-Norlund, R.; Perkins, N.; Yourganov, G.; Vargas, J.; Sivakumar, S.; Parti, N.; Sternberg, S.; Teghipco, A.; et al. The stroke outcome optimization project: Acute ischemic strokes from a comprehensive stroke center. Sci. Data 2024, 11, 839. [Google Scholar] [CrossRef]
- Brott, T.; Adams, H.P., Jr.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef]
- Goldstein, L.B.; Samsa, G.P. Reliability of the National Institutes of Health Stroke Scale. Extension to non-neurologists in the context of a clinical trial. Stroke 1997, 28, 307–310. [Google Scholar] [CrossRef]
- Kazaryan, S.A.; Shkirkova, K.; Saver, J.L.; Liebeskind, D.S.; Starkman, S.; Bulic, S.; Poblete, R.; Kim-Tenser, M.; Guo, S.; Conwit, R.; et al. The National Institutes of Health Stroke Scale is comparable to the ICH score in predicting outcomes in spontaneous acute intracerebral hemorrhage. Front. Neurol. 2024, 15, 1401793. [Google Scholar] [CrossRef]
- Lyden, P.D.; Lu, M.; Levine, S.R.; Brott, T.G.; Broderick, J.; NINDS rtPA Stroke Study Group. A modified National Institutes of Health Stroke Scale for use in stroke clinical trials: Preliminary reliability and validity. Stroke 2001, 32, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Mistry, E.A.; Yeatts, S.; de Havenon, A.; Mehta, T.; Arora, N.; De Los Rios La Rosa, F.; Starosciak, A.K.; Siegler, J.E.; Mistry, A.M., 3rd; Yaghi, S.; et al. Predicting 90-Day Outcome After Thrombectomy: Baseline-Adjusted 24-Hour NIHSS Is More Powerful Than NIHSS Score Change. Stroke 2021, 52, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Wang, Y.; Wang, X.; Maeda, T.; Ouyang, M.; Han, Q.; Li, Q.; Song, L.; Zhao, Y.; Chen, C.; et al. Twenty-Four-Hour Post-Thrombolysis NIHSS Score As the Strongest Prognostic Predictor After Acute Ischemic Stroke: ENCHANTED Study. J. Am. Heart Assoc. 2024, 13, e036109. [Google Scholar] [CrossRef]
- Lyden, P.; Brott, T.; Tilley, B.; Welch, K.M.; Mascha, E.J.; Levine, S.; Haley, E.C.; Grotta, J.; Marler, J. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 1994, 25, 2220–2226. [Google Scholar] [CrossRef] [PubMed]
- Boehme, A.K.; Martin-Schild, S.; Marshall, R.S.; Lazar, R.M. Effect of aphasia on acute stroke outcomes. Neurology 2016, 87, 2348–2354. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.R.; Rose, M.L.; Lima, H.N.; Cabral, N.L.; Silveira, N.C.; Massi, G.A. Prevalence of aphasia after stroke in a hospital population in southern Brazil: A retrospective cohort study. Top. Stroke Rehabil. 2020, 27, 215–223. [Google Scholar] [CrossRef]
- Cheng, B.; Chen, J.; Königsberg, A.; Mayer, C.; Rimmele, L.; Patil, K.R.; Gerloff, C.; Thomalla, G.; Eickhoff, S.B. Mapping the deficit dimension structure of the National Institutes of Health Stroke Scale. EBioMedicine 2023, 87, 104425. [Google Scholar] [CrossRef]
- Fink, J.N.; Selim, M.H.; Kumar, S.; Silver, B.; Linfante, I.; Caplan, L.R.; Schlaug, G. Is the association of National Institutes of Health Stroke Scale scores and acute magnetic resonance imaging stroke volume equal for patients with right- and left-hemisphere ischemic stroke? Stroke 2002, 33, 954–958. [Google Scholar] [CrossRef]
- Qi, S.; Shi, M.; Li, C.; Song, K.; Zhou, J.; Yue, F.; Zhang, W.; Wang, S. Associations between NIHSS sub-item scores and prognosis and intracranial hemorrhage after endovascular therapy for acute anterior circulation ischemic stroke. Front. Neurol. 2024, 14, 1320055. [Google Scholar] [CrossRef]
- Rajashekar, D.; Wilms, M.; MacDonald, M.E.; Schimert, S.; Hill, M.D.; Demchuk, A.; Goyal, M.; Dukelow, S.P.; Forkert, N.D. Lesion-symptom mapping with NIHSS sub-scores in ischemic stroke patients. Stroke Vasc. Neurol. 2022, 7, 124–131. [Google Scholar] [CrossRef]
- Li, X.; Morgan, P.S.; Ashburner, J.; Smith, J.; Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 2016, 264, 47–56. [Google Scholar] [CrossRef]
- Friston, K.J.; Ashburner, J.T.; Nichols, T.E.; Penny, W.D. Statistical Parametric Mapping the Analysis of Funtional Brain Images; Elsevier: Amsterdam, The Netherlands; Academic Press: London, UK, 2007. [Google Scholar]
- Rorden, C.; Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 2000, 12, 191–200. [Google Scholar] [CrossRef]
- Faria, A.V.; Joel, S.E.; Zhang, Y.; Oishi, K.; van Zjil, P.C.; Miller, M.I.; Pekar, J.J.; Mori, S. Atlas-based analysis of resting-state functional connectivity: Evaluation for reproducibility and multi-modal anatomy-function correlation studies. NeuroImage 2012, 61, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Axer, H.; Klingner, C.M.; Prescher, A. Fiber anatomy of dorsal and ventral language streams. Brain Lang. 2013, 127, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Forkel, S.J.; Catani, M. Lesion mapping in acute stroke aphasia and its implications for recovery. Neuropsychologia 2018, 115, 88–100. [Google Scholar] [CrossRef]
- Kreisler, A.; Godefroy, O.; Delmaire, C.; Debachy, B.; Leclercq, M.; Pruvo, J.P.; Leys, D. The anatomy of aphasia revisited. Neurology 2000, 54, 1117–1123. [Google Scholar] [CrossRef]
- Alexander, M.P.; Naeser, M.A.; Palumbo, C.L. Correlations of subcortical CT lesion sites and aphasia profiles. Brain J. Neurol. 1987, 110, 961–991. [Google Scholar] [CrossRef]
- Damasio, A.R.; Damasio, H.; Rizzo, M.; Varney, N.; Gersh, F. Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch. Neurol. 1982, 39, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Booth, J.R.; Wood, L.; Lu, D.; Houk, J.C.; Bitan, T. The role of the basal ganglia and cerebellum in language processing. Brain Res. 2007, 1133, 136–144. [Google Scholar] [CrossRef]
- Dronkers, N.F. A new brain region for coordinating speech articulation. Nature 1996, 384, 159–161. [Google Scholar] [CrossRef]
- Viñas-Guasch, N.; Wu, Y.J. The role of the putamen in language: A meta-analytic connectivity modeling study. Brain Struct. Funct. 2017, 222, 3991–4004. [Google Scholar] [CrossRef]
- Giampiccolo, D.; Herbet, G.; Duffau, H. The inferior fronto-occipital fasciculus: Bridging phylogeny, ontogeny and functional anatomy. Brain J. Neurol. 2025, 148, 1507–1525. [Google Scholar] [CrossRef] [PubMed]
- Herbet, G.; Moritz-Gasser, S.; Duffau, H. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Struct. Funct. 2017, 222, 1597–1610. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, S.; Zhou, L.; Yu, Y.; Tan, X.; Wu, M.; Sun, P.; Zhang, W.; Li, J.; Cheng, R.; et al. Correlations between Dual-Pathway White Matter Alterations and Language Impairment in Patients with Aphasia: A Systematic Review and Meta-analysis. Neuropsychol. Rev. 2021, 31, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.C.; Seydell-Greenwald, A.; Berl, M.M.; Gaillard, W.D.; Turkeltaub, P.E.; Newport, E.L. A Weak Shadow of Early Life Language Processing Persists in the Right Hemisphere of the Mature Brain. Neurobiol. Lang. 2022, 3, 364–385. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.; Farabola, M.; Grassi, M.P.; Laiacona, M.; Zanobio, M.E. Aphasia in left-handers. Comparison of aphasia profiles and language recovery in non-right-handed and matched right-handed patients. Brain Lang. 1990, 38, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Naeser, M.A.; Borod, J.C. Aphasia in left-handers: Lesion site, lesion side, and hemispheric asymmetries on CT. Neurology 1986, 36, 471–488. [Google Scholar] [CrossRef] [PubMed]




| Variable | No Deficit | Speech Deficit | p |
|---|---|---|---|
| Left Hemisphere Damage (N = 225) | |||
| N | 94 | 131 | |
| LesVol, cc | 29.9 ± 85.0 | 39.8 ± 74.5 | 0.364 |
| LH_LL, % | 0.02 ± 0.05 | 0.05 ± 0.08 | 0.004 ** |
| RH_LL, % | <0.01 ± 0.03 | <0.01 ± 0.01 | 0.573 |
| Age, y | 65.0 ± 68.0 | 68.0 ± 14.7 | 0.123 |
| NIHSS | 4.5 ± 5.5 | 12.2 ± 9.1 | <0.001 ** |
| Sex, F/M | 51/43 | 67/62 | 0.836 |
| Race, AA/W | 24/65 | 31/94 | 0.842 |
| Right hemisphere damage (N = 185) | |||
| N | 96 | 89 | |
| LesVol, cc | 24.7 ± 48.8 | 61.6 ± 74.1 | <0.001 ** |
| LH_LL, % | <0.01 ± 0.01 | <0.01 ± 0.01 | 0.134 |
| RH_LL, % | 0.02 ± 0.05 | 0.06 ± 0.07 | <0.001 ** |
| Age, y | 63.3 ± 15.1 | 65.9 ± 14.7 | 0.229 |
| NIHSS | 3.6 ± 5.1 | 11.3 ± 7.6 | <0.001 ** |
| Sex, F/M | 48/48 | 46/43 | 0.935 |
| Race, AA/W | 15/76 | 27/59 | 0.020 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherzad, N.; Newman-Norlund, R.; Absher, J.; Bonilha, L.; Rorden, C.; Fridriksson, J.; Kristinsson, S. Lesion-Symptom Mapping of Acute Speech Deficits After Left vs. Right Hemisphere Stroke: A Retrospective Analysis of NIHSS Best Language Scores and Clinical Neuroimaging. Brain Sci. 2025, 15, 1329. https://doi.org/10.3390/brainsci15121329
Sherzad N, Newman-Norlund R, Absher J, Bonilha L, Rorden C, Fridriksson J, Kristinsson S. Lesion-Symptom Mapping of Acute Speech Deficits After Left vs. Right Hemisphere Stroke: A Retrospective Analysis of NIHSS Best Language Scores and Clinical Neuroimaging. Brain Sciences. 2025; 15(12):1329. https://doi.org/10.3390/brainsci15121329
Chicago/Turabian StyleSherzad, Nilofar, Roger Newman-Norlund, John Absher, Leonardo Bonilha, Christopher Rorden, Julius Fridriksson, and Sigfus Kristinsson. 2025. "Lesion-Symptom Mapping of Acute Speech Deficits After Left vs. Right Hemisphere Stroke: A Retrospective Analysis of NIHSS Best Language Scores and Clinical Neuroimaging" Brain Sciences 15, no. 12: 1329. https://doi.org/10.3390/brainsci15121329
APA StyleSherzad, N., Newman-Norlund, R., Absher, J., Bonilha, L., Rorden, C., Fridriksson, J., & Kristinsson, S. (2025). Lesion-Symptom Mapping of Acute Speech Deficits After Left vs. Right Hemisphere Stroke: A Retrospective Analysis of NIHSS Best Language Scores and Clinical Neuroimaging. Brain Sciences, 15(12), 1329. https://doi.org/10.3390/brainsci15121329

