Brain Activation Features in Response to the Expectation of Receiving Rewards Through Aggression
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. The Harm–Gain Task (HGT)
2.3. Moral Disengagement Survey
2.4. fMRI Data Acquisition
2.5. Preprocessing of Imaging Data
2.6. Data Analysis
2.6.1. Behavioral Data Analysis
2.6.2. fMRI Data Analysis
3. Results
3.1. Behavioral Results
3.2. fMRI Results
3.2.1. Contrast: Aggressive Reward Expectation Under High Monetary Condition Versus Baseline
3.2.2. Contrast: Aggressive Reward Expectation Under Low Monetary Condition Versus Baseline
3.2.3. Conjunction Analysis: Overlapping Brain Regions in Aggressive Reward Expectation Under High and Low Monetary Conditions
3.2.4. Contrast: Brain Activation Differences in Aggressive Reward Expectation Between High and Low Monetary Conditions
3.2.5. The Relationships Between Brain Activation in Aggressive Reward Expectation and Aggressive Behavior and Moral Disengagement
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bandura, A. Social foundations of thought and action: A social cognitive theory. In Englewood Cliffs, NJ.; Prentice–Hall: Hoboken, NJ, USA, 1986. [Google Scholar]
- Halvorson, M.A.; Lengua, L.J.; Smith, G.T.; King, K.M. Pathways of personality and learning risk for addictive behaviors: A systematic review of mediational research on the acquired preparedness model. J. Personal. 2023, 91, 613–637. [Google Scholar] [CrossRef]
- Fontaine, R.G.; Dodge, K.A. Real-time decision making and aggressive behavior in youth: A heuristic model of response evaluation and decision (RED). Aggress. Behav. 2006, 32, 604–624. [Google Scholar] [CrossRef]
- Hyatt, C.S.; Lynam, D.R.; West, S.J.; Chester, D.S.; Carter, N.T.; Miller, J.D. Development of a measure of aggressive behavior expectancies in adults: The Aggression Expectancy Questionnaire. Aggress. Behav. 2023, 49, 521–535. [Google Scholar] [CrossRef]
- Wei, J.; Xia, L.-X. Generating a Moderated Mediation Model of Positive Outcome Expectancy and Aggression. Behav. Sci. 2023, 13, 729. [Google Scholar] [CrossRef]
- Bandura, A. Aggression: A social learning analysis. In Englewood Cliffs, NJ.; Prentice–Hall: Hoboken, NJ, USA, 1973. [Google Scholar]
- Pornari, C.D.; Wood, J. Peer and cyber aggression in secondary school students: The role of moral disengagement, hostile attribution bias, and outcome expectancies. Aggress. Behav. 2010, 36, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Avnaim, S.; Murphy, C.M.; Miles-McLean, H.A. How Do Women in Treatment for Intimate Partner Violence Perpetration Perceive Their Abusive Behavior? Psychol. Violence 2022, 12, 324–332. [Google Scholar] [CrossRef]
- Rutter, A.; Hine, D.W. Sex differences in workplace aggression: An investigation of moderation and mediation effects. Aggress. Behav. 2005, 31, 254–270. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Fanning, J.R.; Keedy, S.K.; Lee, R.J. Social cognition in intermittent explosive disorder and aggression. J. Psychiatr. Res. 2016, 83, 140–150. [Google Scholar] [CrossRef]
- Wei, J.; Xia, L.-X. Neural Correlates of Positive Outcome Expectancy for Aggression: Evidence from Voxel-Based Morphometry and Resting-State Functional Connectivity Analysis. Brain Sci. 2024, 14, 43. [Google Scholar] [CrossRef]
- Cupaioli, F.A.; Zucca, F.A.; Caporale, C.; Lesch, K.-P.; Passamonti, L.; Zecca, L. The neurobiology of human aggressive behavior: Neuroimaging, genetic, and neurochemical aspects. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 106, 110059. [Google Scholar] [CrossRef]
- Zhu, W.; He, L.; Xia, L.-X. The Brain Correlates of State Proactive Aggression. Neuropsychology 2022, 36, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Crick, N.R.; Dodge, K.A. A review and reformulation of social information-processing mechanisms in children’s social adjustment. Psychol. Bull. 1994, 115, 74–101. [Google Scholar] [CrossRef]
- Reniers, R.L.E.P.; Corcoran, R.; Völlm, B.A.; Mashru, A.; Howard, R.; Liddle, P.F. Moral decision-making, ToM, empathy and the default mode network. Biol. Psychol. 2012, 90, 202–210. [Google Scholar] [CrossRef]
- Szpunar, K.K.; Spreng, R.N.; Schacter, D.L. A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proc. Natl. Acad. Sci. USA 2014, 111, 18414–18421. [Google Scholar] [CrossRef]
- Schacter, D.L.; Benoit, R.G.; Szpunar, K.K. Episodic future thinking: Mechanisms and functions. Curr. Opin. Behav. Sci. 2017, 17, 41–50. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.R.; Saxe, R.; Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage 2014, 91, 324–335. [Google Scholar] [CrossRef]
- O’Connor, B.B.; Fowler, Z. How Imagination and Memory Shape the Moral Mind. Pers. Soc. Psychol. Rev. 2022, 27, 226–249. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.R. The Brain’s Default Network and Its Adaptive Role in Internal Mentation. Neuroscientist 2012, 18, 251–270. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.R.; Grilli, M.D. Mapping the Imaginative Mind: Charting New Paths Forward. Curr. Dir. Psychol. Sci. 2021, 30, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.; Huang, W.; Camilleri, J.; Xu, P.; Wei, P.; Eickhoff, S.B.; Feng, C. Love is analogous to money in human brain: Coordinate-based and functional connectivity meta-analyses of social and monetary reward anticipation. Neurosci. Biobehav. Rev. 2019, 100, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.P.; Colizzi, M.; Bossong, M.G.; Allen, P.; Kempton, M.; Bhattacharyya, S. The Neural Substrate of Reward Anticipation in Health: A Meta-Analysis of fMRI Findings in the Monetary Incentive Delay Task. Neuropsychol. Rev. 2018, 28, 496–506. [Google Scholar] [CrossRef]
- Kahnt, T. Neural Mechanisms Underlying Expectation-Guided Decision-Making. Front. Behav. Neurosci. 2022, 16, 943419. [Google Scholar] [CrossRef]
- Rolls, E.T. The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia 2019, 128, 14–43. [Google Scholar] [CrossRef]
- Schoenbaum, G.; Roesch, M.R.; Stalnaker, T.A.; Takahashi, Y.K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 2009, 10, 885–892. [Google Scholar] [CrossRef]
- Zhang, S.; Becker, B.; Chen, Q.; Feng, T. Insufficient task-outcome association promotes task procrastination through a decrease of hippocampal-striatal interaction. Hum. Brain Mapp. 2019, 40, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Kringelbach, M.L. The human orbitofrontal cortex: Linking reward to hedonic experience. Nat. Rev. Neurosci. 2005, 6, 691–702. [Google Scholar] [CrossRef]
- Peters, J.; Büchel, C. Neural representations of subjective reward value. Behav. Brain Res. 2010, 213, 135–141. [Google Scholar] [CrossRef]
- Robin, A.; Bastin, J. Role and Functions of the Human Orbitofrontal Cortex. J. Clin. Neurophysiol. 2025, 42, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Kahnt, T.; Park, S.Q.; Haynes, J.D.; Tobler, P.N. Disentangling neural representations of value and salience in the human brain. Proc. Natl. Acad. Sci. USA 2014, 111, 5000–5005. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Cross, L.; O’Doherty, J.P. Elucidating the underlying components of food valuation in the human orbitofrontal cortex. Nat. Neurosci. 2017, 20, 1780–1786. [Google Scholar] [CrossRef]
- Gottfried, J.A.; O’Doherty, J.; Dolan, R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 2003, 301, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Shimojo, S.; O’Doherty, J.P. Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cereb. Cortex 2011, 21, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Rudebeck, P.H.; Rich, E.L. Orbitofrontal cortex. Curr. Biol. 2018, 28, R1083–R1088. [Google Scholar] [CrossRef]
- Anderson, C.A.; Bushman, B.J. Human aggression. Annu. Rev. Psychol. 2002, 53, 27–51. [Google Scholar] [CrossRef]
- Berkowitz, L. Frustration-aggression hypothesis: Examination and reformulation. Psychol. Bull. 1989, 106, 59–73. [Google Scholar] [CrossRef]
- Richetin, J.; Richardson, D.S.; Boykin, D.M. Role of prevolitional processes in aggressive behavior: The indirect influence of goal. Aggress. Behav. 2010, 37, 36–47. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, H.; Xia, L.-X. An experimental task to measure proactive aggression under incentive condition: A reward-interference task. Pers. Individ. Differ. 2019, 149, 273–285. [Google Scholar] [CrossRef]
- Bandura, A.; Barbaranelli, C.; Caprara, G.V.; Pastorelli, C. Mechanisms of moral disengagement in the exercise of moral agency. J. Pers. Soc. Psychol. 1996, 71, 364–374. [Google Scholar] [CrossRef]
- Gross, J.; Vostroknutov, A. Why do people follow social norms? Curr. Opin. Psychol. 2022, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Eres, R.; Louis, W.R.; Molenberghs, P. Common and distinct neural networks involved in fMRI studies investigating morality: An ALE meta-analysis. Soc. Neurosci. 2018, 13, 384–398. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, B. Is morality hardwired into the brain? The recent advances and prospects of cognitive neural mechanism researches of morality. Chin. Sci. Bull. 2017, 62, 2867–2875. (In Chinese) [Google Scholar] [CrossRef]
- Botvinick, M.M.; Cohen, J.D.; Carter, C.S. Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn. Sci. 2004, 8, 539–546. [Google Scholar] [CrossRef]
- Opialla, S.; Lutz, J.; Scherpiet, S.; Hittmeyer, A.; Jäncke, L.; Rufer, M.; Grosse Holtforth, M.; Herwig, U.; Brühl, A.B. Neural circuits of emotion regulation: A comparison of mindfulness-based and cognitive reappraisal strategies. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 45–55. [Google Scholar] [CrossRef]
- Shenhav, A.; Botvinick, M.M.; Cohen, J.D. The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron 2013, 79, 217–240. [Google Scholar] [CrossRef]
- Hu, X.; Ma, H.Q.; Tian, Y.Q.; Hu, Y.-H.; Chen, S.X.; Castellanos, F.X.; Peng, K.-P.; Yan, C.-G. The neural basis of dialectical thinking: Recent advances and future prospects. Rev. Neurosci. 2025, 36, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.; Xia, L.X. Long-term effect of cybervictimization on displaced aggressive behavior across two years: Mutually predicting mediators of hostile emotion and moral disengagement. Comput. Hum. Behav. 2023, 141, 107611. [Google Scholar] [CrossRef]
- Li, X.; Xia, L.X. A serial cascade effect of cybervictimization and hostile rumination on the within—Person change of moral disengagement. J. Personal. 2024, 92, 1726–1743. [Google Scholar] [CrossRef]
- Hayes, A. Introduction to mediation, moderation, and conditional process analysis. J. Educ. Meas. 2013, 51, 335–337. [Google Scholar] [CrossRef]
- Krämer, U.M.; Jansma, H.; Tempelmann, C.; Münte, T.F. Tit-for-tat: The neural basis of reactive aggression. NeuroImage 2007, 38, 203–211. [Google Scholar] [CrossRef]
- Boccia, M.; Teghil, A.; Guariglia, C. Looking into recent and remote past: Meta-analytic evidence for cortical re-organization of episodic autobiographical memories. Neurosci. Biobehav. Rev. 2019, 107, 84–95. [Google Scholar] [CrossRef]
- Pfeifer, J.H.; Merchant, J.S.; Colich, N.L.; Hernandez, L.M.; Rudie, J.D.; Dapretto, M. Neural and Behavioral Responses During Self-Evaluative Processes Differ in Youth With and Without Autism. J. Autism Dev. Disord. 2013, 43, 272–285. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, Y.; Gao, S.; Zhang, X.; Cui, R. Neural Mechanisms With Respect to Different Paradigms and Relevant Regulatory Factors in Empathy for Pain. Front. Neurosci. 2018, 12, 507. [Google Scholar] [CrossRef] [PubMed]
- Gifuni, A.J.; Kendal, A.; Jollant, F. Neural mapping of guilt: A quantitative meta-analysis of functional imaging studies. Brain Imaging Behav. 2017, 11, 1164–1178. [Google Scholar] [CrossRef]
- Greene, J.; Haidt, J. How (and where) does moral judgment work? Trends Cogn. Sci. 2002, 6, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Raine, A. The Neuromoral Theory of Antisocial, Violent, and Psychopathic Behavior. Psychiatry Res. 2019, 277, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Raine, A.; Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cogn. Affect. Neurosci. 2006, 1, 203–213. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Yin, Y.; Blue, P.R.; Yu, H.; Zhou, X. How do self-interest and other-need interact in the brain to determine altruistic behavior? NeuroImage 2017, 157, 598–611. [Google Scholar] [CrossRef]
- Molenberghs, P.; Cunnington, R.; Mattingley, J.B. Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neurosci. Biobehav. Rev. 2009, 33, 975–980. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Li, W.; Zhang, J.; Jin, Z.; Li, L. Linking brain structure and activation in anterior insula cortex to explain the trait empathy for pain. Hum. Brain Mapp. 2020, 41, 1030–1042. [Google Scholar] [CrossRef]
- Vicario, C.M.; Rafal, R.D.; Martino, D.; Avenanti, A. Core, social and moral disgust are bounded: A review on behavioral and neural bases of repugnance in clinical disorders. Neurosci. Biobehav. Rev. 2017, 80, 185–200. [Google Scholar] [CrossRef]
- Hodgson, V.J.; Ralph, M.A.L.; Jackson, R.L. The cross-domain functional organization of posterior lateral temporal cortex: Insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb. Cortex 2022, 33, 4990–5006. [Google Scholar] [CrossRef] [PubMed]
- Braunsdorf, M.; Blazquez Freches, G.; Roumazeilles, L.; Eichert, N.; Schurz, M.; Uithol, S.; Mars, R.B. Does the temporal cortex make us human? A review of structural and functional diversity of the primate temporal lobe. Neurosci. Biobehav. Rev. 2021, 131, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Gan, G.; Guevara, A.; Marxen, M.; Neumann, M.; Jünger, E.; Kobiella, A.; Smolka, M.N. Alcohol-Induced Impairment of Inhibitory Control Is Linked to Attenuated Brain Responses in Right Fronto-Temporal Cortex. Biol. Psychiatry 2014, 76, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Crick, N.R.; Dodge, K.A. Social information--processing mechanisms in reactive and proactive aggression. Child Dev. 1996, 67, 993–1002. [Google Scholar] [CrossRef]
- Dodge, K.A.; Coie, J.D. Social-information processing factors in reactive and proactive aggression in children’s peer groups. J. Pers. Soc. Psychol. 1987, 53, 1146–1158. [Google Scholar] [CrossRef]
- Miller, J.D.; Lynam, D.R. Reactive and proactive aggression: Similarities and differences. Pers. Individ. Differ. 2006, 41, 1469–1480. [Google Scholar] [CrossRef]









| Regions | Peak MNI Coordinates | Peak t-Value | Cluster Size | ||
|---|---|---|---|---|---|
| x | y | z | |||
| >baseline | |||||
| OFC/ACC | 0 | 42 | 3 | 4.747 | 257 |
| L_Cuneus | −12 | −12 | 24 | 3.895 | 132 |
| R_MCC/Precuneus | 9 | −33 | 39 | 5.745 | 557 |
| <baseline | |||||
| L_SFG/SMA | −3 | 24 | 57 | −6.673 | 459 |
| L_IFG/IPL/PG | −48 | 33 | 15 | −8.631 | 2263 |
| R_MFG | 48 | 33 | 18 | −5.783 | 308 |
| L_ITG/Fusiform Gyrus | −51 | −60 | −15 | −11.333 | 1281 |
| R_ITG/Sub-Gyral/ Fusiform Gyrus | 48 | −57 | −15 | −7.86 | 1231 |
| Regions | Peak MNI Coordinates | Peak t-Value | Cluster Size | ||
|---|---|---|---|---|---|
| x | y | z | |||
| >baseline | |||||
| L_ACC | −15 | 42 | −3 | 5.032 | 91 |
| R_MCC | 6 | −21 | 45 | 5.242 | 147 |
| R_PG | 33 | −15 | 60 | 4.721 | 399 |
| R_Extra-Nuclear | 30 | −12 | 18 | 5.467 | 271 |
| R_Supramarginal Gyrus | 63 | −54 | 33 | 4.356 | 143 |
| <baseline | |||||
| L_IFG/Insula | −48 | 33 | 12 | −7.11 | 1337 |
| R_PG/IPL | 51 | −21 | 48 | −5.499 | 255 |
| L_ITG/MTG | −51 | −60 | −15 | −9.85 | 1199 |
| R_ITG | 51 | 27 | 30 | −6.391 | 328 |
| R_MTG | 51 | −54 | −15 | −5.483 | 274 |
| L_SMA | 0 | 21 | 54 | −8.088 | 491 |
| R_Cerebellum | 12 | −81 | −27 | −6.432 | 176 |
| Regions | Peak MNI Coordinates | Peak t-Value | Cluster Size | ||
|---|---|---|---|---|---|
| x | y | z | |||
| High > Low | |||||
| OFC/ACC | −6 | 36 | −9 | 7.378 | 208 |
| High < Low | |||||
| L-IFG/MFG/Insula | −51 | 15 | 6 | −5.998 | 596 |
| R-IFG | 54 | 9 | 33 | −5.842 | 265 |
| L-IPL | −30 | −66 | 39 | −3.733 | 118 |
| R-PG/MFG/SFG/IPL/ Insula/SMA | 54 | −18 | 48 | −12.917 | 2720 |
| L-MTG | −69 | −51 | 3 | −4.17 | 259 |
| R-ITG | 54 | −45 | −9 | −4.453 | 177 |
| Regions | ΔAB | MD | ||
|---|---|---|---|---|
| r | p | r | p | |
| OFC/ACC | 0.47 ** | 0.007 | 0.43 * | 0.016 |
| only_OFC | 0.41 * | 0.022 | 0.37 ** | 0.039 |
| only_ACC | 0.47 ** | 0.008 | 0.44 * | 0.012 |
| L-DLPFC/Insula | −0.24 | 0.195 | −0.18 | 0.341 |
| R-IFG | −0.22 | 0.237 | 0.01 | 0.951 |
| L-IPL | −0.08 | 0.687 | 0.05 | 0.797 |
| R-PG/DLPFC/IPL/ Insula/SMA | 0.06 | 0.739 | 0.16 | 0.393 |
| L-MTG | 0.07 | 0.335 | −0.08 | 0.522 |
| R-ITG | −0.09 | 0.401 | 0.13 | 0.674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.-M.; Zhao, X.; Xia, L.-X. Brain Activation Features in Response to the Expectation of Receiving Rewards Through Aggression. Brain Sci. 2025, 15, 1326. https://doi.org/10.3390/brainsci15121326
Wei J-M, Zhao X, Xia L-X. Brain Activation Features in Response to the Expectation of Receiving Rewards Through Aggression. Brain Sciences. 2025; 15(12):1326. https://doi.org/10.3390/brainsci15121326
Chicago/Turabian StyleWei, Jia-Ming, Xiaoyun Zhao, and Ling-Xiang Xia. 2025. "Brain Activation Features in Response to the Expectation of Receiving Rewards Through Aggression" Brain Sciences 15, no. 12: 1326. https://doi.org/10.3390/brainsci15121326
APA StyleWei, J.-M., Zhao, X., & Xia, L.-X. (2025). Brain Activation Features in Response to the Expectation of Receiving Rewards Through Aggression. Brain Sciences, 15(12), 1326. https://doi.org/10.3390/brainsci15121326

