Recognising Emotions from the Voice: A tDCS and fNIRS Double-Blind Study on the Role of the Cerebellum in Emotional Prosody
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Experimental Procedure
2.2. Vocal Emotion Recognition Task
2.3. Transcranial Direct Current Stimulation (tDCS)
2.4. Functional Near-Infrared Spectroscopy (fNIRS)
2.5. Data Analysis
3. Results
3.1. Behavioural Results: Accuracy
3.2. Behavioural Results: Reaction Times
3.3. Haemodynamic Data: Delta Post-Pre (Δ) O2HB
3.4. Haemodynamic Data: Delta Post-Pre (Δ) HHB
4. Discussion
4.1. Behavioural Measures and Effects of Cerebellar Stimulation
4.2. Neural Effects and Cerebello-Prefrontal Connectivity
4.3. Offline Versus Online Stimulation Protocols
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monrad-Kohn, G. The prosodic quality of speech and its disorders. Acta Psychiatr. Neurol. 1947, 22, 255–269. [Google Scholar] [CrossRef]
- Liebenthal, E.; Silbersweig, D.A.; Stern, E. The Language, Tone and Prosody of Emotions: Neural Substrates and Dynamics of Spoken-Word Emotion Perception. Front. Neurosci. 2016, 10, 506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schirmer, A.; Kotz, S.A. Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends Cogn. Sci. 2006, 10, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Wildgruber, D.; Riecker, A.; Hertrich, I.; Erb, M.; Grodd, W.; Ethofer, T.; Ackermann, H. Identification of emotional intonation evaluated by fMRI. Neuroimage 2005, 24, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ding, H.; Zhang, Y. Emotional Prosody Processing in Schizophrenic Patients: A Selective Review and Meta-Analysis. J. Clin. Med. 2018, 7, 363. [Google Scholar] [CrossRef]
- Mitchell, R.L.C.; Elliott, R.; Barry, M.; Cruttenden, A.; Woodruff, P.W.R. The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia 2003, 41, 1410–1421. [Google Scholar] [CrossRef]
- Witteman, J.; Van Heuven, V.J.P.; Schiller, N.O. Hearing feelings: A quantitative meta-analysis on the neuroimaging literature of emotional prosody perception. Neuropsychologia 2012, 50, 2752–2763. [Google Scholar] [CrossRef]
- Panico, F.; Luciano, S.M.; Salzillo, A.; Sagliano, L.; Trojano, L. Investigating Cerebello-Frontal Circuits Associated with Emotional Prosody: A Double-Blind tDCS and fNIRS study. Cerebellum 2024, 23, 2397–2407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomasson, M.; Benis, D.; Saj, A.; Voruz, P.; Ronchi, R.; Grandjean, D.; Assal, F.; Péron, J. Sensory contribution to vocal emotion deficit in patients with cerebellar stroke. NeuroImage Clin. 2021, 31, 102690. [Google Scholar] [CrossRef]
- Baumann, O.; Mattingley, J.B. Cerebellum and Emotion Processing. Adv. Exp. Med. Biol. 2022, 1378, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Watson, T.C.; Becker, N.; Apps, R.; Jones, M.W. Back to front: Cerebellar connections and interactions with the prefrontal cortex. Front. Syst. Neurosci. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmahmann, J.D.; Pandya, D.N. Prefrontal cortex projections to the basilar pons in rhesus monkey: Implications for the cerebellar contribution to higher function. Neurosci. Lett. 1995, 199, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Pandya, D.N. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J. Neurosci. 1997, 17, 438–458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ceravolo, L.; Frühholz, S.; Pierce, J.; Grandjean, D.; Péron, J. Basal ganglia and cerebellum contributions to vocal emotion processing as revealed by high-resolution fMRI. Sci. Rep. 2021, 11, 10645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kelly, R.M.; Strick, P.L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 2003, 23, 8432–8444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; et al. Consensus Paper: Cerebellum and Emotion. Cerebellum 2017, 16, 552–576. [Google Scholar] [CrossRef]
- Eitan, R.; Shamir, R.R.; Linetsky, E.; Rosenbluh, O.; Moshel, S.; Ben-Hur, T.; Bergman, H.; Israel, Z. Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Front. Syst. Neurosci. 2013, 7, 69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benis, D.; Haegelen, C.; Voruz, P.; Pierce, J.; Milesi, V.; Houvenaghel, J.F.; Vérin, M.; Sauleau, P.; Grandjean, D.; Péron, J. Subthalamic nucleus oscillations during vocal emotion processing are dependent of the motor asymmetry of Parkinson’s disease. Neuroimage 2020, 222, 117215. [Google Scholar] [CrossRef] [PubMed]
- Luciano, S.; Panico, F.; De Biase, R.; Catalano, L.; Sagliano, L.; Trojano, L. Neural correlates of emotional prosody in Parkinson’s Disease—A Systematic review. Cogn. Affect. Behav. Neurosci. 2025. Accepted. [Google Scholar]
- Pezzetta, R.; Gambarota, F.; Tarantino, V.; Devita, M.; Cattaneo, Z.; Arcara, G.; Mapelli, D.; Masina, F. A meta-analysis of non-invasive brain stimulation (NIBS) effects on cerebellar-associated cognitive processes. Neurosci. Biobehav. Rev. 2024, 157, 105509. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, G.; Argyropoulos, G.P.; Bastian, A.; Cortes, M.; Davis, N.J.; Edwards, D.J.; Ferrucci, R.; Fregni, F.; Galea, J.M.; Hamada, M.; et al. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist 2016, 22, 83–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrucci, R.; Giannicola, G.; Rosa, M.; Fumagalli, M.; Boggio, P.S.; Hallett, M.; Zago, S.; Priori, A. Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically. enhances the emotional recognition of facial anger and sadness. Cogn. Emot. 2012, 26, 786–799. [Google Scholar] [CrossRef]
- Ferrucci, R.; Priori, A. Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions. Neuroimage 2014, 85 Pt 3, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Samaei, A.; Ehsani, F.; Zoghi, M.; Hafez Yosephi, M.; Jaberzadeh, S. Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: A randomized double-blind sham-controlled study. Eur. J. Neurosci. 2017, 45, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain 1998, 121 Pt 4, 561–579. [Google Scholar] [CrossRef] [PubMed]
- Costantini, G.; Iaderola, I.; Paoloni, A.; Todisco, M. EMOVO corpus: An Italian emotional speech database. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, 26–31 May 2014; European Language Resources Association (ELRA): Paris, France, 2014; pp. 3501–3504. [Google Scholar]
- Frühholz, S.; Trost, W.; Kotz, S.A. The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neurosci. Biobehav. Rev. 2016, 68, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Tommasin, S.; De Giglio, L.; Ruggieri, S.; Petsas, N.; Giannì, C.; Pozzilli, C.; Pantano, P. Relation between functional connectivity and disability in multiple sclerosis: A non-linear model. J. Neurol. 2018, 265, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Stoet, G. PsyToolkit: A software package for programming psychological experiments using Linux. Behav. Res. Methods 2010, 42, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- van Dun, K.; Bodranghien, F.; Manto, M.; Mariën, P. Targeting the Cerebellum by Noninvasive Neurostimulation: A Review. Cerebellum 2017, 16, 695–741. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, Z.; Dutta, A. Cerebellar Lobules Optimal Stimulation (CLOS): A Computational Pipeline to Optimize Cerebellar Lobule-Specific Electric Field Distribution. Front. Neurosci. 2019, 13, 266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Alekseichuk, I.; Bikson, M.; Brockmöller, J.; Brunoni, A.R.; Chen, R.; Cohen, L.G.; Dowthwaite, G.; Ellrich, J.; Flöel, A.; et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 2017, 128, 1774–1809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krienen, F.M.; Buckner, R.L. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex 2009, 19, 2485–2497. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brady, R.O., Jr.; Gonsalvez, I.; Lee, I.; Öngür, D.; Seidman, L.J.; Schmahmann, J.D.; Eack, S.M.; Keshavan, M.S.; Pascual-Leone, A.; Halko, M.A. Cerebellar-Prefrontal Network Connectivity and Negative Symptoms in Schizophrenia. Am. J. Psychiatry 2019, 176, 512–520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, R.; Dawidziuk, A.; Darzi, A.; Singh, H.; Leff, D.R. Systematic review of combined functional near-infrared spectroscopy and transcranial direct-current stimulation studies. Neurophotonics 2020, 7, 1. [Google Scholar] [CrossRef]
- Duncan, A.; Meek, J.H.; Clemence, M.; Elwell, C.E.; Tyszczuk, L.; Cope, M.; Delpy, D. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys. Med. Biol. 1995, 40, 295–304. [Google Scholar] [CrossRef]
- Panico, F.; De Marco, S.; Sagliano, L.; D’Olimpio, F.; Grossi, D.; Trojano, L. Brain hemodynamic response in Examiner-Examinee dyads during spatial short-term memory task: An fNIRS study. Exp. Brain Res. 2021, 239, 1607–1616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- George, D.; Mallery, P. SPSS for Windows Step by Step: A Simple Guide and Reference 17.0 Update, 10th ed.; Pearson: Boston, MA, USA, 2010. [Google Scholar]
- Bush, L.K.; Hess, U.; Wolford, G. Transformations for within-subject designs: A Monte Carlo investigation. Psychol. Bull. 1993, 113, 566–579. [Google Scholar] [CrossRef]
- Berger, A.; Kiefer, M. Comparison of different response time outlier exclusion methods: A simulation study. Front. Psychol. 2021, 12, 675558. [Google Scholar] [CrossRef]
- Brigadoi, S.; Ceccherini, L.; Cutini, S.; Scarpa, F.; Scatturin, P.; Selb, J.; Gagnon, L.; Boas, D.A.; Cooper, R.J. Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage 2014, 85, 181–191. [Google Scholar] [CrossRef]
- Pinti, P.; Scholkmann, F.; Hamilton, A.; Burgess, P.; Tachtsidis, I. Current status and issues regarding pre-processing of fNIRS neuroimaging data: An investigation of diverse signal filtering methods within a general linear model framework. Front. Hum. Neurosci. 2019, 12, 505. [Google Scholar] [CrossRef]
- Pell, M.D.; Monetta, L.; Paulmann, S.; Kotz, S.A. Recognizing Emotions in a Foreign Language. J. Nonverbal Behav. 2009, 33, 107–120. [Google Scholar] [CrossRef]
- Gainotti, G. A historical review of investigations on laterality of emotions in the human brain. J. Hist. Neurosci. 2019, 28, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Pope, P.A.; Miall, R.C. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012, 5, 84–94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmahmann, J.D. The cerebellum and cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Funder, D.C.; Ozer, D.J. Evaluating effect size in psychological research: Sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2019, 2, 156–168. [Google Scholar] [CrossRef]
- Schäfer, T.; Schwarz, M.A. The Meaningfulness of Effect Sizes in Psychological Research: Differences Between Sub-Disciplines and the Impact of Potential Biases. Front. Psychol. 2019, 10, 813. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maas, C.; Hox, J. Sufficient Sample Sizes for Multilevel Modeling. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 2005, 1, 86–92. [Google Scholar] [CrossRef]
- Luke, S.G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef] [PubMed]



| Emotion | l-Cb (Mean ± SE) | r-CB (Mean ± SE) | Sham (Mean ± SE) | Total (Mean ± SE) | 95% CI for the Mean CI Lower–CI Upper |
|---|---|---|---|---|---|
| Neutral | 86.5 ± 2.69 | 84.7 ± 2.96 | 81.9 ± 3.5 | 84.4 ± 2.57 | 78.9–89.8 |
| Anger | 83.3 ± 2.14 | 84.7 ± 2.04 | 83.3 ± 2.67 | 83.8 ± 1.74 | 80.1–87.5 |
| Surprise | 47.2 ± 4.05 | 45.5 ± 2.66 | 48.3 ± 2.57 | 47.0 ± 2.51 | 41.7–52.3 |
| Sadness | 73.3 ± 3.07 | 73.6 ± 2.55 | 75.0 ± 3.64 | 74.0 ± 2.51 | 68.7–79.2 |
| Disgust | 54.9 ± 3.41 | 54.5 ± 2.80 | 52.8 ± 3.08 | 54.1 ± 2.18 | 49.5–58.6 |
| Happiness | 57.6 ± 3.48 | 60.1 ± 2.73 | 64.9 ± 3.08 | 60.9 ± 2.40 | 55.8–65.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciano, S.M.; Sagliano, L.; Salzillo, A.; Trojano, L.; Panico, F. Recognising Emotions from the Voice: A tDCS and fNIRS Double-Blind Study on the Role of the Cerebellum in Emotional Prosody. Brain Sci. 2025, 15, 1327. https://doi.org/10.3390/brainsci15121327
Luciano SM, Sagliano L, Salzillo A, Trojano L, Panico F. Recognising Emotions from the Voice: A tDCS and fNIRS Double-Blind Study on the Role of the Cerebellum in Emotional Prosody. Brain Sciences. 2025; 15(12):1327. https://doi.org/10.3390/brainsci15121327
Chicago/Turabian StyleLuciano, Sharon Mara, Laura Sagliano, Alessia Salzillo, Luigi Trojano, and Francesco Panico. 2025. "Recognising Emotions from the Voice: A tDCS and fNIRS Double-Blind Study on the Role of the Cerebellum in Emotional Prosody" Brain Sciences 15, no. 12: 1327. https://doi.org/10.3390/brainsci15121327
APA StyleLuciano, S. M., Sagliano, L., Salzillo, A., Trojano, L., & Panico, F. (2025). Recognising Emotions from the Voice: A tDCS and fNIRS Double-Blind Study on the Role of the Cerebellum in Emotional Prosody. Brain Sciences, 15(12), 1327. https://doi.org/10.3390/brainsci15121327

