Associations Between Problematic QQ Use and Mental Health Among Chinese Children and Adolescents: A Latent Class Analysis
Abstract
1. Introduction
Present Study
2. Method
2.1. Participants
2.2. Measures
2.2.1. Problematic QQ Use Scale (PQQUS)
2.2.2. Beck Anxiety Inventory (BAI)
2.2.3. Beck Depression Inventory (BDI)
2.2.4. Satisfaction with Life Scale (SWLS)
2.2.5. The Strengths and Difficulties Questionnaire (SDQ)
2.3. Statistical Analysis
3. Results
3.1. Latent Class Analysis Results
3.2. Descriptive Statistics of Problematic QQ Use Symptoms
3.3. Mean Differences in Latent Classes
3.4. Post Hoc Test Results
3.5. Regression Analysis of the Impact of Problematic QQ Use on Mental Health
4. Discussion
5. Limitations and Future Research Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masri-Zada, T.; Martirosyan, S.; Abdou, A.; Barbar, R.; Kades, S.; Makki, H.; Haley, G.; Agrawal, D.K. The Impact of Social Media & Technology on Child and Adolescent Mental Health. J. Psychiatry Psychiatr. Disord. 2025, 9, 111–130. [Google Scholar] [CrossRef]
- Stoumpos, A.I.; Kitsios, F.; Talias, M.A. Digital Transformation in Healthcare: Technology Acceptance and Its Applications. Int. J. Environ. Res. Public Health 2023, 20, 3407. [Google Scholar] [CrossRef]
- Fitzgerald, R.; Sandel, T.; Wu, X. Chinese social media: Technology, culture and creativity. Discourse Context Media 2022, 48, 100610. [Google Scholar] [CrossRef]
- Kaye, D.B.; Chen, X.; Zeng, J. The co-evolution of two Chinese mobile short video apps: Parallel Platformization of Douyin and TikTok. Mob. Media Commun. 2020, 9, 229–253. [Google Scholar] [CrossRef]
- Petrosyan, A. Number of Internet Users by Country 2025. Statista. Available online: https://www.statista.com/statistics/262966/number-of-internet-users-in-selected-countries/#:~:text=As%20of%20February%202025%2C%20China%20ranked%20first,with%20more%20than%20100%20million%20internet%20users (accessed on 10 February 2025).
- Tseung, Y.W.; Xie, B.; Peng, Z. “Virtual parallel societies”—A study on the differences in mobile application usage between Hong Kong and Mainland Chinese adolescents. J. Mod. Educ. Res. 2024, 3, 17. [Google Scholar] [CrossRef]
- Karl. Biggest Social Media Platforms and Apps in 2025. Dreamgrow. Available online: https://www.dreamgrow.com/top-15-most-popular-social-networking-sites/ (accessed on 19 September 2025).
- Ahmed, M.Z.; Ahmed, O.; Gao, L.; Jobe, M.C.; Li, W. Internet gaming disorder and mental health of children in China: A latent profile analysis. Int. J. Ment. Health Promot. 2024, 26, 517–529. [Google Scholar] [CrossRef]
- Bozzola, E.; Spina, G.; Agostiniani, R.; Barni, S.; Russo, R.; Scarpato, E.; Di Mauro, A.; Di Stefano, A.V.; Caruso, C.; Corsello, G.; et al. The Use of Social Media in Children and Adolescents: Scoping Review on the Potential Risks. Int. J. Environ. Res. Public Health 2022, 19, 9960. [Google Scholar] [CrossRef]
- Liu, J.; Ahmed, M.Z.; Ahmed, O.; Griffiths, M.D.; Chen, L. Development and psychometric assessment of the problematic QQ use scale among adolescents. Int. J. Environ. Res. Public Health 2021, 18, 6744. [Google Scholar] [CrossRef]
- Gioia, F.; Rega, V.; Boursier, V. Problematic Internet Use and Emotional Dysregulation Among Young People: A Literature Review. Clin. Neuropsychiatry 2021, 18, 41–54. [Google Scholar] [CrossRef]
- San Martín Iñiguez, L.; Luis García, E.; Rosado Luna, E.; Garcia-Rodriguez, L.; Aoiz Pinillos, M.; de la Fuente Arias, J.; Moron Henche, I. Relationship between regulatory processes and problematic social media use: A systematic review. Comput. Hum. Behav. Rep. 2024, 16, 100507. [Google Scholar] [CrossRef]
- Weinstein, A.M. Problematic Social Networking Site use-effects on mental health and the brain. Front. Psychiatry 2023, 13, 1106004. [Google Scholar] [CrossRef]
- Yao, N.; Chen, J.; Huang, S.; Montag, C.; Elhai, J.D. Depression and social anxiety in relation to problematic TikTok use severity: The mediating role of boredom proneness and distress intolerance. Comput. Hum. Behav. 2023, 145, 107751. [Google Scholar] [CrossRef]
- Calkins, S.D.; Dollar, J.M.; Wideman, L. Temperamental vulnerability to emotion dysregulation and risk for mental and physical health challenges. Dev. Psychopathol. 2019, 31, 957–970. [Google Scholar] [CrossRef]
- Garagiola, E.R.; Lam, Q.; Wachsmuth, L.S.; Tan, T.Y.; Ghali, S.; Asafo, S.; Swarna, M. Adolescent Resilience during the COVID-19 Pandemic: A Review of the Impact of the Pandemic on Developmental Milestones. Behav. Sci. 2022, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.; Dawel, A.; Walsh, E.I.; Cherbuin, N. Longitudinal associations between problematic social media use and Mental Health: Mediating Role of Sleep. Addict. Behav. 2025, 170, 108446. [Google Scholar] [CrossRef]
- Shabahang, R.; Kim, S.; Aruguete, M.S.; Azadimanesh, P.; Ghaemi, Z.; Khanzadeh, A.A.; Kakabaraee, K.; Zsila, Á. Social Media-related nightmare—A potential explanation for poor sleep quality and low affective well-being in the social media era? BMC Psychol. 2024, 12, 140. [Google Scholar] [CrossRef]
- Wang, J.; Wang, N.; Liu, P.; Liu, Y. Social Network site addiction, sleep quality, depression and adolescent difficulty describing feelings: A moderated mediation model. BMC Psychol. 2025, 13, 57. [Google Scholar] [CrossRef]
- Brailovskaia, J. The “vicious circle of addictive social media use and mental health” model. Acta Psychol. 2024, 247, 104306. [Google Scholar] [CrossRef]
- Cao, X.; Gong, M.; Yu, L.; Dai, B. Exploring the mechanism of social media addiction: An empirical study from WeChat users. Internet Res. 2020, 30, 1305–1328. [Google Scholar] [CrossRef]
- Qu, D.; Liu, B.; Jia, L.; Zhang, X.; Chen, D.; Zhang, Q.; Feng, Y.; Chen, R. The longitudinal relationships between short video addiction and depressive symptoms: A cross-lagged panel network analysis. Comput. Hum. Behav. 2024, 152, 108059. [Google Scholar] [CrossRef]
- Cheng, C.; Ebrahimi, O.V.; Luk, J.W. Heterogeneity of Prevalence of Social Media Addiction Across Multiple Classification Schemes: Latent Profile Analysis. J. Med. Internet Res. 2022, 24, e27000. [Google Scholar] [CrossRef]
- Petersen, K.J.; Qualter, P.; Humphrey, N. The Application of Latent Class Analysis for Investigating Population Child Mental Health: A Systematic Review. Front. Psychol. 2019, 10, 1214. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M. A latent profile analysis of internet use and its association with psychological well-being outcomes among Hong Kong chinese early adolescents. Appl. Res. Qual. Life 2017, 13, 727–743. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A. Beck Anxiety Inventory Manual; Psychological Corporation: San Antonio, TX, USA, 1993. [Google Scholar]
- Che, H.-H.; Lu, M.-L.; Chen, H.-C.; Chang, S.-W.; Lee, Y.-J. Validation of the Chinese version of the Beck Anxiety Inventory. Formos. J. Med. 2006, 10, 447–454. (In Chinese) [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the Beck Depression Inventory-II; Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- Wang, Z.; Yuan, C.; Huang, J.; Li, Z.; Chen, J.; Zhang, H.; Fang, Y.-R.; Xiao, Z.-P. Reliability and validity of the Chinese version of Beck Depression Inventory-II among depression patients. Chin. Ment. Health J. 2011, 25, 476–480. (In Chinese) [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Zhou, X. Research on the Relationship Among Parenting Style, College Students’ Perfectionism and Mental Health. Ph.D. Thesis, Central South University, Changsha, China, 2012. [Google Scholar] [CrossRef]
- Goodman, R. The Strengths and Difficulties Questionnaire: A research note. J. Child Psychol. Psychiatry Allied Discip. 1997, 38, 581–586. [Google Scholar] [CrossRef]
- Du, Y.; Kou, J.; Coghill, D. The validity, reliability and normative scores of the parent, teacher and Self report versions of the strengths and Difficulties Questionnaire in China. Child Adolesc. Psychiatry Ment. Health 2008, 2, 8. [Google Scholar] [CrossRef]
- Chanpen, S.; Pornnoppadol, C.; Vasupanrajit, A.; Dejatiwongse Na Ayudhya, Q. An Assessment of the Validity and Reliability of the Social-Media Addiction Screening Scale (S-MASS). Siriraj Med. J. 2023, 75, 167–180. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Elhai, J.D. Are there gender differences in comorbidity symptoms networks of problematic social media use, anxiety and depression symptoms? Evidence from network analysis. Personal. Individ. Differ. 2022, 195, 111705. [Google Scholar] [CrossRef]
- Lin, H.; He, G.; Zheng, H.; Ai, J. What makes Chinese adolescents glued to their smartphones? using network analysis and three-wave longitudinal analysis to assess how adverse childhood experiences influence smartphone addiction. Comput. Hum. Behav. 2024, 163, 108484. [Google Scholar] [CrossRef]
- Dantlgraber, M.; Wetzel, E.; Schützenberger, P.; Stieger, S.; Reips, U.-D. Simple construct evaluation with latent class analysis: An investigation of Facebook addiction and the development of a short form of the Facebook Addiction Test (F-AT). Behav. Res. Methods 2016, 48, 869–879. [Google Scholar] [CrossRef]
- Gu, H.; Shi, B.; He, H.; Yuan, S.; Cai, J.; Chen, X.; Wan, Z. Association Between Excessive Internet Use Time, Internet Addiction, and Physical-Mental Multimorbidity Among Chinese Adolescents: Cross-Sectional Study. J. Med. Internet Res. 2025, 27, e69210. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Luo, Z.; Liu, Y.; Huang, X.; Jiang, D.; Li, S.; Meng, J.; Gu, F.; Zhang, R.; et al. Dose-Response Associations of Internet Use Time and Internet Addiction With Depressive Symptoms Among Chinese Children and Adolescents: Cross-Sectional Study. JMIR Public Health Surveill. 2024, 10, e53101. [Google Scholar] [CrossRef]
- Soriano-Molina, E.; Limiñana-Gras, R.; Patró-Hernández, R.; Rubio-Aparicio, M. The association between internet addiction and adolescents’ mental health: A Meta-Analytic Review. Behav. Sci. 2025, 15, 116. [Google Scholar] [CrossRef]
- Ye, X.-L.; Zhang, W.; Zhao, F.-F. Depression and internet addiction among adolescents: A meta-analysis. Psychiatry Res. 2023, 326, 115311. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, E.; Zhang, L.; Chi, X. Internet addiction and depressive symptoms in adolescents: Joint trajectories and predictors. Front. Public Health 2024, 12, 1374762. [Google Scholar] [CrossRef]
- Bottaro, R.; Valenti, G.D.; Faraci, P. Internet Addiction and Psychological Distress: Can Social Networking Site Addiction Affect Body Uneasiness Across Gender? A Mediation Model. Eur. J. Psychol. 2024, 20, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Varchetta, M.; Tagliaferri, G.; Mari, E.; Quaglieri, A.; Cricenti, C.; Giannini, A.M.; Martí-Vilar, M. Exploring Gender Differences in Internet Addiction and Psychological Factors: A Study in a Spanish Sample. Brain Sci. 2024, 14, 1037. [Google Scholar] [CrossRef]
- Ding, H.; Cao, B.; Sun, Q. The association between problematic internet use and social anxiety within adolescents and young adults: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1275723. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Zhao, C.; Hu, H.; Ding, N.; He, J.; Tian, W.; Zhao, W.; Lin, X.; Liu, G.; Chen, W.; et al. Association between problematic social networking use and anxiety symptoms: A systematic review and meta-analysis. BMC Psychol. 2024, 12, 263. [Google Scholar] [CrossRef]
- Kerr, B.; Garimella, A.; Pillarisetti, L.; Charlly, N.; Sullivan, K.; Moreno, M.A. Associations Between Social Media Use and Anxiety Among Adolescents: A Systematic Review Study. J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 2025, 76, 18–28. [Google Scholar] [CrossRef]
- Lai, F.; Wang, L.; Zhang, J.; Shan, S.; Chen, J.; Tian, L. Relationship between Social Media Use and Social Anxiety in College Students: Mediation Effect of Communication Capacity. Int. J. Environ. Res. Public Health 2023, 20, 3657. [Google Scholar] [CrossRef]
- Alshowkan, A.; Shdaifat, E. Fear of missing out, social media addiction, and personality traits among nursing students: Cross-sectional study. JMIR Nurs. 2025, 8, e71502. [Google Scholar] [CrossRef]
- Alutaybi, A.; Al-Thani, D.; McAlaney, J.; Ali, R. Combating fear of missing out (FOMO) on social media: The FOMO-R method. Int. J. Environ. Res. Public Health 2020, 17, 6128. [Google Scholar] [CrossRef]
- Nesbit, T.; Lole, L. A qualitative investigation of social media fear of missing out (FOMO) and needs fulfilment among young adults. In International Journal of Human–Computer Interaction; Taylor & Francis: Milton Park, UK, 2025; pp. 1–17. [Google Scholar] [CrossRef]
- Sahebi, S.; Formosa, P. Social media and its negative impacts on autonomy. Philos. Technol. 2022, 35, 70. [Google Scholar] [CrossRef]
- Liu, S.W.; Chen, S.; Huang, C.; Vallario, J. Parenting Style and Child Internet Addiction in China: Mediation Effect of Parental Active Meditation. Int. J. Environ. Res. Public Health 2025, 22, 461. [Google Scholar] [CrossRef]
- Cai, Z.; Mao, P.; Wang, Z.; Wang, D.; He, J.; Fan, X. Associations Between Problematic Internet Use and Mental Health Outcomes of Students: A Meta-analytic Review. Adolesc. Res. Rev. 2023, 8, 45–62. [Google Scholar] [CrossRef]
- Capa-Luque, W.; Mayorga-Falcón, L.E.; Navarro, E.B.; Portillo, A.M.; Pardavé-Livia, Y.; Bazán-Ramírez, A.; Hervias-Guerra, E.; Bello-Vidal, C. Life satisfaction and family communication as protective factors in problematic internet use in university students. SAGE Open Nurs. 2025, 11, 23779608251350197. [Google Scholar] [CrossRef] [PubMed]
- Stănculescu, E.; Griffiths, M.D. The association between problematic internet use and hedonic and eudaimonic well-being: A latent profile analysis. Technol. Soc. 2024, 78, 102588. [Google Scholar] [CrossRef]
- Xiong, A.; Liao, S.; Luo, B.; Luo, S.; Tong, Y.; Li, Z. Associations between problematic internet use, life satisfaction, and deliberate self-harm among Chinese adolescents: A multi-centered longitudinal study. Addict. Behav. 2023, 147, 107808. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Gong, Z.; Liu, H.; Yi, P.; Jia, Y.; Zhuang, J.; Shu, J.; Huang, X.; Wu, Y. The Impact of Problematic Internet Use on Adolescent Loneliness-Chain Mediation Effects of Social Support and Family Communication. Psychol. Res. Behav. Manag. 2024, 17, 1903–1916. [Google Scholar] [CrossRef] [PubMed]
- Holt-Lunstad, J. Social Connection as a critical factor for mental and Physical Health: Evidence, trends, Challenges, and future implications. World Psychiatry 2024, 23, 312–332. [Google Scholar] [CrossRef] [PubMed]
- O’Day, E.B.; Heimberg, R.G. Social media use, social anxiety, and loneliness: A systematic review. Comput. Hum. Behav. Rep. 2021, 3, 100070. [Google Scholar] [CrossRef]
- Pino, M.J.; Herruzo, C.; Lucena, V.; Trenados, Y.; Herruzo, J. A study of impulsivity as a predictor of problematic internet use in university students with disabilities. Front. Psychiatry 2024, 15, 1443289. [Google Scholar] [CrossRef]
- Piqueras, J.A.; Rico-Bordera, P.; Galán, M.; Garcĺa-Oliva, C.; Marzo, J.C.; Pineda, D. Problematic internet use profiles and their associated factors among adolescents. J. Res. Adolesc. 2024, 34, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, W.; Zhao, H.; Hu, J. Surfing into trouble? how internet use influences early adolescent behavior through diverse pathways? Humanit. Soc. Sci. Commun. 2024, 11, 1–17. [Google Scholar] [CrossRef]
- Benedetto, L.; Rollo, S.; Cafeo, A.; Di Rosa, G.; Pino, R.; Gagliano, A.; Germanò, E.; Ingrassia, M. Emotional and behavioural factors predisposing to internet addiction: The smartphone distraction among Italian high school students. Int. J. Environ. Res. Public Health 2024, 21, 386. [Google Scholar] [CrossRef]
- Kuss, D.J.; Lopez-Fernandez, O. Internet addiction and problematic Internet use: A systematic review of clinical research. World J. Psychiatry 2016, 6, 143–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, J.; Li, Y.-L.; Gao, X.; Xu, Z.-Y.; Li, Y.-H. The impact of emotional abuse on internet addiction in Chinese children: The sequential mediation roles of emotional dysregulation and regulatory emotional self-efficacy. Front. Psychol. 2025, 16, 1517489. [Google Scholar] [CrossRef]
- Anderson, E.L.; Steen, E.; Stavropoulos, V. Internet use and problematic internet use: A systematic review of longitudinal research trends in adolescence and emergent adulthood. Int. J. Adolesc. Youth 2016, 22, 430–454. [Google Scholar] [CrossRef]
- Kożybska, M.; Kurpisz, J.; Radlińska, I.; Skwirczyńska, E.; Serwin, N.; Zabielska, P.; Kotwas, A.; Karakiewicz, B.; Lebiecka, Z.; Samochowiec, J.; et al. Problematic Internet Use, health behaviors, depression and eating disorders: A cross-sectional study among Polish medical school students. Ann. Gen. Psychiatry 2022, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, A.; Wretschko, G.; Fridjhon, P. Online flow experiences, problematic internet use and internet procrastination. Comput. Hum. Behav. 2008, 24, 2236–2254. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Zhang, H.; Kou, H.; Zhao, J.; Tian, J.; Guo, C. Social anxiety undermines prosocial behaviors when required effort. Int. J. Clin. Health Psychol. 2024, 24, 100533. [Google Scholar] [CrossRef] [PubMed]

| Solutions | AIC | BIC | SABIC | Entropy | LMRT (p Value) | Class Size | Average Class Probabilities for Most Likely Latent Class Membership by Latent Class | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |||||||
| 2 | 12,783.848 | 12,877.209 | 12,816.864 | 0.967 | 2408.621 (<0.0179) | 886 (88.1%) | 0.993 | 0.007 | |||
| 120 (11.9%) | 0.030 | 0.970 | |||||||||
| 3 | 11,860.029 | 11,987.786 | 11,905.209 | 0.950 | 918.833 (0.0030) | 777 (77.2%) | 0.986 | 0.014 | 0.000 | ||
| 169 (16.8%) | 0.060 | 0.935 | 0.005 | ||||||||
| 60 (6.0%) | 0.000 | 0.007 | 0.993 | ||||||||
| 4 | 11,429.610 | 11,591.764 | 11,486.953 | 0.959 | 435.422 (0.2449) | 740 (73.6%) | 0.987 | 0.000 | 0.013 | 0.000 | |
| 47 (4.7%) | 0.001 | 0.994 | 0.004 | 0.001 | |||||||
| 162 (16.1%) | 0.064 | 0.003 | 0.933 | 0.001 | |||||||
| 57 (5.7%) | 0.000 | 0.023 | 0.006 | 0.972 | |||||||
| 5 | 11,040.764 | 11,237.314 | 11,110.271 | 0.969 | 435.279 (0.6993) | 738 (73.4%) | 0.986 | 0.013 | 0.000 | 0.000 | 0.000 |
| 93 (9.2%) | 0.078 | 0.822 | 0.000 | 0.000 | 0.000 | ||||||
| 103 (10.2%) | 0.011 | 0.004 | 0.979 | 0.000 | 0.006 | ||||||
| 36 (3.6%) | 0.000 | 0.000 | 0.004 | 0.996 | 0.000 | ||||||
| 36 (3.6%) | 0.003 | 0.002 | 0.000 | 0.000 | 0.994 | ||||||
| Variable | Overall | No Risk | At Risk | High Risk | ||||
|---|---|---|---|---|---|---|---|---|
| M | SD | M | SD | M | SD | M | SD | |
| Salience | 1.83 | 1.05 | 1.45 | 0.68 | 2.96 | 1.03 | 3.52 | 1.03 |
| Tolerance | 1.53 | 0.95 | 1.13 | 0.37 | 2.67 | 0.90 | 3.48 | 1.28 |
| Mood modification | 1.51 | 0.96 | 1.16 | 0.44 | 2.49 | 1.14 | 3.30 | 1.37 |
| Relapse | 1.36 | 0.84 | 1.08 | 0.39 | 2.07 | 1.08 | 3.02 | 1.20 |
| Withdrawal | 1.27 | 0.74 | 1.03 | 0.20 | 1.47 | 0.60 | 3.77 | 0.81 |
| Conflict | 1.24 | 0.64 | 1.07 | 0.34 | 1.53 | 0.76 | 2.52 | 1.26 |
| Addiction score | 8.74 | 4.01 | 6.94 | 1.31 | 13.20 | 2.39 | 19.60 | 3.93 |
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| 1. Problematic QQ Use | 1.000 | 0.229 ** | 0.230 ** | −0.190 ** | 0.182 ** | 0.178 ** | 0.178 ** | 0.129 ** | −0.069 |
| 2. Depression | 0.229 ** | 1.000 | 0.605 ** | −0.375 ** | 0.441 ** | 0.281** | 0.329 ** | 0.227 ** | −0.182 ** |
| 3. Anxiety | 0.230 ** | 0.605 ** | 1.000 | −0.297 ** | 0.418 ** | 0.167 ** | 0.269 ** | 0.217 ** | −0.090 |
| 4. Life satisfaction | −0.190 ** | −0.375 ** | −0.297 ** | 1.000 | −0.218 ** | −0.201 ** | −0.254 ** | −0.194 ** | 0.171 ** |
| 5. Emotional problems | 0.182 ** | 0.441 ** | 0.418 ** | −0.218 ** | 1.000 | 0.450 ** | 0.453 ** | 0.447 ** | −0.114 ** |
| 6. Conduct problems | 0.178 ** | 0.281 ** | 0.167 ** | −0.201 ** | 0.450 ** | 1.000 | 0.461 ** | 0.597 ** | −0.333 ** |
| 7. Hyperactivity | 0.178 ** | 0.329 ** | 0.269 ** | −0.254 ** | 0.453 ** | 0.461 ** | 1.000 | 0.380 ** | −0.316 ** |
| 8. Peer problems | 0.129 ** | 0.227 ** | 0.217 ** | −0.194 ** | 0.447 ** | 0.597 ** | 0.380 ** | 1.000 | −0.172 ** |
| 9. Prosocial behaviors | −0.069 | −0.182 ** | −0.090 | 0.171 ** | −0.114 ** | −0.333 ** | −0.316 ** | −0.172 ** | 1.000 |
| No Risk M (SD) | At Risk M (SD) | High Risk M (SD) | df | F-Value | Sig. | ω2 | |
|---|---|---|---|---|---|---|---|
| Depression | 7.12 (7.49) | 11.83 (10.28) | 15.98 (14.39) | 2, 1003 | 45.730 | <0.001 | 0.082 |
| Anxiety | 24.55 (6.37) | 28.33 (9.48) | 30.72 (10.49) | 34.792 | <0.001 | 0.063 | |
| Life satisfaction | 29.18 (6.37) | 25.96 (7.32) | 26.23 (8.00) | 19.965 | <0.001 | 0.036 | |
| Emotional problems | 2.52 (2.30) | 3.37 (2.53) | 4.15 (2.72) | 19.885 | <0.001 | 0.036 | |
| Conduct problems | 2.46 (2.16) | 3.31 (2.24) | 3.35 (2.18) | 14.058 | <0.001 | 0.025 | |
| Hyperactivity | 2.89 (2.29) | 3.73 (2.30) | 4.15 (2.43) | 15.468 | <0.001 | 0.028 | |
| Peer problems | 3.10 (2.24) | 3.67 (2.21) | 4.02 (2.44) | 8.146 | <0.001 | 0.014 | |
| Prosocial behaviors | 7.27 (2.40) | 6.69 (2.43) | 7.32 (2.41) | 4.072 | 0.017 | 0.006 |
| Variable | (I) | (J) | Mean Difference (I-J) | Sig. | 95% Confidence Interval | Cohen’s d | |
|---|---|---|---|---|---|---|---|
| Lower Bound | Upper Bound | ||||||
| Depression | No-risk | At-risk | −4.70 | <0.001 | −6.13 | −3.28 | 0.55 |
| High-risk | −8.86 | <0.001 | −11.11 | −6.61 | 1.04 | ||
| At-risk | High-risk | −4.15 | <0.001 | −6.68 | −1.63 | 0.49 | |
| Anxiety | No-risk | At-risk | −3.78 | <0.001 | −4.99 | −2.57 | 0.52 |
| High-risk | −6.16 | <0.001 | −8.08 | −4.25 | 0.85 | ||
| At-risk | High-risk | −2.38 | 0.029 | −4.53 | −0.24 | 0.33 | |
| Life satisfaction | No-risk | At-risk | 3.22 | <0.001 | 2.12 | 4.33 | 0.49 |
| High-risk | 2.95 | <0.001 | 1.20 | 4.69 | 0.44 | ||
| At-risk | High-risk | −0.28 | 0.783 | −2.23 | 1.68 | 0.04 | |
| Emotional problems | No-risk | At-risk | −0.85 | <0.001 | −1.24 | −0.46 | 0.36 |
| High-risk | −1.63 | <0.001 | −2.25 | −1.01 | 0.69 | ||
| At-risk | High-risk | −0.78 | 0.029 | −1.48 | −0.08 | 0.33 | |
| Conduct problems | No-risk | At-risk | −0.86 | <0.001 | −1.22 | −0.49 | 0.40 |
| High-risk | −0.89 | 0.002 | −1.46 | −0.32 | 0.41 | ||
| At-risk | High-risk | −0.04 | 0.911 | −0.68 | 0.60 | 0.02 | |
| Hyperactivity | No-risk | At-risk | −0.83 | <0.001 | −1.21 | −0.45 | 0.36 |
| High-risk | −1.25 | <0.001 | −1.86 | −0.6459 | 0.54 | ||
| At-risk | High-risk | −0.42 | 0.223 | −1.10 | 0.26 | 0.18 | |
| Peer problems | No-risk | At-risk | −0.57 | 0.003 | −0.94 | −0.19 | 0.25 |
| High-risk | −0.92 | 0.002 | −1.51 | −0.33 | 0.41 | ||
| At-risk | High-risk | −0.35 | 0.304 | −1.01 | 0.32 | 0.16 | |
| Prosocial behaviors | No-risk | At-risk | 0.57 | 0.005 | 0.17 | 0.97 | 0.24 |
| High-risk | −0.05 | 0.876 | −0.68 | 0.58 | 0.02 | ||
| At-risk | High-risk | −0.62 | 0.084 | 1.33 | 0.08 | 0.26 | |
| Predictor | B | SE | β | p-Value | 95% CI | |
|---|---|---|---|---|---|---|
| Lower | Upper | |||||
| Depression (Model Summary: F = 21.924, df (5, 1000), p < 0.001, R2 = 0.314) | ||||||
| No-risk vs. At-risk | 1.028 | 0.012 | 0.028 | 0.024 | 1.004 | 1.054 |
| No-risk vs. High-risk | 1.063 | 0.017 | 0.061 | <0.001 | 1.027 | 1.099 |
| Anxiety (Model Summary: F = 16.163, df (5, 1000), p < 0.001, R2 = 0.273) | ||||||
| No-risk vs. At-risk | 1.034 | 0.013 | 0.034 | 0.008 | 1.009 | 1.060 |
| No-risk vs. High-risk | 1.034 | 0.018 | 0.033 | 0.070 | 0.997 | 1.071 |
| Life satisfaction (Model Summary: F = 8.250, df (5, 1000), p < 0.001, R2 = 0.199) | ||||||
| No-risk vs. At-risk | 0.963 | 0.013 | −0.038 | 0.004 | 0.939 | 0.988 |
| No-risk vs. High-risk | 0.986 | 0.021 | −0.015 | 0.490 | 0.946 | 1.027 |
| Emotional problems (Model Summary: F = 10.292, df (5, 1000), p < 0.001, R2 = 0.199) | ||||||
| No-risk vs. At-risk | 0.988 | 0.048 | 0.012 | 0.797 | 0.899 | 1.085 |
| No-risk vs. High-risk | 1.025 | 0.075 | 0.025 | 0.740 | 0.885 | 1.187 |
| Conduct problem (Model Summary: F = 6.937, df (5, 1000), p < 0.001, R2= 0.183) | ||||||
| No-risk vs. At-risk | 1.088 | 0.052 | 0.084 | 0.103 | 0.983 | 1.204 |
| No-risk vs. High-risk | 1.025 | 0.083 | 0.025 | 0.762 | 0.872 | 1.206 |
| Hyperactivity (Model Summary: F = 7.282, df (5, 1000), p < 0.001, R2 = 0.187) | ||||||
| No-risk vs. At-risk | 1.029 | 0.046 | 0.029 | 0.528 | 0.941 | 1.126 |
| No-risk vs. High-risk | 1.086 | 0.069 | 0.083 | 0.228 | 0.950 | 1.243 |
| Peer problems (Model Summary: F = 3.868, df (5, 1000), p = 0.002, R2 = 0.138) | ||||||
| No-risk vs. At-risk | 0.991 | 0.048 | −0.009 | 0.856 | 0.902 | 1.090 |
| No-risk vs. High-risk | 1.034 | 0.075 | 0.034 | 0.655 | 0.892 | 1.199 |
| Prosocial behaviors (Model Summary: F = 3.598, df (5, 1000), p = 0.003, R2 = 0.133) | ||||||
| No-risk vs. At-risk | 0.971 | 0.039 | −0.029 | 0.454 | 0.899 | 1.049 |
| No-risk vs. High-risk | 1.110 | 0.067 | 0.105 | 0.117 | 0.974 | 1.266 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, L.; Ahmed, O.; Ahmed, M.Z. Associations Between Problematic QQ Use and Mental Health Among Chinese Children and Adolescents: A Latent Class Analysis. Brain Sci. 2025, 15, 1148. https://doi.org/10.3390/brainsci15111148
Mei L, Ahmed O, Ahmed MZ. Associations Between Problematic QQ Use and Mental Health Among Chinese Children and Adolescents: A Latent Class Analysis. Brain Sciences. 2025; 15(11):1148. https://doi.org/10.3390/brainsci15111148
Chicago/Turabian StyleMei, Li, Oli Ahmed, and Md Zahir Ahmed. 2025. "Associations Between Problematic QQ Use and Mental Health Among Chinese Children and Adolescents: A Latent Class Analysis" Brain Sciences 15, no. 11: 1148. https://doi.org/10.3390/brainsci15111148
APA StyleMei, L., Ahmed, O., & Ahmed, M. Z. (2025). Associations Between Problematic QQ Use and Mental Health Among Chinese Children and Adolescents: A Latent Class Analysis. Brain Sciences, 15(11), 1148. https://doi.org/10.3390/brainsci15111148

