The Influence of Music on Mental Health Through Neuroplasticity: Mechanisms, Clinical Implications, and Contextual Perspectives
Abstract
1. Introduction
2. Methods
2.1. Narrative Approach and Selection Criteria
2.2. Minimum Acoustic and Procedural Reporting Checklist
- •
- Intervention label: descriptive name; active/receptive; group/individual.
- •
- Tempo: beats per minute (bpm) or range; method used to set tempo.
- •
- Beat regularity: isochronous/polyrhythmic/variable (specify).
- •
- Meter and time signature: notation or description (e.g., 4/4, free meter).
- •
- Session dose: session duration (min), sessions per week, total intervention weeks.
- •
- Engagement mode: active (playing/singing/improvisation) or passive (listening); degree of instruction.
- •
- Sound level: mean and range in dB(A) and/or root mean square (RMS) when relevant; measurement device and distance.
- •
- Timbre descriptors: instrument(s), vocal/instrumental mix, spectral descriptors (e.g., narrow/wide bandwidth; harmonic/inharmonic).
- •
- Predictability/novelty: annotated expectancy violations, entropy index, or short descriptor (e.g., repeated scaffolded melodies vs. highly novel stimuli).
- •
- Personalization/preference: whether repertoire was individualized; measure of participant preference and its use in selection.
- •
- Delivery format and setting: live vs. recorded; in-person vs. remote/digital; acoustic environment (room acoustics if applicable).
- •
- Control condition description: contents of control or comparator (e.g., active control music, white noise, silence, non-musical social activity).
- •
- Adherence and fidelity metrics: attendance, practice logs, objective usage data (if digital), and fidelity checks for facilitator training.
- •
- Timing of mechanistic sampling: exact timing of physiological/neuroimaging sampling relative to sessions (pre/post; minutes/hours).
3. Results
3.1. Mechanistic Pathways of Music and Neuroplasticity
3.1.1. Acoustic Determinants and Neural Entrainment (See Section 2.2)
3.1.2. Predictive Coding, Reward, and Large-Scale Network Dynamics
3.1.3. Oscillatory Entrainment and Cognitive Modulation
3.1.4. Autonomic, Neuroendocrine, and Immune Mediators
3.1.5. Structural Connectivity and Experience-Dependent Plasticity
3.1.6. Behavioral and Social Reinforcement: Mechanisms of Metaplasticity
3.1.7. Mechanistic Linkage Summary
3.2. Clinical Applications and Mechanistic Linkages
3.2.1. Depression
3.2.2. Anxiety Disorders and Procedural Stress
3.2.3. Neurodevelopmental Disorders (ASD and ADHD)
3.2.4. Schizophrenia
3.2.5. Dementia and Mild Cognitive Impairment
3.2.6. Sleep and Motor Rehabilitation
3.2.7. Overall Statement
3.3. Integrative Perspective
3.4. Contextual Perspectives and Implementation Considerations
3.4.1. Music Education as a Public Health Lever
3.4.2. Socioeconomic and Cultural Moderators
3.4.3. Sleep and Circadian Modulation
3.4.4. Sport and Motor Rehabilitation
3.4.5. Spirituality, Ritual, and Meaning Making
4. Discussion
4.1. Summary
4.2. Practical Recommendations and Future Directions
4.3. Priority-Ranked Research Agenda
- (1)
- Standardize reporting and protocol core setRequire the minimum acoustic/procedural checklist (Section 2) and a short core protocol template for RCT registration to ensure basic comparability.
- (2)
- Adequately powered, mechanistic RCTs with active controlsMulti-site trials that prespecify mechanistic endpoints (EEG/MEG oscillations, fMRI connectivity, HRV/cortisol) and use active comparators to isolate music-specific effects.
- (3)
- Pre-registered multimodal mechanistic endpoints and mediation analysisCombine neurophysiology, imaging, and peripheral biomarkers with prespecified mediation plans to test causal pathways and estimate effect sizes.
- (4)
- Harmonized dose-optimization and stratified designsDose-finding (session length/frequency) and stratification by age, baseline musical engagement, and clinical phenotype to define target populations and effect heterogeneity.
- (5)
- Hybrid effectiveness–implementation studies with cultural co-designConcurrent evaluation of clinical effectiveness, scalability, fidelity, equity, and cultural adaptation using hybrid designs and community co-design methods.
4.4. Limitations and Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADHD | Attention-deficit/hyperactivity disorder |
| ASD | Autism spectrum disorder |
| bpm | beats per minute |
| DTI | diffusion tensor imaging |
| EEG | Electroencephalography |
| fMRI | functional magnetic resonance imaging |
| HRV | heart rate variability |
| MCI | mild cognitive impairment |
| MEG | magnetoencephalography |
| PET | positron emission tomography |
| RCTs | randomized controlled trials |
References
- Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 2014, 15, 170–180. [Google Scholar] [CrossRef]
- Herholz, S.C.; Zatorre, R.J. Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron 2012, 76, 486–502. [Google Scholar] [CrossRef]
- Savage, P.E.; Loui, P.; Tarr, B.; Schachner, A.; Glowacki, L.; Mithen, S.; Fitch, W.T. Music as a coevolved system for social bonding. Behav. Brain Sci. 2020, 44, e59. [Google Scholar] [CrossRef] [PubMed]
- DeNora, T. Music in Everyday Life; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000; 181p. [Google Scholar]
- Steele, C.J.; Bailey, J.A.; Zatorre, R.J.; Penhune, V.B. Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. J. Neurosci. 2013, 33, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Salimpoor, V.N.; Benovoy, M.; Larcher, K.; Dagher, A.; Zatorre, R.J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef]
- Sarkamo, T.; Tervaniemi, M.; Laitinen, S.; Forsblom, A.; Soinila, S.; Mikkonen, M.; Autti, T.; Silvennoinen, H.M.; Erkkila, J.; Laine, M.; et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008, 131, 866–876. [Google Scholar] [CrossRef]
- McIntosh, G.C.; Brown, S.H.; Rice, R.R.; Thaut, M.H. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1997, 62, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, L.; Porta, C.; Sleight, P. Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: The importance of silence. Heart 2006, 92, 445–452. [Google Scholar] [CrossRef]
- Thoma, M.V.; La Marca, R.; Bronnimann, R.; Finkel, L.; Ehlert, U.; Nater, U.M. The effect of music on the human stress response. PLoS ONE 2013, 8, e70156. [Google Scholar] [CrossRef]
- Erkkila, J.; Punkanen, M.; Fachner, J.; Ala-Ruona, E.; Pontio, I.; Tervaniemi, M.; Vanhala, M.; Gold, C. Individual music therapy for depression: Randomised controlled trial. Br. J. Psychiatry 2011, 199, 132–139. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Chen, J.L.; Penhune, V.B. When the brain plays music: Auditory-motor interactions in music perception and production. Nat. Rev. Neurosci. 2007, 8, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Grahn, J.A.; Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 2007, 19, 893–906. [Google Scholar] [CrossRef]
- Hackman, D.A.; Farah, M.J.; Meaney, M.J. Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nat. Rev. Neurosci. 2010, 11, 651–659. [Google Scholar] [CrossRef]
- Gustavson, D.E.; Coleman, P.L.; Iversen, J.R.; Maes, H.H.; Gordon, R.L.; Lense, M.D. Mental health and music engagement: Review, framework, and guidelines for future studies. Transl. Psychiatry 2021, 11, 370. [Google Scholar] [CrossRef]
- Chen, W.G.; Iversen, J.R.; Kao, M.H.; Loui, P.; Patel, A.D.; Zatorre, R.J.; Edwards, E. Music and Brain Circuitry: Strategies for Strengthening Evidence-Based Research for Music-Based Interventions. J. Neurosci. 2022, 42, 8498–8507. [Google Scholar] [CrossRef]
- Vuust, P.; Witek, M.A. Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music. Front. Psychol. 2014, 5, 1111. [Google Scholar] [CrossRef]
- Aalbers, S.; Fusar-Poli, L.; Freeman, R.E.; Spreen, M.; Ket, J.C.; Vink, A.C.; Maratos, A.; Crawford, M.; Chen, X.J.; Gold, C. Music therapy for depression. Cochrane Database Syst. Rev. 2017, 11, CD004517. [Google Scholar] [CrossRef]
- van der Steen, J.T.; Smaling, H.J.; van der Wouden, J.C.; Bruinsma, M.S.; Scholten, R.J.; Vink, A.C. Music-based therapeutic interventions for people with dementia. Cochrane Database Syst. Rev. 2018, 7, CD003477. [Google Scholar] [CrossRef]
- Bradt, J.; Dileo, C.; Shim, M. Music interventions for preoperative anxiety. Cochrane Database Syst. Rev. 2013, 2013, CD006908. [Google Scholar] [CrossRef]
- Tierney, A.; Kraus, N. Neural entrainment to the rhythmic structure of music. J. Cogn. Neurosci. 2015, 27, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.M.; Balasubramaniam, R. Time Perception for Musical Rhythms: Sensorimotor Perspectives on Entrainment, Simulation, and Prediction. Front. Integr. Neurosci. 2022, 16, 916220. [Google Scholar] [CrossRef]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R.; Miller, R.A.; Rathbun, J.; Brault, J.M. Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 1996, 11, 193–200. [Google Scholar] [CrossRef]
- Singer, N.; Jacoby, N.; Hendler, T.; Granot, R. Feeling the Beat: Temporal Predictability is Associated with Ongoing Changes in Music-Induced Pleasantness. J. Cogn. 2023, 6, 34. [Google Scholar] [CrossRef]
- Mori, K.; Zatorre, R. State-dependent connectivity in auditory-reward networks predicts peak pleasure experiences to music. PLoS Biol. 2024, 22, e3002732. [Google Scholar] [CrossRef]
- Yurgil, K.A.; Velasquez, M.A.; Winston, J.L.; Reichman, N.B.; Colombo, P.J. Music Training, Working Memory, and Neural Oscillations: A Review. Front. Psychol. 2020, 11, 266. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, X.; Liu, J.; Hu, Z.; Yang, Z.; Tang, Y.; Ding, Y. Entrainment of rhythmic tonal sequences on neural oscillations and the impact on subjective emotion. Sci. Rep. 2025, 15, 17462. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.R. Links Between the Neurobiology of Oxytocin and Human Musicality. Front. Hum. Neurosci. 2020, 14, 350. [Google Scholar] [CrossRef]
- Kreutz, G.; Bongard, S.; Rohrmann, S.; Hodapp, V.; Grebe, D. Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. J. Behav. Med. 2004, 27, 623–635. [Google Scholar] [CrossRef]
- Fancourt, D.; Aufegger, L.; Williamon, A. Low-stress and high-stress singing have contrasting effects on glucocorticoid response. Front. Psychol. 2015, 6, 1242. [Google Scholar] [CrossRef] [PubMed]
- Rebecchini, L. Music, mental health, and immunity. Brain Behav. Immun.-Health 2021, 18, 100374. [Google Scholar] [CrossRef]
- Grape, C.; Sandgren, M.; Hansson, L.O.; Ericson, M.; Theorell, T. Does singing promote well-being?: An empirical study of professional and amateur singers during a singing lesson. Integr. Physiol. Behav. Sci. 2003, 38, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Oechslin, M.S.; Gschwind, M.; James, C.E. Tracking Training-Related Plasticity by Combining fMRI and DTI: The Right Hemisphere Ventral Stream Mediates Musical Syntax Processing. Cereb. Cortex 2018, 28, 1209–1218. [Google Scholar] [CrossRef]
- Oechslin, M.S.; Van De Ville, D.; Lazeyras, F.; Hauert, C.A.; James, C.E. Degree of musical expertise modulates higher order brain functioning. Cereb. Cortex 2013, 23, 2213–2224. [Google Scholar] [CrossRef]
- Moore, E.; Schaefer, R.S.; Bastin, M.E.; Roberts, N.; Overy, K. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI. Brain Sci. 2014, 4, 405–427. [Google Scholar] [CrossRef]
- Zalta, A.; Large, E.W.; Schon, D.; Morillon, B. Neural dynamics of predictive timing and motor engagement in music listening. Sci. Adv. 2024, 10, eadi2525. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, X.; Wang, S.; Xie, Y.; Li, X.; Xie, Y.; Li, S. Musical training induces functional and structural auditory-motor network plasticity in young adults. Hum. Brain Mapp. 2018, 39, 2098–2110. [Google Scholar] [CrossRef]
- Tarr, B.; Launay, J.; Dunbar, R.I. Music and social bonding: “self-other” merging and neurohormonal mechanisms. Front. Psychol. 2014, 5, 1096. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, Z.; Zhou, H.; Ye, P. Effects of music therapy on depression: A meta-analysis of randomized controlled trials. PLoS ONE 2020, 15, e0240862. [Google Scholar] [CrossRef] [PubMed]
- de Witte, M.; Spruit, A.; van Hooren, S.; Moonen, X.; Stams, G.J. Effects of music interventions on stress-related outcomes: A systematic review and two meta-analyses. Health Psychol. Rev. 2020, 14, 294–324. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wigram, T.; Gold, C. The effects of improvisational music therapy on joint attention behaviors in autistic children: A randomized controlled study. J. Autism Dev. Disord. 2008, 38, 1758–1766. [Google Scholar] [CrossRef]
- Mayer-Benarous, H.; Benarous, X.; Vonthron, F.; Cohen, D. Music Therapy for Children With Autistic Spectrum Disorder and/or Other Neurodevelopmental Disorders: A Systematic Review. Front. Psychiatry 2021, 12, 643234. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Verez, V.; Gil-Ruiz, P.; Dominguez-Lloria, S. Interventions through Art Therapy and Music Therapy in Autism Spectrum Disorder, ADHD, Language Disorders, and Learning Disabilities in Pediatric-Aged Children: A Systematic Review. Children 2024, 11, 706. [Google Scholar] [CrossRef]
- Boster, J.B.; Spitzley, A.M.; Castle, T.W.; Jewell, A.R.; Corso, C.L.; McCarthy, J.W. Music Improves Social and Participation Outcomes for Individuals With Communication Disorders: A Systematic Review. J. Music Ther. 2021, 58, 12–42. [Google Scholar] [CrossRef]
- Nayak, S.; Coleman, P.L.; Ladanyi, E.; Nitin, R.; Gustavson, D.E.; Fisher, S.E.; Magne, C.L.; Gordon, R.L. The Musical Abilities, Pleiotropy, Language, and Environment (MAPLE) Framework for Understanding Musicality-Language Links Across the Lifespan. Neurobiol. Lang. 2022, 3, 615–664. [Google Scholar] [CrossRef]
- Gerry, D.; Unrau, A.; Trainor, L.J. Active music classes in infancy enhance musical, communicative and social development. Dev. Sci. 2012, 15, 398–407. [Google Scholar] [CrossRef]
- Wilde, E.M.; Welch, G.F. Attention deficit hyperactivity disorder (ADHD) and musical behaviour: The significance of context. Psychol. Music 2022, 50, 1942–1960. [Google Scholar] [CrossRef]
- Geretsegger, M.; Mossler, K.A.; Bieleninik, L.; Chen, X.J.; Heldal, T.O.; Gold, C. Music therapy for people with schizophrenia and schizophrenia-like disorders. Cochrane Database Syst. Rev. 2017, 5, CD004025. [Google Scholar] [CrossRef]
- Pedersen, I.N.; Bonde, L.O.; Hannibal, N.J.; Nielsen, J.; Aagaard, J.; Gold, C.; Rye Bertelsen, L.; Jensen, S.B.; Nielsen, R.E. Music Therapy vs. Music Listening for Negative Symptoms in Schizophrenia: Randomized, Controlled, Assessor- and Patient-Blinded Trial. Front. Psychiatry 2021, 12, 738810. [Google Scholar] [CrossRef]
- Lam, L.; Chang, W.C.; Grimmer, K. Treatment effects of adjunct group music therapy in inpatients with chronic schizophrenia: A systematic review. Front. Psychiatry 2023, 14, 1215578. [Google Scholar] [CrossRef]
- Gold, C.; Mossler, K.; Grocke, D.; Heldal, T.O.; Tjemsland, L.; Aarre, T.; Aaro, L.E.; Rittmannsberger, H.; Stige, B.; Assmus, J.; et al. Individual music therapy for mental health care clients with low therapy motivation: Multicentre randomised controlled trial. Psychother. Psychosom. 2013, 82, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Chen, J.; Qiu, C.; Liu, T.; Wu, Y.; Li, Y.; Zou, P.; Guo, S.; Lu, J. Five-week music therapy improves overall symptoms in schizophrenia by modulating theta and gamma oscillations. Front. Psychiatry 2024, 15, 1358726. [Google Scholar] [CrossRef]
- Lassner, A.; Siafis, S.; Wiese, E.; Leucht, S.; Metzner, S.; Wagner, E.; Hasan, A. Evidence for music therapy and music medicine in psychiatry: Transdiagnostic meta-review of meta-analyses. BJPsych Open 2024, 11, e4. [Google Scholar] [CrossRef]
- Ueda, T.; Suzukamo, Y.; Sato, M.; Izumi, S. Effects of music therapy on behavioral and psychological symptoms of dementia: A systematic review and meta-analysis. Ageing Res. Rev. 2013, 12, 628–641. [Google Scholar] [CrossRef]
- Bleibel, M.; El Cheikh, A.; Sadier, N.S.; Abou-Abbas, L. The effect of music therapy on cognitive functions in patients with Alzheimer’s disease: A systematic review of randomized controlled trials. Alzheimers Res. Ther. 2023, 15, 65. [Google Scholar] [CrossRef]
- Cuddy, L.L.; Duffin, J. Music, memory, and Alzheimer’s disease: Is music recognition spared in dementia, and how can it be assessed? Med. Hypotheses 2005, 64, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Gerdner, L.A. Effects of individualized versus classical “relaxation” music on the frequency of agitation in elderly persons with Alzheimer’s disease and related disorders. Int. Psychogeriatr. 2000, 12, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Nouchi, R.; Dinet, J.; Cheng, C.H.; Husebo, B.S. The Effect of Music-Based Intervention on General Cognitive and Executive Functions, and Episodic Memory in People with Mild Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of Recent Randomized Controlled Trials. Healthcare 2022, 10, 1462. [Google Scholar] [CrossRef]
- Chan, N.Y.; Chan, J.W.Y.; Li, S.X.; Wing, Y.K. Non-pharmacological Approaches for Management of Insomnia. Neurotherapeutics 2021, 18, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Antonsdottir, I.M.; Wang, R.; Li, M.; Li, J. Insomnia and Its Non-Pharmacological Management in Older Adults. Curr. Geriatr. Rep. 2023, 12, 167–175. [Google Scholar] [CrossRef]
- McFarlane, S.J.; Garcia, J.E.; Verhagen, D.S.; Dyer, A.G. Alarm tones, music and their elements: Analysis of reported waking sounds to counteract sleep inertia. PLoS ONE 2020, 15, e0215788. [Google Scholar] [CrossRef]
- Wang, L.; Peng, J.L.; Ou-Yang, J.B.; Gan, L.; Zeng, S.; Wang, H.Y.; Zuo, G.C.; Qiu, L. Effects of Rhythmic Auditory Stimulation on Gait and Motor Function in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Clinical Randomized Controlled Studies. Front. Neurol. 2022, 13, 818559. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, R.; Wei, W.; Luan, R.; Li, K. Effects of music-based movement therapy on motor function, balance, gait, mental health, and quality of life for patients with Parkinson’s disease: A systematic review and meta-analysis. Clin. Rehabil. 2021, 35, 937–951. [Google Scholar] [CrossRef]
- Park, K.S.; Choi, S.H.; Yoon, H. Modulation of sleep using noninvasive stimulations during sleep. Biomed. Eng. Lett. 2023, 13, 329–341. [Google Scholar] [CrossRef]
- Ding, K.; Li, J.; Li, X.; Li, H. Understanding the Effect of Listening to Music, Playing Music, and Singing on Brain Function: A Scoping Review of fNIRS Studies. Brain Sci. 2024, 14, 751. [Google Scholar] [CrossRef]
- Blasi, V.; Rapisarda, L.; Cacciatore, D.M.; Palumbo, E.; Di Tella, S.; Borgnis, F.; Baglio, F. Structural and functional neuroplasticity in music and dance-based rehabilitation: A systematic review. J. Neurol. 2025, 272, 329. [Google Scholar] [CrossRef]
- Lai, J.C.; Amaladoss, N. Music in Waiting Rooms: A Literature Review. HERD Health Environ. Res. Des. J. 2022, 15, 347–354. [Google Scholar] [CrossRef]
- MacDonald, R.A.R.; Wilson, G.B. Musical improvisation and health: A review. Psychol. Well-Being 2014, 4, 20. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, Q.; Wang, C.; Ye, J.; Yang, L. The effect of music therapy for patients with chronic pain: Systematic review and meta-analysis. BMC Psychol. 2025, 13, 455. [Google Scholar] [CrossRef]
- Stegemoller, E.L. Exploring a neuroplasticity model of music therapy. J. Music Ther. 2014, 51, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Glasgow, R.E.; Vogt, T.M.; Boles, S.M. Evaluating the public health impact of health promotion interventions: The RE-AIM framework. Am. J. Public Health 1999, 89, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Viola, E.; Martorana, M.; Airoldi, C.; Meini, C.; Ceriotti, D.; De Vito, M.; De Ambrosi, D.; Faggiano, F. The role of music in promoting health and wellbeing: A systematic review and meta-analysis. Eur. J. Public Health 2023, 33, 738–745. [Google Scholar] [CrossRef]
- Bowling, D.L. Biological principles for music and mental health. Transl. Psychiatry 2023, 13, 374. [Google Scholar] [CrossRef]
- Olszewska, A.M.; Gaca, M.; Herman, A.M.; Jednorog, K.; Marchewka, A. How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Front. Neurosci. 2021, 15, 630829. [Google Scholar] [CrossRef]
- Fancourt, D.; Finn, S. What is the evidence on the role of the arts in improving health and well-being?: A scoping review. In What Is the Evidence on the Role of the Arts in Improving Health and Well-Being? A Scoping Review; WHO Health Evidence Network Synthesis Reports; WHO Regional Office for Europe: Copenhagen, Denmark, 2019. [Google Scholar]
- Wallerstein, N.; Duran, B. Community-based participatory research contributions to intervention research: The intersection of science and practice to improve health equity. Am. J. Public Health 2010, 100 (Suppl. 1), S40–S46. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, N.; Polak, R.; Grahn, J.A.; Cameron, D.J.; Lee, K.M.; Godoy, R.; Undurraga, E.A.; Huanca, T.; Thalwitzer, T.; Doumbia, N.; et al. Commonality and variation in mental representations of music revealed by a cross-cultural comparison of rhythm priors in 15 countries. Nat. Hum. Behav. 2024, 8, 846–877. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Fossey, E.; Palmer, V.J. A scoping review of the use of co-design methods with culturally and linguistically diverse communities to improve or adapt mental health services. Health Soc. Care Community 2021, 29, i–iv. [Google Scholar] [CrossRef]
- Riedl, H.; Else, B.A.; Grunhaus, C.; Holck, U. Economic Evaluations of Music Therapy and Other Music-Based Interventions: A Scoping Review. J. Music Ther. 2025, 62, thae023. [Google Scholar] [CrossRef]
- Hand, M.D.; Ihara, E.S.; Moore, M.; Shaw, M. Integrating music and nature: A scoping review of research on interventions involving both music- and nature-based strategies for mental health and wellbeing. Front. Hum. Neurosci. 2025, 19, 1664304. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, M. Effect of music therapy on emotional resilience, well-being, and employability: A quantitative investigation of mediation and moderation. BMC Psychol. 2025, 13, 47. [Google Scholar] [CrossRef]
- Syed, S.T.; Gerber, B.S.; Sharp, L.K. Traveling towards disease: Transportation barriers to health care access. J. Community Health 2013, 38, 976–993. [Google Scholar] [CrossRef]
- Marmot, M.; Allen, J.; Bell, R.; Bloomer, E.; Goldblatt, P. WHO European review of social determinants of health and the health divide. Lancet 2012, 380, 1011–1029. [Google Scholar] [CrossRef]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 1997, 151, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Arias, P.; Cudeiro, J. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients. Exp. Brain Res. 2008, 4, 589–601. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I.; Schmitz, G.; Effenberg, A.O. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Hove, M.J.; Keller, P.E. Impaired movement timing in neurological disorders: Rehabilitation and treatment strategies. Ann. N. Y. Acad. Sci. 2015, 1337, 111–117. [Google Scholar] [CrossRef]
- Nombela, C.; Hughes, L.E.; Owen, A.M.; Grahn, J.A. Into the groove: Can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 2013, 37, 2564–2570. [Google Scholar] [CrossRef] [PubMed]
- Lauzon, P.L. Music and spirituality: Explanations and implications for music therapy. British Journal of Music Therapy. Br. J. Music. Ther. 2020, 1, 30–38. [Google Scholar] [CrossRef]
- Heimarck, B. Musical Ritual and Ritual Music: Music as a Spiritual Tool and Religious Ritual Accompaniment. Spec. Issue Musicol. Annu. (Music—Relig.—Spiritual.) Heimarck Artic. 2022, 58, 43–59. [Google Scholar] [CrossRef]
- Higgins, L. Community Music: In Theory and in Practice; Oxford Academic: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Griffith, D.M.; Efird, C.R.; Baskin, M.L.; Webb Hooper, M.; Davis, R.E.; Resnicow, K. Cultural Sensitivity and Cultural Tailoring: Lessons Learned and Refinements After Two Decades of Incorporating Culture in Health Communication Research. Annu. Rev. Public Health 2024, 45, 195–212. [Google Scholar] [CrossRef]
- Curran, G.M.; Bauer, M.; Mittman, B.; Pyne, J.M.; Stetler, C. Effectiveness-implementation hybrid designs: Combining elements of clinical effectiveness and implementation research to enhance public health impact. Med. Care 2012, 50, 217–226. [Google Scholar] [CrossRef]
- Cargo, M.; Mercer, S.L. The value and challenges of participatory research: Strengthening its practice. Annu. Rev. Public Health 2008, 29, 325–350. [Google Scholar] [CrossRef] [PubMed]
- Braveman, P.; Gottlieb, L. The social determinants of health: It’s time to consider the causes of the causes. Public Health Rep. 2014, 129 (Suppl. 2), 19–31. [Google Scholar] [CrossRef] [PubMed]
- Proctor, E.; Silmere, H.; Raghavan, R.; Hovmand, P.; Aarons, G.; Bunger, A.; Griffey, R.; Hensley, M. Outcomes for implementation research: Conceptual distinctions, measurement challenges, and research agenda. Adm. Policy Ment. Health 2011, 38, 65–76. [Google Scholar] [CrossRef]
- Javitt, D.C.; Siegel, S.J.; Spencer, K.M.; Mathalon, D.H.; Hong, L.E.; Martinez, A.; Ehlers, C.L.; Abbas, A.I.; Teichert, T.; Lakatos, P.; et al. A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology. Neuropsychopharmacology 2020, 45, 1411–1422. [Google Scholar] [CrossRef]
- Teng, X.; Tian, X.; Rowland, J.; Poeppel, D. Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales. PLoS Biol. 2017, 15, e2000812. [Google Scholar] [CrossRef] [PubMed]
- Habibi, A.; Kreutz, G.; Russo, F.; Tervaniemi, M. Music-based interventions in community settings: Navigating the tension between rigor and ecological validity. Ann. N. Y. Acad. Sci. 2022, 1518, 47–57. [Google Scholar] [CrossRef]
- Grant, C.A.S.; Sleeter, C.E. Doing Multicultural Education for Achievement and Equity, 2nd ed.; Routledge: Abingdon, UK, 2011. [Google Scholar]
- Konig, L.M.; Krukowski, R.A.; Kuntsche, E.; Busse, H.; Gumbert, L.; Gemesi, K.; Neter, E.; Mohamed, N.F.; Ross, K.M.; John-Akinola, Y.O.; et al. Reducing intervention- and research-induced inequalities to tackle the digital divide in health promotion. Int. J. Equity Health 2023, 22, 249. [Google Scholar] [CrossRef] [PubMed]
- Bernal, G.; Adames, C. Cultural Adaptations: Conceptual, Ethical, Contextual, and Methodological Issues for Working with Ethnocultural and Majority-World Populations. Prev. Sci. 2017, 18, 681–688. [Google Scholar] [CrossRef]
- Hohenschurz-Schmidt, D.; Vase, L.; Scott, W.; Annoni, M.; Ajayi, O.K.; Barth, J.; Bennell, K.; Berna, C.; Bialosky, J.; Braithwaite, F.; et al. Recommendations for the development, implementation, and reporting of control interventions in efficacy and mechanistic trials of physical, psychological, and self-management therapies: The CoPPS Statement. BMJ 2023, 381, e072108. [Google Scholar] [CrossRef]


| Clinical Domain | Typical Study Designs | Typical Sample Size Range | Key Outcomes Reported | Evidence Quality (High/Moderate/Low/Very low) | Main Risk-of-Bias/Limitations |
|---|---|---|---|---|---|
| Depression | RCTs; individual music therapy trials; meta-analyses | n ≈ 30–200 per trial; pooled meta-analytic samples larger | Depression scales (HAM-D, BDI); mood; social functioning; few mechanistic endpoints (EEG/fMRI rare) | Moderate | Heterogeneous interventions; variable acoustic reporting; occasional lack of active controls; limited mechanistic endpoints; variable blinding |
| Anxiety/procedural stress | RCTs (peri-procedural); smaller trials for chronic anxiety; systematic reviews | n ≈ 20–200 | State anxiety scales; Heart rate; Blood pressure; sometimes cortisol/HRV | Moderate (procedural); Low (chronic anxiety) | Short follow-up; small samples for chronic anxiety; heterogeneous comparators; infrequent standardized HRV/cortisol sampling |
| Neurodevelopmental disorders (ASD, ADHD) | Small RCTs; controlled observational studies; systematic reviews | n often <50 per arm | Joint attention, imitation, social reciprocity (ASD); attention tasks, behavioral ratings (ADHD) | Low–Moderate | Small sample sizes; diagnostic heterogeneity; limited longitudinal neuroimaging; variable intervention protocols |
| Schizophrenia | RCTs; group and individual therapy trials; Cochrane/systematic reviews | n ≈ 30–150 | Negative symptoms; social functioning; Quality of life; limited mechanistic imaging | Moderate | Heterogeneity of adjunctive treatments; variable control conditions; limited mechanistic endpoint reporting; outcome assessor blinding inconsistently reported |
| Mild cognitive impairment (MCI)/dementia/ | RCTs; cluster trials; systematic reviews/meta-analyses | n ≈ 20–150 | Agitation; engagement; behavioral/psychological symptoms; transient verbal fluency/attention effects; few structural imaging endpoints | Low–Moderate (symptomatic); Low (structural modification) | Reliance on subjective outcomes; short follow-up; inconsistent imaging endpoints; variable intervention standardization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noda, Y.; Noda, T. The Influence of Music on Mental Health Through Neuroplasticity: Mechanisms, Clinical Implications, and Contextual Perspectives. Brain Sci. 2025, 15, 1248. https://doi.org/10.3390/brainsci15111248
Noda Y, Noda T. The Influence of Music on Mental Health Through Neuroplasticity: Mechanisms, Clinical Implications, and Contextual Perspectives. Brain Sciences. 2025; 15(11):1248. https://doi.org/10.3390/brainsci15111248
Chicago/Turabian StyleNoda, Yoshihiro, and Takahiro Noda. 2025. "The Influence of Music on Mental Health Through Neuroplasticity: Mechanisms, Clinical Implications, and Contextual Perspectives" Brain Sciences 15, no. 11: 1248. https://doi.org/10.3390/brainsci15111248
APA StyleNoda, Y., & Noda, T. (2025). The Influence of Music on Mental Health Through Neuroplasticity: Mechanisms, Clinical Implications, and Contextual Perspectives. Brain Sciences, 15(11), 1248. https://doi.org/10.3390/brainsci15111248

